第六章 抽样
- 格式:ppt
- 大小:950.50 KB
- 文档页数:35
第六章抽样调查第一节抽样调查的意义及全然概念一、抽样调查的意义抽样调查(随机抽样):按照随机原那么从总体中抽取一局部单位进行瞧瞧,并运用数理统计的原理,以被抽取的那局部单位的数量特征为代表,对总体作出数量上的推断分析。
二、抽样调查的适用范围抽样调查方法是市场经济国家在调查方法上的必定选择,和普查相比,它具有正确度高、本钞票低、速度快、应用面广等优点。
一般适用于以下范围:1.实际工作不可能进行全面调查瞧瞧,而又需要了解其全面资料的事物;2.虽可进行全面调查瞧瞧,但比立困难或并不必要;3.对普查或全面调查统计资料的质量进行检查和修正;4.抽样方法适用于对大量现象的瞧瞧,即组成事物总体的单位数量较多的情况;5.利用抽样推断的方法,能够关于某种总体的假设进行检验,判定这种假设的真伪,以决定取舍。
三、抽样调查的全然概念(一)全及总体和抽样总体(总体和样本)全及总体:所要调查瞧瞧的全部事物。
总体单位数用N表示。
抽样总体:抽取出来调查瞧瞧的单位。
抽样总体的单位数用n表示。
n≥30大样本n<30小样本(二)全及指标和抽样指标(总体指标和样本指标)全及指标:全及总体的那些指标。
抽样指标:抽样总体的那些指标。
第二节抽样调查的组织形式通常有以下四种组织形式:一、简单随机抽样(纯随机抽样)即从总体单位中不加任何分组、排队,完全随机地抽取调查单位。
随机抽选可有各种不同的具体做法,如:1.直截了当抽选法;2.抽签法;3.随机数码表法;二、类型抽样(分类抽样)先对总体各单位按一定标志加以分类(层),然后再从各类(层)中按随机原那么抽取样本,组成一个总的样本。
类型的划分:一是必须有清楚的划类界限;二是必须明白各类中的单位数目和比例;三是分类型的数目不宜太多。
类型抽样的好处是:样本代表性高、抽样误差小、抽样调查本钞票较低。
要是抽样误差的要求相同的话那么抽样数目能够减少。
两种类型:1.等比例类型抽样(类型比例抽样);2.不等比例类型抽样(类型适宜抽样)。
第六章 抽样推断一、本章学习要点(一)总体参数,也称总量指标,是由总体各单位标志值计算而来的,样本统计量则由样本各单位标志值计算而来的指标。
通常有平均数、标准差、成数等。
重复抽样与不重复抽样的样本统计量分布是不同的。
如果样本的n 个个体完全来自于某一正态总体N (X ,2σ),则当方差已知时,样本均值服从正态分布;如果总体方差未知,则样本均值服从t (n-1)分布,且对于大样本,样本均值趋于正态分布。
即使总体分布未知,根据中心极限定理,大样本下的样本均值近似服从正态分布。
对于大样本,样本成数同样趋于服从正态分布。
(二)抽样估计就是利用样本指标值来估计相应总体指标的数值,又称参数估计,它有点估计和区间估计两种。
点估计就是用样本指标的实际值直接作为相应总体参数的估计值,如X =x ,区间估计就是根据给定的概率保证度,利用实际资料计算出总体参数的估计区间(上限和下限),并以这一区间作为总体参数的估计值。
优良估计量应该满足无偏性、一致性、有效性。
抽样误差有几种不同的形式。
实际抽样误差是指样本统计量所得的抽样统计值与总体参数真值之间的绝对离差;抽样平均误差(抽样标准误差)是样本统计量抽样分布的标准差。
通常有用x μ、p μ或者σ(x )、σ(p )表示;抽样极限误差是指以样本统计量统计总体参数时所允许的最大误差范围。
通常用 x ∆或 p ∆ 表示。
影响抽样误差的因素有:总体内在差异程度、样本容量、抽样方法、抽样组织形式。
抽样极限误差Δ与抽样标准误差μ 所得的相对数称抽样误差的概率度,用t 表示。
xx t μ∆= 或pp t μ∆= ,它是测定抽样估计可靠程度的一个参数。
(三)不同抽样组织形成的含义、要求、效果及估计方法是不同的,具体表现为点估计值、抽样标准误差及样本容量的计算公式不同。
其中最基本的是简单随机抽样,下表给出了二、本章思考题及练习题(一) 填空题1.抽样推断是按照,从总体中抽取样本,然后以样本的观察结果来估计总体的数量特征。