九年级数学一元二次方程_5024
- 格式:pdf
- 大小:1.41 MB
- 文档页数:10
九上数学第21章《一元二次方程》知识点1.一元二次方程的定义及一般形式:(1)等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数式2(二次)的方程,叫做一元二次方程。
(2)一元二次方程的一般形式:20(0)ax bx c a ++=≠。
其中a 为二次项系数,b 为一次项系数,c 为常数项。
注意:三个要点,①只含有一个未知数;②所含未知数的最高次数是2;③是整式方程。
2.一元二次方程的解法(1)直接开平方法:形如2()(0)x a b b +=≥的方程可以用直接开平方法解,两边直接开平方得x a +=或者x a +=,∴x a =-。
注意:若b<0,方程无解(2)因式分解法:一般步骤如下:①将方程右边得各项移到方程左边,使方程右边为0;②将方程左边分解为两个一次因式相乘的形式;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,他们的解就是原方程的解。
(3)配方法:用配方法解一元二次方程20(0)ax bx c a ++=≠的一般步骤:①二次项系数化为1:方程两边都除以二次项系数;②移项:使方程左边为二次项与一次项,右边为常数项;③配方:方程两边都加上一次项系数一般的平方,把方程化为2()(0)x m n n +=≥的形式;④用直接开平方法解变形后的方程。
注意:当0n <时,方程无解(4)公式法:一元二次方程20(0)ax bx c a ++=≠根的判别式:24b ac∆=-0∆>⇔方程有两个不相等的实根:2b x a-±=(240b ac -≥)0∆=⇔方程有两个相等的实根0∆<⇔方程无实根3.韦达定理(根与系数关系)我们将一元二次方程化成一般式ax 2+bx+c =0之后,设它的两个根是1x 和2x ,则1x 和2x 与方程的系数a ,b ,c 之间有如下关系:1x +2x =b a -;1x ∙2x =c a4.一元二次方程的应用列一元二次方程解应用题,其步骤和二元一次方程组解应用题类似①“审”,弄清楚已知量,未知量以及他们之间的等量关系;②“设”指设元,即设未知数,可分为直接设元和间接设元;③“列”指列方程,找出题目中的等量关系,再根据这个关系列出含有未知数的等式,即方程。
九年级上册数学一元二次方程一、一元二次方程的基本概念一元二次方程是一个只含有一个未知数(通常表示为x),且未知数的最高次数为2的方程。
其标准形式为:ax^2 + bx + c = 0,其中a、b、c是常数,且a≠0。
二、一元二次方程的解法配方法:通过配方将方程转化为(x+b)^2=d的形式,然后直接开平方求解。
公式法:根据一元二次方程的根的判别式Δ=b^2-4ac,当Δ≥0时,方程有2个实根。
根为x=(-b±√Δ)/2a。
因式分解法:将方程左边化为两个因式的乘积,右边化为0,然后分别令每个因式等于0求解。
三、一元二次方程的根的判别式一元二次方程的根的判别式Δ=b^2-4ac。
根据判别式的不同取值,一元二次方程的根的情况分为以下三种:当Δ>0时,方程有两个不相等的实根。
当Δ=0时,方程有两个相等的实根(重根)。
当Δ<0时,方程没有实根(称为虚根),但有共轭复数根。
四、一元二次方程的根与系数的关根的和:x1+x2=-b/a。
根的积:x1*x2=c/a。
根的平方和:x1^2+x2^2=(x1+x2)^2-2x1*x2=(b^2-2ac)/a^2。
的立方:x1^3+x2^3=(x1+x2)(x1^2+x2^2-x1*x2)=-b^3/a^3+c^3/a^3=(c^3-b^3)/a^3。
五、一元二次方程的应用一元二次方程在日常生活和生产实践中有着广泛的应用,如计算几何图形的面积、解决商品利润问题等。
解决这类问题时,需要将实际问题转化为数学模型,即建立一元二次方程,然后求解得到实际问题的答案六、配方法解一元二次方程将一元二次方程化为(x+b)^2=d的形式,然后直接开平方求解。
这种方法适用于所有形式的一元二次方程,但在使用时需要注意运算的准确性。
七、公式法解一元二次方程根据一元二次方程的根的判别式Δ=b^2-4ac,当Δ≥0时,使用公式法可以直接求解出方程的实根。
此方法简洁明了,但需要注意判别式的计算以及实根的存在性。