2.11有效数字和科学计数法
- 格式:doc
- 大小:81.00 KB
- 文档页数:1
科学计数法的概念及形式
科学计数法是一种用于表示非常大或非常小的数字的方法。
这种方法的核心思想是将数字表示为一个基数(通常为10)和一个指数的乘积。
例如,数字2,000可以写成
2×10^3,而数字0.00005可以写成5×10^-5。
科学计数法的形式通常包括三个部分:有效数字、指数部分和小数点。
有效数字是指位于小数点左侧的数字,而指数部分是指位于小数点右侧的数字。
例如,在数字2,000中,有效数字为2,指数部分为3。
在科学计数法中,小数点的位置决定了数字的精度和表示范围。
通常来说,科学计数法的小数点位置可以向左或向右移动,移动的位数取决于指数部分的数值。
例如,数字2,000中的小数点向右移动了3位,而数字0.00005中的小数点向左移动了5位。
科学计数法的优点在于它可以减少数字的位数,使大量数据更易于处理和比较。
同时,它也方便进行数学运算,如加、减、乘和除,因为只需要对指数进行操作。
总之,科学计数法是一种方便、简洁且易于阅读和处理的数字表示方法。
它广泛应用于科学、工程、天文学、物理学等领域,特别是在需要处理大量数据或非常大的数字时。
2016中考数学辅导资料有效数字和科学记数法_考点解析
科学安排、合理利用,在这有限的时间内中等以上的学生成绩就会有明显的提高,为了复习工作能够科学有效,为了做好2016中考复习工作全面迎接2016中考,下文为各位考生准备了2016中考数学辅导资料。
1、科学记数法:设N0,则N= a (其中110,n为整数)。
2、有效数字:一个近似数,从左边第一个不是0的数,到精确到的数位为止,所有的数字,叫做这个数的有效数字。
精确度的形式有两种:(1)精确到那一位;(2)保留几个有效数字。
这就是我们为大家准备的2016中考数学辅导资料的内容,希望符合大家的实际需要。
2.11 有效数字与科学计数法(第一课时)学习任务分析:学习目标:1、了解近似数与有效数字的概念,体会近似数的意义及在生活中的作用2、能说出一个近似数的精确度或有几个有效数字,能按照要求用四舍五入的方法取一个数的近似数学习重点:按要求取一个数的近似数学习难点:正确地求一个近似数的精确度及它的有效数字的个数学习过程设计:一、问题与情境1:请你想一想:在实际应用中,往往不需要保留很多的小数位数,在小学算术中我们曾学过用“四舍五入法”根据实际需要保留一定的小数位数,取它的近似值.练习:求下列近似值:(1)将2.953保留整数得3(2)将2.953保留一位小数得3.0(3)将2.953保留两位小数得2.95若按数的近似值记法有:2.953≈3 (保留整数)2.953≈3.0 (保留一位小数)2.953≈2.95 (保留两位小数)二、问题与情境2:自我学习1.准确数和近似数在日常生活和生产实际中,我们接触到很多这样的数:例如初一(6)班有55个学生,某工厂有126台机床,我有4个练习本,这些数:55、126、4都是与实际完全符合的准确数.但是在实际生活和实际计算中存在着大量与实际上大体符合的近似数.又如月球到地球的距离约是38万公里,李明同学的身高约是1.63米,38万、1.63米都是与实际接近的近似数.在计算面积、体积时,由于测量出来的长度都不可能做到绝对准确,因此所求面积、体积也是一个近似数.所以,准确数是与实际完全符合的数,近似数是与实际接近的数.由此我们看到在解决实际问题时,往往只能用近似数,一方面搞得绝对准确是不可能的,另一方面往往也没有必要搞得完全准确.2.关于精确度问题.在大量的实际数学问题中,都会遇到近似数问题,使用近似数,我们知道就有一个近似程度问题,也即精确度问题.例如前面提到的积2.9532.953≈3 保留整数,叫做精确到个位(或精确到1);2.953≈3.0 保留一位小数,叫做精确到十分位(或精确到0.1);2.953≈2.95 保留两位小数,叫做精确到百分位(或精确到0.01).结果取3,就叫做精确到个位(或精确到1);取3.3,就叫做精确到十分位(或精确到0.1);取3.33,就叫做精确到百分位(或精确到0.01).……一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.3.近似数的有效数字在一个近似数中,从左边第一个不是零的数字起,到右边最后一位四舍五入所得的数字止,一共包含的数字的个数,叫做这个近似数的有效数字的个数(或位数),其中任意一位上的数字都是有效数字.上例中,3有一个有效数字:3;3.0有两个有效数字:3、0;2.95有三个有效数字:2、9、5.三、问题与情境3:请你试一试例1 下列由四舍五入得到的近似数各精确到哪一位,各有哪几个有效数字?(1)43.8;(2)0.03086;(3)2.4万;(4)3000.解:(1)43.8,精确到十分位(即精确到0.1)有三个有效数字4、3、8;(2)0.03086,精确到十万分位(即精确到0.00001)有四个有效数字3、0、8、6;(3) 2.4万,精确到千位,有两个有效数字2、4;(4)3000,精确到个位,有四个有效数字3、0、0、0.注意:(1)有效数字是从左边第一个不是零的数起;(2)从左边第一个不是零的数起到精确到的位数(即最后一位四舍五入所得的数)止,所有的数字.例(2)中,0.03086左边第一个不是零的数是3,最后一位四舍五入所得的数是6,从3到6的所有的数是3、0、8、6,左边的两个0不算,3与6之间的0要算,这个近似数有4个有效数字3、0、8、6;(3) 要注意末位的零,如(4)中末三个0不能丢.(4)在实际生活中,有时近似数并不是按“四舍五入”法得到的。
2.11 有效数字和科学计数法——科学记数法学习任务分析学习目标:1、通过观察、类比等独立思考手段获得对大数的合理表示的猜想,从克服困难的过程中获得成功的情感体验,树立乐观的态度和学好数学的自信心。
2、通过自我探究大数的合理表示方法,培养合情推理能力、解决问题的优化意识。
3、掌握用科学记数法将大于10的数表示成a×10n(1≤a<10)的形式。
学习重点:用科学记数法表示大于10的数。
学习难点:掌握用科学记数法表示一个数时,10的指数与原数整数位数之间的关系。
学习过程设计一、问题与情境1:情景引入:1、我们上节课学习了有理数的乘方运算,现在老师准备出几道题目,你会做吗?(1)310的底数是___,指数是___;103的底数是___,指数是___。
(2)102=___; 103=___;104 =___;105=___。
(3) 100=10×10=___;(写成幂的形式,下同)1000=___;10000=___;100000=___。
2、光的传播速度是目前所知所有物质中最快的,每秒钟可传播300 000 000米,你能快速准确的读出这个数字并把它写出来吗?对大数进行读和写确实比较麻烦和困难,容易搞错。
二、问题与情境2:自我学习:1、既然大数的读和写都比较麻烦和困难,那么能不能开动你的脑筋,想办法解决这个问题呢?也就是说能否用另外的比较适当的方法来直接表示比较困难的大数呢?尝试用适当的方法将100 000 000这个数字快速而准确地表示出来,使得这个数字的读和写比较简单、明了和直观。
将100 000 000写成幂的形式:108 。
2、能否用这种方法将300 000 000这个数字表示出来?这个数字表示为3×108。
3、将3 500 000这个数用这种方法表示出来。
会出现35×105和3.5×106两种答案,都正确。
但:科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数位只有一位的数。
近似数和有效数字科学记数法教学目标:1、了解近似数和有效数字的概念;2、能按要求取近似数和保留有效数字;3、体会近似数的意义及在生活中的作用.教学的重点:初步体验事情发生的确定性和不确定性.教学的难点:确定事件发生的可能性大小.教学方法:讲练结合【知识要点】1. 科学记数法(难点)一个大于10的数可以表示成n a 10⨯的形式,其中1≤10<a ,n 是正整数,这种记数方法叫做科学记数法.在用一个科学记数法表示一个大数时,要注意两点:(1)a 是一个整数位数只有一位的数,它不小于1而小于10;(2)10n中的n 是正整数,它的值等于原来的整数位数减1.2. 把用科学记数法表示的数还原把用科学记数法表示的数还原为原数时,只要把n a 10⨯中的a 的小数点向右移动n位即可.把用科学记数法表示的数n a 10⨯还原为原数后,其整数位应是n+1,a 中的数不够,要用“0”补足.3. 精确数与近似数(难点)精确数:精确数是与实际完全符合的数. 近似数:近似数是与实际非常接近的数(测量结果都是近似的).4. 有效数字的概念(难点)有效数字:对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫这个数的有效数字.注意:① 带有单位的数,有几个有效数字仅看数字个数即可.② 用科学记数法表示的数,有效数字的个数就是a 的有效数字的个数.一、自主预习:1.在一次体检中,测得甲的身高是1.82m,测得乙的身高大约是l.8m.(1)你能知道甲和乙的确切身高吗?(2)甲的身高是一个准确的数,乙的身高不是一个准确的数,那么你知道乙的身高是一个什么数吗?2.数字1.8精确到0.1,也可以说是精确到十分位;数字l.80精确到0.Ol,也可以说是精确到百分位;数字l.805精确到,也可以说是精确到.3.近似数2.045有四个有效数字,分别是2,0,4,5;近似数0.0302有三个有效数字,分别是3,0,2;近似数0.0018有个有效数字,分别是.4.用四舍五人的方法,把8.153 247精确到万分位是,把2.36精确到0.1是.注意:(1)对于有效数字,是指一个数按要求取近似值后,从左边第一个非0的数字到精确到的最后一个数字中间(包括两头)的所有数字;(2)精确度一般有两种形式:一是精确到哪一位,二是保留几个有效数字。
科学计数法的有效数字
有效数字是指从左边起第一个不为0的数字算起,有几个就是几个。
如:10.040就是5个,那么科学记数法就可以看出了,如:10的6次方就是7个有效数字,而10的负6次方就是1个了。
科学记数法科学记数法是一种记数的方法。
把一个数表示成a与10的n 有效数字是指从左边起第一个不为0的数字算起,有几个就是几个。
如:10.040就是5个,那么科学记数法就可以看出了,如:10的6次方就是7个有效数字,而10的负6次方就是1个了。
科学记数法
科学记数法是一种记数的方法。
把一个数表示成a与10的n次幂相乘的形式(1≤|a|<10,a不为分数形式,n为整数),这种记数法叫做科学记数法。
当我们要标记或运算某个较大或较小且位数较多时,用科学记数法免去浪费很多空间和时间。
形式
科学记数法的形式是由两个数的乘积组成的。
表示为a×10^b (aEb)
其中一个因数为a(1≤|a|<10),另一个因数为10^n。
精确度与有效数字的计算与估算在科学、工程和数学领域,精确度和有效数字是非常重要的概念。
它们帮助我们判断和表示测量结果或计算结果的准确程度。
本文将探讨精确度和有效数字的计算和估算方法,以及它们在实际问题中的应用。
一、精确度的概念和计算方法精确度是指测量结果或计算结果与真实值之间的接近程度。
在实际测量或计算中,我们通常无法得到完全准确的结果,因此需要通过一定的方法来评估其精确度。
常用的计算精确度的方法有以下几种:1. 绝对误差:绝对误差是指测量结果或计算结果与真实值之间的差值的绝对值。
例如,如果我们测量一条线段的长度为10cm,而真实值为9.8cm,那么绝对误差就是0.2cm。
2. 相对误差:相对误差是指绝对误差与真实值之比。
相对误差可以用来评估测量结果或计算结果的相对准确程度。
例如,如果我们测量一条线段的长度为10cm,而真实值为9.8cm,那么相对误差就是0.2cm/9.8cm≈0.0204。
3. 百分比误差:百分比误差是指相对误差乘以100。
百分比误差常用来表示测量结果或计算结果的相对准确程度。
例如,上述例子中的百分比误差就是0.0204×100≈2.04%。
二、有效数字的概念和计算方法有效数字是指测量结果或计算结果中具有意义的数字。
在表示测量结果或计算结果时,我们通常只保留一定数量的有效数字,以避免给人造成不必要的误导。
常用的计算有效数字的方法有以下几种:1. 规则一:非零数字是有效数字,例如1、2、3等。
2. 规则二:非零数字之间的零是有效数字,例如101、2003等。
3. 规则三:末尾的零是有效数字,但是前面的零不是有效数字,例如0.01、0.200等。
4. 规则四:科学计数法中的指数部分不是有效数字,例如1.23×10^4中的10^4不是有效数字。
三、精确度和有效数字的估算方法在实际问题中,我们常常需要估算测量结果或计算结果的精确度和有效数字。
以下是一些常用的估算方法:1. 重复测量法:通过多次重复测量同一个物理量,取测量结果的平均值作为最终结果,可以提高测量结果的精确度和有效数字。
2.11 有效数字和科学计数法
学习目标: 1理解有效数字的概念,会按题目要求取近似数。
2. 掌握科学计数法概念,会用科学计数法表示数。
学习重点: 有效数字及科学计数法概念
学习难点: 用科学计数法表示形如“303500”,且保留三位有效数字 学习过程:
(一) 知识回顾:课前检测 1.计算
(1) (){}
0.851243105-+⨯-÷⎡⎤⎣⎦
(2) ()()2
2
3
2151235266⎛⎫⎛⎫⎛⎫
-⨯-⨯-+÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
(二) 探究新知 :议一议:小学取近似数的原则是什么? 问题一: 求
22
7
精确到0.1 0.01 0.001 0.0001的近似值
小组讨论(1) 2, 20, 200,的数字意义有什么不同?
(2)能否从其他的角度来描述一个近似值的精确程度呢?
例1 求
97和112精确到0.0001的近似值,并指出各有几位有效数字。
解: 9
1.285717=精确到0.0001的近似值是1.2857,有1,2,8,5,7,五位有效数字。
112
= 巩固练习:填空 (1)2.780有 位有效数字;-0.03250有 位有效数字
(2) 3.1415926π=取3位有效数字是 ,取5位有效数字是 . 问题二。
你了解下列生活常识吗?写出和读出这些很大的数方便吗?
(1) 地球上陆地面积约为149 000 000平方千米;表示 (2) 我国第五次人口普查人数约为1300 000 000人 ;表示 (3) 太阳半径约为696 000 000米 ;表示
例2 用科学计数法表示下列各数
(1) 12 500 (2)35.92 (3) 10 000 000
解:(1)4
12500 1.2510=⨯ (2
)35.92 3.59210=⨯ (3)7
10 000 000=110⨯
再把问题二中的(1)到(3)各数用科学计数法表示出来。
变式练习;下列各数是用科学记数法表示的。
请写出这个数
(1)55.710 ⨯= (2) 73.7210 ⨯= (3)()432.010 ⨯=
五 拓展提高(小组讨论)
议一议: (1)近似数3.5万精确到哪位?有几个有效数字? (2)20600精确到百位的近似数是什么?
(3)你能用四舍五入法,把303500保留2个有效数字吗?
(4) 你能准确表述用科学计数法表示的数精确到哪位? 有几位有效数字怎么看吗?
六 检测与反馈
1.珠穆朗玛峰的海拔高度是8844.43米,用科学计数法表示为 , 2. 将4
2.0510⨯还原为 。
3 近似数0.0230有 位有效数字
4.圆周率π取3位有效数字的近似值为 。
5. 将12500精确到千位,可用科学计数法表示为 ,它有 位有效数字。