科学计数法乘除法
- 格式:pdf
- 大小:116.40 KB
- 文档页数:7
科学计数法正则科学计数法,也称为标准化指数计数法或科学记数法,是一种用来表示非常大或非常小的数字的方法。
它使用科学记数法的形式,将一个数表示为一个乘以10的幂的形式。
科学计数法广泛应用于科学、工程和数学领域,可以简化大量数字的表示和计算。
科学计数法的基本形式如下:a × 10^b其中,a是一个大于等于1且小于10的数,称为尾数,b是一个整数,称为指数。
尾数表示了数的大小,指数表示了数的数量级。
科学计数法可以用来表示非常大的数,例如太阳的质量约为1.989 × 10^30千克。
这个数非常大,用普通的十进制表示法会非常冗长。
而使用科学计数法,可以将其简洁地表示为1.989 × 10^30千克。
同样,科学计数法也可以用来表示非常小的数,例如电子的质量约为9.10938356 × 10^-31千克。
这个数非常小,用普通的十进制表示法同样会非常冗长。
而使用科学计数法,可以将其简洁地表示为9.10938356 × 10^-31千克。
科学计数法的优点不仅在于能够简洁地表示大量数字,还在于方便进行数值计算。
当进行大量数字的乘除运算时,使用科学计数法可以将指数相加或相减,而尾数相乘或相除,大大简化了计算的复杂度。
科学计数法在实际应用中也有一些约定和规则。
首先,指数b必须是整数,而尾数a可以是任意大于等于1且小于10的数。
其次,当表示整数时,科学计数法的指数b为0,尾数a为这个整数的值。
而当表示小数时,科学计数法的指数b为小数点左边第一个非零数字的位置(从左到右),尾数a为去掉小数点后的数字。
科学计数法还可以用来表示精确度和误差范围。
在测量和实验中,往往需要估计测量结果的不确定性。
科学计数法可以将不确定性表示为指数的范围。
例如,测量一段铁丝的长度为3.14 × 10^2厘米,其中指数2表示了测量结果的不确定范围为±1厘米。
这样,科学计数法不仅可以表示测量结果,还可以表示测量结果的精确度。
数字的科学计数法科学计数法是一种描述和表达大或小数字的方法,它通过将数字表示为一个基数与一个指数的乘积,使得数字更加简洁和易于读写。
科学计数法在科学、工程、经济等领域中广泛使用,是一种方便有效的数学工具。
一、科学计数法的基本原理和规则科学计数法的基本原理是将一个较大或较小的数字转化为一个介于1到10之间的数字与一个权重的乘积。
具体而言:1. 将待转换的数字表示为一个介于1到10之间的数字:这个数字通常是有效数字中的第一个非零数字,并且保留一位小数。
2. 将10的幂次方作为权重:根据待转换数字的大小,确定10的幂次方为正或为负。
对于较大的数字,权重的正负与小数点向左移动的位数相等;对于较小的数字,权重的正负与小数点向右移动的位数相等。
3. 将上述两个部分相乘:该乘积表示待转换数字的科学计数形式。
举例来说,对于数字4200000000,将其转换为科学计数法的步骤如下:1. 首先,将数字表示为一个介于1到10之间的数字,即4.2。
2. 其次,确定权重。
由于该数字较大,小数点需要向左移动10位,因此权重为10的正10次方。
3. 最后,将4.2与10的正10次方相乘,得到科学计数法表示为4.2 x 10^10。
二、科学计数法的应用范围科学计数法主要应用在以下几个方面:1. 科学研究:科学领域经常涉及到非常大或非常小的数值,科学计数法可以简化这些数字的表达,便于理解和比较。
2. 工程和技术:在工程和技术领域,科学计数法常用于描述长度、面积、体积、速度、电流等重要参数,方便计算和设计。
3. 经济和财务:经济和财务领域中的大数字经常需要进行科学计数法的转换,以便于数据分析和财务决策。
4. 自然界和宇宙:大自然和宇宙中存在着非常庞大或微小的物质和现象,科学计数法可以帮助我们更好地理解和研究它们。
三、科学计数法的优点和局限性科学计数法具有以下几个优点:1. 简洁明了:科学计数法将数字表示为一个基数与一个指数的乘积,相比于长串的数字,更加简洁易懂。
科学计数法计算范文1.加法和减法:将参与运算的数转化为科学计数法的形式,确保指数相同,然后进行加减运算,最后提取结果的有效数字和指数。
例1:计算:5.7×10^4+3.2×10^3将两个数转化为科学计数法的形式:5.7×10^4=57×10^3×103.2×10^3=32×10^2×10因为指数相同,所以可以直接进行加法运算:57×10^3×10+32×10^2×10=(57×10^3+32×10^2)×10得到结果:5.73×10^42.乘法:将参与运算的数转化为科学计数法的形式,然后将两个数的有效数字相乘,并将指数相加,最后提取结果的有效数字和指数。
例2:计算:(2.4×10^2)×(6.5×10^3)将两个数转化为科学计数法的形式:(2.4×10^2)×(6.5×10^3)=24×10^1×65×10^3将两个数的有效数字相乘:24×65=1560将两个数的指数相加:10^1×10^3=10^(1+3)=10^4得到结果:1.56×10^43.除法:将被除数和除数转化为科学计数法的形式,然后将两个数的有效数字相除,并将指数相减,最后提取结果的有效数字和指数。
例3:计算:(3.2×10^5)÷(4×10^2)将两个数转化为科学计数法的形式:(3.2×10^5)÷(4×10^2)=32×10^4÷4×10^2将两个数的有效数字相除:32÷4=8将两个数的指数相减:10^4÷10^2=10^(4-2)=10^2得到结果:8×10^2通过以上的例子可以看出,科学计数法的计算与普通数值的计算方法类似,只需要注意指数的加减法规则即可。
科学计数法的除法
科学计数法是一种常用的数学表示方法,特别适合于大数和小数的表示。
科学计数法的数值表示为一个小于10的数乘以10的整数次幂。
例如,1.23×10^6表示为1230000,0.00045表示为4.5×10^-4。
在进行科学计数法的除法时,可以将除数和被除数都转换成标准形式,即将小数点移到第一个非零位的前面,然后进行普通的除法运算。
最后将商的小数点位置调整到原来的位置即可。
例如,对于1.2×10^5 ÷ 3.6×10^2,可以将除数和被除数都
转换成标准形式,即120000 ÷ 360。
然后进行普通的除法运算,得到333.33。
最后将小数点位置调整到原来的位置,即得到3.33×10^2。
需要注意的是,科学计数法的除法中,指数的运算规则与常规的除法运算不同。
当进行科学计数法的除法时,指数的运算结果应该是指数之差,即10^(a-b)。
例如,10^6 ÷ 10^3等于10^(6-3),即10^3。
总之,在进行科学计数法的除法时,需要将除数和被除数都转换成标准形式,然后进行普通的除法运算,并根据指数的运算规则调整指数的位置。
这样可以帮助我们更加快速、有效地进行科学计数法的除法运算。
- 1 -。
科学计数法的运算 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】科学计数法的运算(预习课)学习目标:1会用科学计数法表示一些比较大的小数和整数;2会用一些简单的幂数进行简单的乘除。
学习重点:能用一些简单的幂数进行乘除。
学习难点:能把幂数知识和物理的单位换算进行结合起来。
一合作与探究(一)在物理学中的科学计数法的应用范围1该数字必须是大于100或者小于哦0.12为什么不用科学计数法表示小于100又大于0.1的数?如果98这个数字用科学计数法来表示,即9.8×101表示,这样写起来比较麻烦,例如0.58用科学计数法表示00为:5.8×10-1,这样写起来就就不如原数更直观。
(二)小数的科学计数法的表示方法10.07=7×10-20.000709=7.09×10-30.000050=5×10-5你能总结出上面的数字的一些规律吗?(1)上面数据中的2、3、5是怎样得来的?(2)2、3、5前面的“-”(负号)是怎样得来的?请你讲解给其他组的同学。
2练习1、0.00049=2、0.0000803=3、0.0045=(二)比100大的整数的科学计数法11、17500=1.75×1042、398884=3.98884×1053、45006=4.5006×104你的规律是:(1)三组数据中的指数4、5、4是怎样得来的?请你用最棒的方式给其他同学讲解。
2练习4500008=2012=(三)何为幂数18×107中各种数字的数学意义其中:8为系数;10为底数;7为指数2举例(四)幂数的乘除法法则:同底数的幂相乘,底数不变,指数相加;同底数的幂相除,底数不变,指数相减。
系数与系数相乘(或除)1.何为底数、指数、系数1.75×104其中1.75为系数,10为底数,4为指数(五)幂数的乘法2幂数的相乘1、2.5×105×3×108=(2.5×3)×105+8=7.5×10132、8×10-2×1.2×103=8×1.2×10-2+3=101=10练习1、2×103×6×105=2、3×10-2×5×1010=3、4×10-7×1×10-5=4、3×102×2×10-7=(六)幂函数的相除16×107÷(3×10-5)=(6÷3)×107-(-5)=2×10122 2×104÷(5×10-5)=(2÷5)×104-(-5)=2×109练习请你为同学们出五个练习小结幂数的乘除法:。
一、有理数的乘法(1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.(2)任何数同零相乘,都得0.(3)多个有理数相乘的法则:①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.②几个数相乘,有一个因数为0,积就为0.(4)方法指引:①运用乘法法则,先确定符号,再把绝对值相乘.②多个因数相乘,看0因数和积的符号当先,这样做使运算既准确又简单.Eg :计算3×(-3)的结果是( )A 、6B 、-6C 、9D 、-9Eg :计算(-6)×(-1)的结果等于( )A 、6B 、-6C 、1D 、-1二、倒数(1)倒数:乘积是1的两数互为倒数. 一般地,a•a 1=1 (a≠0),就说a (a≠0)的倒数是a1. (2)方法指引:①倒数是除法运算与乘法运算转化的“桥梁”和“渡船”.正像减法转化为加法及相反数一样,非常重要.倒数是伴随着除法运算而产生的.②正数的倒数是正数,负数的倒数是负数,而0 没有倒数,这与相反数不同.Eg :-2的倒数是( )A 、2B 、-0.2C 、21D 、-21三、有理数的除法(1)有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,即:a÷b=a•b1 (b≠0) (2)方法指引:(1)两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.(2)有理数的除法要分情况灵活选择法则,若是整数与整数相除一般采用“同号得正,异号得负,并把绝对值相除”.如果有了分数,则采用“除以一个不等于0的数,等于乘这个数的倒数”,再约分.乘除混合运算时一定注意两个原则:①变除为乘,②从左到右.Eg:截止到2008年底,湘西州在校小学生中的少数民族学生数约为21.2万人,约占全州小学生总数的80%,则全州的小学生总数大致为()()万.(保留小数点后一位)Eg:计算6÷(-3)的结果是()Eg:下列计算正确的是()A.-6+6=0 B.-6-6=0 C.-6×0=-6 D.-6÷(-1)=-6四、有理数的乘方(1)有理数乘方的定义:求n个相同因数积的运算,叫做乘方.乘方的结果叫做幂,在a n中,a叫做底数,n叫做指数.a n读作a的n次方.(将a n看作是a的n次方的结果时,也可以读作a的n次幂.)(2)乘方的法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.(3)方法指引:①有理数的乘方运算与有理数的加减乘除运算一样,首先要确定幂的符号,然后再计算幂的绝对值.②由于乘方运算比乘除运算又高一级,所以有加减乘除和乘方运算,应先算乘方,再做乘除,最后做加减.Eg:计算-32的结果是()五、非负数的性质:偶次方偶次方具有非负性.任意一个数的偶次方都是非负数,当几个数或式的偶次方相加和为0时,则其中的每一项都必须等于0.Eg:若|m+2|+(n-1)2=0,则2m+n的值为()A .-4B .-1C .-3D .4Eg :若(a-1)2+|b-2|=0,则)(b -a 2012的值是( )A .-1B . 1C .0D .2012六、科学计数法——表示较大的数(1)科学记数法:把一个大于10的数记成a×10n 的形式,其中a 是整数数位只有一位的数,n 是正整数,这种记数法叫做科学记数法.【科学记数法形式:a×10n ,其中1≤a<10,n 为正整数.】(2)规律方法总结:①科学记数法中a 的要求和10的指数n 的表示规律为关键,由于10的指数比原来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n . ②记数法要求是大于10的数可用科学记数法表示,实质上绝对值大于10的负数同样可用此法表示,只是前面多一个负号.Eg :2014年三月发生了一件举国悲痛的空难事件--马航失联,该飞机上有中国公民154名.噩耗传来后,我国为了搜寻生还者及找到失联飞机,在搜救方面花费了大量的人力物力,已花费人民币大约934千万元.把934千万元用科学记数法表示为( )元.A .9.34×102B .0.934×103C .9.34×109D .9.34×1010Eg :节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为( )A .3.5×107B .3.5×108C .3.5×109D .3.5×1010Eg :中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,将67500用科学记数法表示为( )A .6.75×104吨B .67.5×103吨C .0.675×103吨D .6.75×104-吨七、科学计数法——表示较小的数用科学记数法表示较小的数,一般形式为a×10n -,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.Eg :病理学家研究发现,甲型H7N9病毒的直径约为0.00015毫米,0.00015用科学记数法表示为()A.1.5×104- B.1.5×105- C.0.15×103- D.1.5×103-Eg:某种禽流感病毒变异后的直径为0.00000012米,将这个数写成科学记数法是()A.1.2×107- B.1.2×105- C.0.12×106- D.15×108-Eg:病理学家研究发现,甲型H7N9病毒的直径约为0.00015毫米,0.00015用科学记数法表示为()A.1.5×104- B.1.5×105- C.0.15×103- D.1.5×103-八、科学计数法——原数(1)科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.若科学记数法表示较小的数a×10n ,还原为原来的数,需要把a的小数点向左移动n位得到原数.(2)把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.Eg:将1.24×103-用小数表示为()A.0.000124 B.0.00124 C.-0.00124 D.0.0124Eg:已知空气的单位体积质量为1.24×103-克/厘米3,1.24×103-用小数表示为()A.0.000124 B.0.0124 C.-0.00124 D.0.00124Eg:将6.18×103-化为小数的是()A.0.000618 B.0.00618 C.0.0618 D.0.618九、有理数的混合运算(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.Eg:算式17-2×[9-3×3×(-7)]÷3之值为何?()Eg:有一列数a1,a2,a3,a4,…,a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2008值为()Eg:一件商品的成本价是100元,提高50%后标价,又以8折出售,则这件商品的售价是()十、近似数和有效数字(1)有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.(2)近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.(3)规律方法总结:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.Eg:下列说法正确的是()A.近似数0.010只有一个有效数字B.近似数4.3万精确到千位C.近似数2.8与2.80表示的意义相同D.近似数43.0精确到个位Eg:资阳市2012年财政收入取得重大突破,地方公共财政收入用四舍五入取近似值后为27.39亿元,那么这个数值()A.精确到亿位B.精确到百分位C.精确到千万位D.精确到百万位Eg:我们知道地球的半径大约为6.4×103千米,下列对近似数6.4×103描述正确的是()A.精确到十分位,有2个有效数字B.精确到个位,有2个有效数字C.精确到百位,有2个有效数字D.精确到千位,有4个有效数字十一、科学计数法与有效数字(1)用科学记数法a×10n(1≤a<10,n是正整数)表示的数的有效数字应该有首数a来确定,首数a中的数字就是有效数字;(2)用科学记数法a×10n(1≤a<10,n是正整数)表示的数的精确度的表示方法是:先把数还原,再看首数的最后一位数字所在的位数,即为精确到的位数.例如:近似数4.10×105的有效数字是4,1,0;把数还原为410000后,再看首数4.10的最后一位数字0所在的位数是千位,即精确到千位.Eg:太阳内部高温核聚变反应释放的辐射能功率为3.8×1023千瓦,到达地球的仅占20亿分之一,到达地球的辐射能功率为()千瓦.(用科学记数法表示,保留2个有效数字)A.1.9×1014 B.2×1014 C.76×1015 D.7.6×1014十二、计算器基础知识(1)计算器的面板是由键盘和显示器组成.(2)开机键和关机键各是AC/ON,OFF,在使用计算器时要按AC/ON键,停止使用时要按OFF键.(3)显示器是用来显示计算时输入的数据和计算结果的装置.键上的功能是第一功能,直接输入,下面对应的是第二功能,需要切换成才能使用.(4)开方运算按用到乘方运算键x2的第二功能键”和的第二功能键“”.(5)对于开平方运算的按键顺序是:2ndf x2被开方数ENTE.(6)对于开立方运算的按键顺序是:32ndf∧被开方数ENTE.(7)部分标准型具备数字存储功能,它包括四个按键:MRC、M-、M+、MU.键入数字后,按M+将数字读入内存,此后无论进行多少步运算,只要按一次MRC即可读取先前存储的数字,按下M-则把该数字从内存中删除,或者按二次MRC.注意:由于计算器的类型不一样操作方式也不尽相同,可以参考说明书进行操作.Eg:计算器上的或键的功能是()A.开启计算器B.关闭计算器C.清除全部内容或刚刚输入内容D.计算乘方十三、计算器——有理数计算器包括标准型和科学型两种,其中科学型使用方法如下:(1)键入数字时,按下相应的数字键,如果按错可用(DEL)键消去一次数值,再重新输入正确的数字.(2)直接输入数字后,按下对应的功能键,进行第一功能相应的计算.(3)按下(-)键可输入负数,即先输入(-)号再输入数值.(4)开方运算按用到乘方运算键x2的第二功能键”和的第二功能键“”.(5)对于开平方运算的按键顺序是:2ndf x2被开方数ENTE或直接按键,再输入数字后按“=”即可.(6)对于开立方运算的按键顺序是:32ndf∧被开方数ENTE或直接按x3,再输入数字后按“=”即可注意:由于计算器的类型不一样操作方式也不尽相同,可以参考说明书进行操作.Eg:若运用湘教版初中数学教材上使用的某种电子计算器进行计算,则按键的结果为()A.16 B.33C.37 D.36。
科學計數法科学计数法是一种用于表示非常大或非常小的数字的方法。
它是科学界和工程界常用的一种表示方法,因为它可以简化数字的表达,并且更容易进行计算和比较。
科学计数法的基本原理是将一个数字表示为一个乘以10的幂的形式。
这个幂可以是正数,表示一个较大的数字,也可以是负数,表示一个较小的数字。
例如,我们可以将1,000,000写成1 x 10^6。
这里,6是指数,表示10要乘以自身6次。
同样地,我们可以将0.000001写成1 x 10^-6。
这里,-6表示10要除以自身6次。
科学计数法有几个优点。
首先,它可以简化大量数字的表达。
例如,在天文学中,我们经常需要处理非常大的距离或质量。
使用科学计数法可以使这些数字更易于理解和比较。
其次,科学计数法还可以简化计算过程。
当我们需要进行大量乘除运算时,使用科学计数法可以减少错误和提高效率。
例如,在物理实验中测量到的数据通常具有不确定性,并且需要进行多次运算来获得最终结果。
使用科学计数法可以减少舍入误差,并使结果更加准确。
最后,科学计数法还可以帮助我们更好地理解数字的数量级。
通过将数字表示为一个乘以10的幂的形式,我们可以更容易地比较不同数字之间的大小关系。
例如,1 x 10^6比1 x 10^3大得多,因为10的6次方比10的3次方大得多。
总之,科学计数法是一种非常有用的表示方法,可以简化数字的表达、计算和比较。
它在科学和工程领域被广泛使用,并且有助于我们更好地理解和处理非常大或非常小的数字。
科学计数法的乘法与除法运算科学计数法是一种常用的数学表示方法,它可以简化大数和小数的书写与计算。
在科学计数法中,一个数由两部分组成:尾数和指数。
尾数是大于等于1且小于10的实数,指数表示将尾数乘以10的多少次方。
科学计数法的乘法和除法运算规则相对简单,下面将详细介绍。
一、科学计数法的乘法运算科学计数法的乘法运算通过对尾数和指数的相乘得出结果。
例如,我们要计算1.23x10^2与2.34x10^3的乘积。
首先,将两个数的尾数相乘:1.23 x 2.34 = 2.8782。
然后,将两个数的指数相加:2 + 3 = 5。
最后,将尾数和指数的结果组合起来:2.8782x10^5。
这就是1.23x10^2与2.34x10^3的乘积。
二、科学计数法的除法运算科学计数法的除法运算通过对尾数和指数的相除得出结果。
例如,我们要计算3.56x10^4除以1.78x10^2。
首先,将两个数的尾数相除:3.56 / 1.78 = 2。
然后,将两个数的指数相减:4 - 2 = 2。
最后,将尾数和指数的结果组合起来:2x10^2。
这就是3.56x10^4除以1.78x10^2的结果。
三、科学计数法的乘除运算实例为了更好地理解科学计数法的乘除运算,我们通过几个实例来演示。
例一:计算(4.2x10^3) x (3.5x10^4)。
首先计算尾数:4.2 x 3.5 = 14.7。
然后计算指数:3 + 4 = 7。
最后,得出结果:14.7x10^7。
例二:计算(8.1x10^5) / (2.7x10^3)。
首先计算尾数:8.1 / 2.7 = 3。
然后计算指数:5 - 3 = 2。
最后,得出结果:3x10^2。
综上所述,科学计数法的乘法和除法运算规则相对简单。
通过对尾数和指数的相乘或相除,我们可以得出准确的结果。
在实际问题中,科学计数法的运算可以方便地进行大数和小数的计算,并且减少了错误的可能性。
因此,掌握科学计数法的乘法和除法运算规则对于数学学习和实际应用都具有重要意义。
有理数运算知识点:一、有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.二、有理数减法法则:减去一个数,等于加这个数的相反数.()a b a b-=+-运算技巧:①分数与小数均有时,应先化为统一形式.②带分数可分为整数与分数两部分参与运算.③多个加数相加时,若有互为相反数的两个数,可先结合相加得零.④若有可以凑整的数,即相加得整数时,可先结合相加.⑤若有同分母的分数或易通分的分数,应先结合在一起.⑥符号相同的数可以先结合在一起.三、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.乘方就是多个相同有理数相乘。
几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数.四、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.1a b ab÷=⋅,(0b≠)两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0.运算技巧:①分除以一个分数转化为乘以它的倒数;②几个因数相乘,有一个因数为0,这几个因数的乘积为0;③几个因数相乘,先确定乘积的符号,再绝对值相乘;④互为倒数的两个数相乘或乘积为整数的几个数相乘。
五、运算律加法的运算律:①两个加数相加,交换加数的位置,和不变.a b b a+=+(加法交换律)②三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.()()a b c a b c++=++(加法结合律)乘法运算律:①两个数相乘,交换因数的位置,积相等. ab ba=(乘法交换律)②三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等. ()abc a bc=(乘法结合律)③一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.()a b c ab ac+=+(乘法分配律)六、混合运算顺序①先乘方,再乘除,最后加减②同级运算从左到右③如有括号,先算括号内;并按小括号、中括号、大括号的顺序依次计算。
科学记数法一、知识要点1.科学记数法:把一个数表示成a(1≤|a|<10)与10的幂相乘的形式,叫做科学记数法,记做a×10n的形式,其中1≤|a|<10,n是正整数.2.一般地,10的n次幂,在1的后面有n个0.二、重要提示1.一个数用科学记数法表示成a×10n时,确定n的值有两种方法:第一种方法是将这个数的整数部分的位数减去1就是n;第二种方法是小数点向左移动的位数就是n.2.把用科学记数法a×10n表示的数化成原数时,10的指数是几,就将a的小数点向右移几位,不足的位数用0补充.3.负数也可以用科学记数法表示,只需在a×10n(1≤a<10)前面加上“-”号即可.4.科学记数法a×10n中n的值为整数.【例1】用科学记数法表示下列各数:(1)2014年“原创新春祝福微博大赛”作品充满了对马年的浓浓祝福,主办方共收到原创祝福短信作品62800条,62800=________.(2)-21400.8=________.【例2】下列用科学记数法表示的数,原数各是什么数?(1)3.14×106.(2)-5.03×104.【变式】1.下列用科学记数法表示的数,原数各是什么数?(1)3.2×104=.(2)-5.21×105=.(3)2.015×103=.2.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.3亿5千万人用科学记数法表示为()A.3.5×107人B.3.5×108人C.3.5×109人D.3.5×1010人3.我国某年的石油用量为3.1×108 t,则它的原数为()A.310000000 kg B.3100000000 kg C.31000000000 kg D.310000000000 kg 4.计算(结果仍用科学记数法表示):(1)3.8×103-2.6×102. (2)(-8×104)×(1.3×103).(3)(9.6×105)÷(3×103).5.计算(-2)2014+(-2)2015的结果是()A.-1 B.-2 C.-2201D.22014近似数一、知识要点1.准确数与近似数:与实际完全符合的数称为准确数.与实际接近的数称为近似数.2.一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位.3.电子计算器的种类:按功能分为简单计算器、科学计算器和图形计算器.二、重要提示1.注意:近似数中后面的0不能省略不写,如3.78与3.780是不同的,因为它们的精确度不同.对同一个数取不同的近似数,精确度不同.2.对较大的数取近似值时,结果一般要用科学记数法来表示.3.对于用科学记数法表示的数a×10n,要说明它精确到哪一位时,需把a×10n写回原数才能指出它精确到哪一位,即a中最后一个数字在写回原数后,位于哪一位,我们就说a×10n 精确到哪一位,例如,3.1×104精确到千位,而不是精确到十分位.4.对于以百、千、万、十万、百万、千万、亿为单位的近似数的精确位数,需写回原数才能指出它精确到哪一位,如8.5亿,不是精确到0.1(或十分位),而是精确到千万位.5.各种类型的计算器在使用时,按键的方法不尽相同,可参照说明书进行操作.但在进行加、减、乘、除四种运算时按键方法通常是一样的.计算器能够先算乘方,再算乘除,最后算加减,所以做混合运算时,按键顺序与书写顺序完全一样,含有括号的应使用括号键改变运算顺序.【例1】按括号内的要求,求下列各数的近似数:(1)86.418(精确到十分位).(2)3.1875(精确到千分位).(3)0.5649(精确到0.01).【例2】用四舍五入法,按要求对下列各数取近似值,并用科学记数法表示:(1)295347(精确到百位).(2)4037.56(精确到十位).【变式】1.下列说法正确的是()A.近似数0.010只有一个有效数字B.近似数4.3万精确到千位C.近似数2.8与2.80表示的意义相同D.近似数43.0精确到个位2.我们知道地球的半径大约为6.4×103 km,下列对近似数6.4×103描述正确的是() A.精确到十分位B.精确到个位C.精确到百位D.精确到千位3.近似数3.50所表示的精确度的取值范围是()A. 3.495≤x<3.505B. 3.40≤x<3.60C. 3.495≤x≤3.605D. 3.500≤x<3.60。
有效数字的计算法则
有效数字是指一个数值中有意义的数字,即不包括末位的零和前导零。
在进行计算时,需要遵守一些有效数字的计算法则,以保证最终结果的准确性。
1. 加减法计算:在进行加减法计算时,结果的有效数字位数应与参与计算的数中最小的有效数字位数相同。
例如,计算4.31 + 2.1时,最小有效数字位数为2,因此结果应该保留两位有效数字,即6.4。
2. 乘除法计算:在进行乘除法计算时,结果的有效数字位数应与参与计算的数中有效数字位数之和的最小值相同。
例如,计算2.3 × 1.56时,有效数字位数之和为3,因此结果应该保留三位有效数字,即3.6。
3. 科学计数法计算:在进行科学计数法的加减乘除法运算时,应将指数相同的数值相加减或相乘除,并将结果表示为科学计数法的形式。
例如,计算(3.2 × 10^4) + (1.8 × 10^3)时,应将指数相同的数值相加,得到3.38 × 10^4的结果。
4. 近似值计算:当无法得到精确结果时,可以使用近似值进行计算,并用适当的有效数字进行结果的表示。
例如,计算π的值时,可以使用3.14作为近似值,并用三位有效数字表示结果。
总之,遵守有效数字的计算法则可以保证计算结果的准确性和
可靠性。
科学计数法与运算知识点总结科学计数法是一种常用的数学表示法,用于表示非常大或非常小的数值。
它的格式为“a × 10^b”,其中a是一个大于或等于1且小于10的数,b是一个整数。
科学计数法的使用可以简化大数和小数的表示,使计算更加方便和清晰。
一、科学计数法的转换1. 大数的转换:将一个大于或等于1的数转换为科学计数法,需要将其表示为“a × 10^b”的形式。
首先确定a的值,使得1 ≤ a < 10,然后确定b的值,使得原数除以10^b的结果介于1和10之间。
例如,将230,000转换为科学计数法,可以写作2.3 × 10^5,因为230,000 ÷ 10^5 = 2.3,而且2.3的值满足1 ≤ 2.3 < 10。
2. 小数的转换:将一个小于1的数转换为科学计数法,同样需要表示为“a × 10^b”的形式。
首先确定a的值,使得1 ≤ a < 10,然后确定b 的值,使得原数乘以10^b的结果介于1和10之间。
例如,将0.000076转换为科学计数法,可以写作7.6 × 10^-5,因为0.000076 × 10^5 = 7.6,而且7.6的值满足1 ≤ 7.6 < 10。
二、科学计数法的运算科学计数法可以简化大数和小数的运算,以下是一些常见的运算知识点和规则:1. 加法和减法:对于相同指数b的科学计数法,可以直接对系数a进行加减运算,并保持指数不变。
例如,2.5 × 10^4 + 3.7 × 10^4 = 6.2 × 10^4,因为2.5 + 3.7 = 6.2,且指数4保持不变。
2. 乘法:乘法运算时,将科学计数法中的系数相乘,指数相加。
例如,(2.5 × 10^4) × (3.7 × 10^3) = (2.5 × 3.7) × 10^(4 + 3) = 9.25 ×10^7,因为2.5 × 3.7 = 9.25,指数4加3得到7。
一、(一)有理数的加法法则:1、同号两数相加,取相同的符号,并把绝对值相加,如:(3)(9)(________)_______+++=+= (2)(5)(________)_______-+-=-=2、绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,如:(5)(7)__________________-++== (10)(8)__________________-++==3、互为相反的两个数相加得零。
如:(4)(4)_______-++=4、一个数与零相加,仍得这个数。
如:(6)0_______-+=(二)有理数加法仍然可以灵活运用加法运算律进行简化运算。
1、加法交换律:可用字母表示为:a +b =b +a 。
如:由(5)(7)______-+-=,(7)(5)______-+-=, 所以:(5)(7)____(7)(5)-+--+-2、加法结合律:可用字母表示为:(a +b )+c =a +(b +c )。
如:[][](2)(4)(9)(2)(4)(9)(2)(4)(9)__________-+-++=-+-++=-+-++=二、经典归纳考点一 有理数加法【例1】计算:(1))12()1(+++(2))19()4(-+-(3))9()4(++-【例2】41-的相反数与绝对值等于41的数的和应等于( )。
A .21B .0C .21-D .21或0【例3】若x 是-3的相反数,y =5,求x +y 的值。
【例4】若320a b ++-=,则a+b 的值为( ) A .5B .-1C .1D . -5考点二 简便计算【例1】利用运算律,用简便方法计算下列各题:(1)(6)539(4)(7)+++++---解:原式=[])935()7()4()6(+++-+-+-(2)4)5.0()5.2()7.3()5.2(+-+++-+-解:原式=考点三 实际应用【例】出租车司机小张某天下午营运全是在东西走向的大道上行驶的,如果规定向东为正,向西为负,这天下午行车里程如下:(单位:千米)+11, -2, +15, -12, +10, -11, +5, -15, +18, -16 (1)当最后一名乘客送到目的地时,距出车地点的距离为多少千米?(2)若每千米的收费标准为7元,这天下午的营业额为多少?(与路程有关,与方向无关)(3)若成本为1.5元/千米,这天下午他盈利为多少元?有理数减法和加减混合运算一、知识清单(一)探索新知在上一讲中,同学们已经学习了有理数的加法。
科学计数法怎么表示运算规则是什么
科学计数法就是用幂的方式来表示。
科学计数法表示数时要注意其指数是正指数、还是负指数。
例如:36900000用科学计数法应表示为3.69×107,其指数为正指数7。
科学计数法的运算规则:数字部分:保留一份整数,其余均为小数;指数部分:对于小于1的数,第一个不是0的数前面。
科学计数法怎么表示
科学计数法就是用幂的方式来表示。
科学计数法表示数时要注意其指数是正指数、还是负指数。
例如:36900000用科学计数法应表示为3.69×107,其指数为正指数7。
科学计数法的运算规则
1、数字部分:保留一份整数,其余均为小数;
2、指数部分:对于大于10的数,其指数为整数位数-1,例如:13=1.3E1,13有2位整数,减1,故指数部分为1;
3、指数部分:对于小于1的数,第一个不是0的数前面。
科学计数法e什么意思
在科学计数法中,为了使公式简便,可以用带“E”的格式表示。
E(代表指数)表示将前面的数字乘以10的n次幂。
1.23E+5,即1.23乘以10的5次幂=123000,可视为“1.23(E+5)”
1.23E-5,即1.23乘以10的-5次幂=0.0000123,可视为“1.23(E-5)”。