计算机图形学 第2讲:图形表示
- 格式:ppt
- 大小:3.61 MB
- 文档页数:52
计算机图形学基础知识重点整理一、图形学的概念计算机图形学简单来说,就是让计算机去生成、处理和显示图形的学科。
它就像是一个魔法世界,把一堆枯燥的数字和代码变成我们眼睛能看到的超酷图形。
你看那些超炫的3D游戏里的场景、超逼真的动画电影,那可都是计算机图形学的功劳。
这个学科就是想办法让计算机理解图形,然后把图形按照我们想要的样子呈现出来。
二、图形的表示1. 点点是图形里最基本的元素啦。
就像盖房子的小砖头一样,很多个点组合起来就能变成各种图形。
一个点在计算机里就是用坐标来表示的,就像我们在地图上找一个地方,用经度和纬度一样,计算机里的点就是用x和y坐标(如果是3D图形的话,还有z坐标呢)来确定它在空间里的位置。
2. 线有了点,就能连成线啦。
线有各种各样的类型,直线是最简单的,它的方程可以用我们学过的数学知识来表示。
比如说斜截式y = kx + b,这里的k就是斜率,b就是截距。
还有曲线呢,像抛物线、双曲线之类的,在图形学里也经常用到。
这些曲线的表示方法可能会复杂一点,但也很有趣哦。
3. 面好多线围起来就形成了面啦。
面在3D图形里特别重要,因为很多3D物体都是由好多面组成的。
比如说一个正方体,就有六个面。
面的表示方法也有不少,像多边形表示法,就是用好多条边来围成一个面。
三、图形变换1. 平移平移就是把图形在空间里挪个位置。
这就像我们把桌子从房间的这头搬到那头一样。
在计算机里,平移一个图形就是把它每个点的坐标都加上或者减去一个固定的值。
比如说把一个点(x,y)向右平移3个单位,向上平移2个单位,那这个点就变成(x + 3,y + 2)啦。
2. 旋转旋转就更有意思啦。
想象一下把一个图形像陀螺一样转起来。
在计算机里旋转图形,需要根据旋转的角度和旋转中心来计算每个点新的坐标。
这就得用到一些三角函数的知识啦,不过也不难理解。
比如说以原点为中心,把一个点(x,y)逆时针旋转θ度,新的坐标就可以通过一些公式计算出来。
3. 缩放缩放就是把图形变大或者变小。
计算机图形学的基本概念与算法计算机图形学是研究如何利用计算机生成、处理和显示图像的学科。
它在许多领域中都有广泛应用,例如电影制作、游戏开发、医学成像等。
本文将介绍计算机图形学的基本概念和算法,并分步详细列出相关内容。
一、基本概念1. 图像表示:计算机图形学中,图像通常使用像素(Pixel)来表示。
每个像素包含了图像上一个特定位置的颜色或灰度值。
2. 坐标系统:计算机图形学使用不同的坐标系统来表示图像的位置。
常见的坐标系统有笛卡尔坐标系、屏幕坐标系等。
3. 颜色模型:计算机图形学中常用的颜色模型有RGB模型(红、绿、蓝)和CMYK模型(青、品红、黄、黑)等。
RGB模型将颜色表示为三个分量的组合,而CMYK模型用于打印颜色。
4. 变换:变换是计算机图形学中常用的操作,包括平移、旋转、缩放和剪切等。
通过变换,可以改变图像的位置、大小和方向。
5. 插值:在计算机图形学中,插值是指通过已知的数据点来推测未知位置的值。
常见的插值方法有双线性插值和双三次插值等。
二、基本算法1. 线段生成算法:线段生成是图形学中最基本的操作之一。
常见的线段生成算法有DDA算法(Digital Differential Analyzer)和Bresenham算法。
DDA算法通过计算线段的斜率来生成线段上的像素,而Bresenham算法通过绘制画板上的一个像素来逐渐描绘出整条直线。
2. 多边形填充算法:多边形填充是将一个多边形内的区域用颜色填充的过程。
常见的多边形填充算法有扫描线算法和边界填充算法。
扫描线算法通过扫描多边形的每一条水平线,不断更新当前扫描线下方的活动边并进行填充。
边界填充算法从某点开始,向四个方向延伸,逐渐填充整个多边形。
3. 圆弧生成算法:生成圆弧是计算机图形学中常见的操作之一,常用于绘制圆形和曲线。
常见的圆弧生成算法有中点圆生成算法和Bresenham圆弧生成算法。
中点圆生成算法通过计算圆弧中的每个点与圆心的关系来生成圆弧上的像素,而Bresenham圆弧生成算法通过在八个特定的扫描区域内绘制圆弧上的像素。
计算机图形学计算机图形学是研究计算机生成和处理图像的学科领域。
它涵盖了多个方面,包括图像表示、图像处理、图像合成、计算机动画等。
下面是计算机图形学中一些重要的概念和技术:1.图像表示:计算机图形学中的图像通常以数字形式表示,通过像素阵列来表示空间上的图像。
每个像素代表着图像中的一个点,其颜色值描述了该点的外观特性。
2.三维建模:三维建模是将三维对象转换为计算机可识别的形式。
常见的三维建模方法包括多边形网格建模、曲面建模、体素建模等。
三维建模为计算机图形学中的可视化和渲染提供了基础。
3.渲染:渲染是将计算机建模的三维场景转化为二维图像的过程。
它涉及到光照、阴影、纹理映射、透明度等照明和材质属性的计算。
常见的渲染方法有光栅化渲染、光线追踪等。
4.图像处理:图像处理是对图像进行各种操作和修改的过程。
这包括图像滤波、边缘检测、图像增强、图像分割等。
这些操作可以通过算法和数学方法在计算机上实现。
5.计算机动画:计算机动画是通过连续变化的图像帧来模拟和呈现动态图像。
它包括关键帧动画、骨骼动画、物理模拟等技术,可以模拟物体的运动、变形和碰撞等自然现象。
6.虚拟现实:虚拟现实使用计算机图形学技术来模拟和呈现逼真的虚拟环境。
它包括虚拟现实头盔、交互设备等技术,使用户能够与虚拟环境进行互动。
计算机图形学广泛应用于电子游戏、电影和动画制作、计算机辅助设计、医学图像处理、虚拟现实等领域。
它不仅提供了高度逼真和交互性的视觉体验,还支持人们进行创作、设计和科学研究。
计算机图形学图形的表示与数据结构在当今数字化的时代,计算机图形学扮演着至关重要的角色。
从我们日常使用的手机应用中的精美界面,到好莱坞大片中令人惊叹的特效场景,计算机图形学的应用无处不在。
而要实现这些精彩的图形效果,首先需要解决的就是图形的表示与数据结构问题。
什么是图形的表示呢?简单来说,就是如何用计算机能够理解和处理的方式来描述图形。
这就好比我们想要给别人介绍一个物体,需要用恰当的语言和方式来描述它的形状、颜色、大小等特征。
对于计算机来说,它需要一种精确、高效的方式来存储和处理图形信息。
常见的图形表示方法有两种:矢量图形和光栅图形。
矢量图形就像是用数学公式来描述图形。
比如说,一个圆形可以用圆心的坐标和半径来表示,一条直线可以用起点和终点的坐标来确定。
这种表示方法的优点是无论图形放大或缩小多少倍,都不会出现失真的情况,因为图形的形状是通过数学公式计算出来的。
常见的矢量图形格式有 SVG(可缩放矢量图形)、EPS(封装的 PostScript)等。
矢量图形常用于需要高质量输出的场合,比如标志设计、插图绘制等。
而光栅图形则是将图形分割成一个个的像素点,每个像素点都有自己的颜色和亮度值。
我们常见的图片格式如 JPEG、PNG 等都属于光栅图形。
光栅图形的优点是能够表示非常复杂的图像,比如照片。
但缺点是在放大时会出现锯齿状的边缘,也就是我们常说的“像素化”。
在计算机图形学中,选择合适的图形表示方法取决于具体的应用场景。
如果需要对图形进行频繁的缩放、旋转等操作,并且对图形的质量要求较高,那么矢量图形可能是更好的选择。
但如果要处理真实世界的图像,比如照片,那么光栅图形则更为合适。
接下来,让我们来谈谈图形的数据结构。
数据结构就像是图形在计算机中的“家”,它决定了图形信息如何被组织和存储,从而影响着图形处理的效率和效果。
在计算机图形学中,常见的数据结构有链表、数组、树等。
链表是一种灵活的数据结构,可以方便地添加或删除元素。
目录一、图形表示与构成 (3)(一)构成要素 (3)(二)计算机表示 (3)二、图形处理流程 (3)(一)应用阶段 (3)(二)几何阶段 (3)(三)光栅化阶段 (3)(四)输出合并阶段 (3)三、与图像处理的关系 (4)(一)计算机图形学 (4)(二)图像处理 (4)(三)相互交融 (4)四、图形扫描转换 (4)(一)直线扫描转换 (4)(二)圆扫描转换 (4)(三)椭圆扫描转换与线宽处理 (4)五、计算机图形系统功能 (4)(一)计算功能 (4)(二)存储功能 (4)(三)输入功能 (5)(四)输出功能 (5)(五)对话功能 (5)六、坐标系 (5)(一)世界坐标系 (5)(二)建模坐标系(局部坐标系) (5)(三)观察坐标系 (5)(四)设备坐标系 (5)(五)标准化坐标系 (5)(六)笛卡尔坐标系 (5)(七)齐次坐标系 (5)(八)自动驾驶领域坐标系 (6)七、图形的几何变换 (6)1. 基本变换类型 (6)2. 变换矩阵表示 (6)八、光照模型与渲染技术 (6)1. 光照模型分类 (6)2. 渲染技术概述 (6)九、图形裁剪与消隐 (6)1. 图形裁剪算法 (6)2. 消隐技术 (7)十、可见性判定与遮挡处理 (7)1. 可见性判定算法 (7)2. 遮挡处理方法 (7)十一、图形硬件加速技术 (8)1. 图形处理单元(GPU)原理 (8)2. 硬件加速技术应用 (8)十二、计算机图形学的应用领域 (8)1. 游戏开发 (8)2. 影视特效制作 (9)3. 虚拟现实(VR)与增强现实(AR) (9)4. 计算机辅助设计(CAD)与计算机辅助制造(CAM) (9)5. 科学可视化 (9)十三、计算机图形学的发展趋势 (9)1. 实时全局光照与物理模拟 (9)2. 人工智能与计算机图形学的融合 (10)3. 虚拟现实与增强现实的拓展 (10)4. 多学科交叉与创新应用 (10)十四、图形交互技术 (10)1. 手势识别与交互 (10)2. 语音交互与图形系统 (10)3. 眼动追踪与图形交互 (11)十五、图形压缩与传输技术 (11)1. 图形压缩算法分类 (11)2. 图形数据传输优化 (11)十六、图形学中的性能优化策略 (12)1. 算法优化 (12)2. 数据结构优化 (12)3. 多线程与并行计算优化 (12)十七、计算机图形学中的艺术与审美 (12)1. 图形设计原则 (12)2. 色彩理论在图形学中的应用 (13)3. 创意与灵感来源 (13)十八、三维模型的构建与优化 (13)1. 建模方法概述 (13)2. 模型优化技术 (13)十九、动画技术基础 (14)1. 关键帧动画 (14)2. 骨骼动画 (14)3. 物理动画 (15)二十、计算机图形学中的数学基础 (15)1. 线性代数基础 (15)2. 微积分基础 (15)二十一、计算机图形学中的伦理问题 (16)1. 虚假信息与误导性图形 (16)2. 隐私侵犯与数据安全 (16)二十二、新兴技术对计算机图形学的影响 (16)1. 量子计算与图形学 (16)2. 深度学习与图形生成 (17)3. 虚拟现实与增强现实技术的新进展 (17)二十三、计算机图形学在不同行业中的实践案例 (17)1. 影视特效行业 (17)2. 游戏开发行业 (18)3. 建筑设计行业 (18)4. 汽车设计行业 (18)二十四、计算机图形学学习资源与学习方法建议 (19)1. 学习资源推荐 (19)2. 学习方法建议 (19)计算机图形学基础知识重点整理一、图形表示与构成(一)构成要素·图形是客观事物的抽象呈现,包含几何与非几何信息。
计算机图形学基础知识点总结计算机图形学是一门研究如何利用计算机生成、处理和显示图形的学科。
它在许多领域都有着广泛的应用,如游戏开发、动画制作、虚拟现实、计算机辅助设计等。
下面将为大家总结一些计算机图形学的基础知识点。
一、图形的表示与存储1、位图(Bitmap)位图是由像素组成的图像,每个像素都有自己的颜色值。
优点是能够表现丰富的色彩和细节,但放大时会出现锯齿和失真。
常见的位图格式有 BMP、JPEG、PNG 等。
2、矢量图(Vector Graphics)矢量图使用数学公式来描述图形,由点、线、面等几何元素组成。
优点是无论放大或缩小都不会失真,文件大小相对较小。
常见的矢量图格式有 SVG、EPS 等。
二、坐标系统1、二维坐标系统常见的二维坐标系统有直角坐标系和极坐标系。
在直角坐标系中,通过横纵坐标(x, y)来确定点的位置。
在极坐标系中,通过极径和极角(r, θ)来确定点的位置。
2、三维坐标系统三维坐标系统通常使用笛卡尔坐标系,由 x、y、z 三个轴组成。
点的位置用(x, y, z)表示,用于描述三维空间中的物体。
三、图形变换1、平移(Translation)将图形沿着指定的方向移动一定的距离。
在二维中,通过改变坐标值实现平移;在三维中,需要同时改变三个坐标值。
2、旋转(Rotation)围绕某个中心点或轴旋转图形。
二维旋转可以通过三角函数计算新的坐标值;三维旋转较为复杂,需要使用矩阵运算。
3、缩放(Scaling)放大或缩小图形。
可以对图形在各个方向上进行均匀或非均匀的缩放。
四、颜色模型1、 RGB 颜色模型基于红(Red)、绿(Green)、蓝(Blue)三原色的混合来表示颜色。
每个颜色通道的取值范围通常是 0 到 255。
2、 CMYK 颜色模型用于印刷,由青(Cyan)、品红(Magenta)、黄(Yellow)和黑(Black)四种颜色组成。
3、 HSV 颜色模型由色调(Hue)、饱和度(Saturation)和明度(Value)来描述颜色。