信号与系统作业作业1(第二章)答案
- 格式:doc
- 大小:264.50 KB
- 文档页数:8
第二章 连续时间系统的时域分析1.与()t δ相等的表达式为:A .1()4t δ B .2(2)t δ C .(2)t δ D .1(2)2t δ解:由()t δ函数的性质1()()t t δαδα=可得,选B2.()j tet dt ωδ∞--∞'=⎰。
解:运用性质0()()()(0)t f t t dt f t f δ∞=-∞'''=-≡-⎰,得到()()j tet dt j j ωδωω∞--∞'=--=⎰。
3.两个线性时不变系统的级联,其总的输入-输出关系与它们在级联中的次序没有关系。
(正确)解:以冲击响应为例。
因为级联时,系统总的冲击响应等于各子系统冲击响应的卷积,而卷积与顺序没有关系,所以冲击响应与子系统顺序没有关系。
4.若()()()y t x t h t =*,则()()()y t x t h t -=-*-。
(错误)解:由()()()y t x h t d τττ∞-∞=-⎰,得()()()y t x h t d τττ∞-∞-=--⎰。
而()()()()()x t h t x h t d y t τττ∞-∞-*-=--+≠-⎰5.已知(21)f t -+波形如图所示,试画出()f t 的波形。
解:根据1反2展36.用图解法求图中信号的卷积()()()t f t f t f 21*=。
(03北邮A,8分)解:当10t -<时,即1t <时,由图1所示,12()()*()0f t f t f t ==图1当1020t t ->⎧⎨-<⎩时,即12t <<时,由图2所示,11201()()*()sin()[cos()1]t f t f t f t d t πττππ-===+⎰图2当1220t t -<⎧⎨->⎩时,即23t <<时,由图3所示,11222()()*()sin()cos()t t f t f t f t d t πττππ--===⎰图3当1222t t ->⎧⎨-<⎩时,即34t <<时,由图4所示,21221()()*()sin()[cos()1]t f t f t f t d t πττππ-===-⎰图4当4t >时,如图5所示,12()()*()0f t f t f t ==图57.如图所示系统由几个子系统组成,各子系统的冲激响应为)()(1t u t h =,)1()(2-=t t h δ,)()(3t t h δ-=,试求此系统的冲激响应)(t h ;若以()()t u e t e t -=作为激励信号,用时域卷积法求系统的零状态响应。
习 题 一 第一章习题解答基本练习题1-1 解 (a) 基频 =0f GCD (15,6)=3 Hz 。
因此,公共周期3110==f T s 。
(b) )30cos 10(cos 5.0)20cos()10cos()(t t t t t f ππππ+==基频 =0f GCD (5, 15)=5 Hz 。
因此,公共周期5110==f T s 。
(c) 由于两个分量的频率1ω=10π rad/s 、1ω=20 rad/s 的比值是无理数,因此无法找出公共周期。
所以是非周期的。
(d) 两个分量是同频率的,基频 =0f 1/π Hz 。
因此,公共周期π==01f T s 。
1-2 解 (a) 波形如图1-2(a)所示。
显然是功率信号。
t d t f TP T TT ⎰-∞→=2)(21lim16163611lim 22110=⎥⎦⎤⎢⎣⎡++=⎰⎰⎰∞→t d t d t d T T T W(b) 波形如图1.2(b)所示。
显然是能量信号。
3716112=⨯+⨯=E J (c) 能量信号 1.0101)(lim101025=-===⎰⎰∞∞---∞→T t ttT e dt edt eE J(d) 功率信号,显然有 1=P W1-3 解 周期T=7 ,一个周期的能量为 5624316=⨯+⨯=E J 信号的功率为 8756===T E P W 1-5 解 (a) )(4)2()23(2t tt δδ=+; (b) )5.2(5.0)5.2(5.0)25(5.733-=-=----t e t e t et tδδδ(c) )2(23)2()3sin()2()32sin(πδπδπππδπ+-=++-=++t t t t 题解图1-2(a) 21题解图1-2(b) 21(d) )3()3()(1)2(-=----t e t t et δδε。
1-6 解 (a) 5)3()94()3()4(2-=+-=+-⎰⎰∞∞-∞∞-dt t dt t t δδ(b) 0)4()4(632=+-⎰-dt t t δ(c) 2)]2(2)4(10[)]42(2)4()[6(63632=+++-=+++-⎰⎰--dt t t dt t t t δδδδ(d)3)3(3)(3sin )(1010=⋅=⎰⎰∞-∞-dt t Sa t dt ttt δδ。
2-1 对图2-1所示电路分别列写求电压)(0t v 的微分方程表示。
2(t ei )(t +-(e )(e )(t +-图2-1解 (a )对于图2-1(a )所示电路列写网孔电流方程,得[]⎪⎩⎪⎨⎧-=+-=-++⎰⎰⎰∞-∞-∞-t t t t v i d i i t e d i d i dt t di i )()()()()()()()(202122111ττττττττ 又 dtt di t v )(2)(20= 消元可得如下微分方程:)(3)(5)(5)(200022033t v t v dt dt v dtd t v dt d +++=2)(te dt d(b )对于图2-1(b )所示的双耦合电路,列写电路微分方程,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=+++=+++⎰⎰∞-∞-)()(0)()()()(1)()()()()(10221221211t v t Ri t Ri dt t di M dt t di L d i Ct e t Ri dtt di M dt t di L d i C ttττττ 消元可得如下微分方程:)()(1)(2)(2)(2)()(22020022203304422t e dtd MR t v C t v dt d C R t v dtd R R L t v dtd RL t v dt d M L =++⎪⎭⎫ ⎝⎛+++- (c )对于图2-1(c )所示电路列写电路方程,得⎪⎪⎩⎪⎪⎨⎧=⎥⎦⎤⎢⎣⎡+++=⎰∞-)()()(1)()()()(10101011t v t v dt d C dt t v L R t v R t v t v dt d C t i t μ 消元可得如下微分方程:)()(1)(1)()(101011022110331t i dt dR t v RL t v dt d R R L C t v dt d R C R C t v dt d CC μ=+⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++ (d )对图2-1(d )所示电路列写电路方程,电流)(t i 如图2-2所示,得⎪⎪⎩⎪⎪⎨⎧==+=++⎰∞-)()()()()()()()(1)(1011t v t v t e t v t Ri t e t v d i C t Ri t μμττ 消元可得如下微分方程:(t e )(t +-图2-2)()(1)()1(00t e Rt v R t v dt d Cμμ=+-2-2 图2-3所示为理想火箭推动器模型。
第二章 作业答案
2–1 已知描述某LTI 连续系统的微分方程和系统的初始状态如下,试求此系统的零输入响应。
(1))()(2)(2)(3)(t e t e t y t y t y +'=+'+''
2)0(=-y ,1)0(-='-y
解:
根据微分方程,可知特征方程为:
0)2)(1(0232=++⇒=++λλλλ
所以,其特征根为: 1,221-=-=λλ
所以,零输入响应可设为:0)(221≥+=--t e
C e C t y t
t
zi 又因为 ⎩⎨⎧=-=⇒⎩⎨⎧-=--='=+=--3
1
12)0(2
)0(212121C C C C y C C y
所以,03)(2≥-=--t e e t y t
t zi
(2))(2)()(6)(5)(t e t e t y t y t y -'=+'+''
1)0()0(=='--y y 。
解:
根据微分方程,可知特征方程为:
0)3)(2(0652=++⇒=++λλλλ
所以,其特征根为: 3,221-=-=λλ
所以,零输入响应可设为:0)(3221≥+=--t e C e C t y t
t zi
又因为 ⎩⎨⎧-==⇒⎩⎨⎧=--='=+=--3
4132)0(1)0(21
2121C C C C y C C y 所以,034)(32≥-=--t e
e t y t t zi
2–2 某LTI 连续系统的微分方程为)(3)()(2)(3)(t e t e t y t y t y +'=+'+'' 已知1)0(=-y ,2)0(='-y ,试求:
(1) 系统的零输入响应)(t y zi ;
(2) 输入)()(t t e ε=时,系统的零状态响应)(t y zs 和全响应)(t y 。
解:
(1)根据微分方程,可知特征方程为:
0)2)(1(0232=++⇒=++λλλλ
所以,其特征根为: 1,221-=-=λλ
所以,零输入响应可设为:0)(221≥+=--t e C e C t y t
t
zi
又因为 ⎩⎨⎧
=-=⇒⎩⎨⎧=--='=+=--4
322)0(1)0(212121C C C C y C C y
所以,034)(2≥-=--t e e t y t t
zi
(2) 可设零状态响应为:0)(221>++=--t p e C e C t y t x t
x zs
其中p 为特解,由激励信号和系统方程确定。
因为)()(t t e ε= 所以,p 为常数,根据系统方程可知,23=p 。
于是,零状态响应可设为为:023)(221>++=--t e C e C t y t x t
x zs
将上式代入原方程中,比较方程两边的系数,可得到
⎪⎩⎪⎨⎧-==2
2121C C 所以,023221)(2>+-=--t e e t y t t zs
全响应为 )()()(t y t y t y zs zi +=
0)2322
1()34()(22>+-+-=----t e e e e t y t t t t zs
0)23252()(2>+-=--t e e t y t t zs
2–3 试求下列各LTI 系统的冲激响应和阶跃响应。
(1))(2)()(3)(4)(t e t e t y t y t y +'=+'+''
解:
根据 在激励信号为)(t δ的条件下,求解系统的零状态响应可得
()
)(21)(3t e e t h t t ε⋅+=-- 因为,单位阶跃响应⎰-⋅=t
d h t g 0)()(ττ 所以,()
⎰-⋅+=--t d e e t g 0321)(τττ 0),1(61)1(21612
16030>-+-=--=------t e e e e t t t t ττ 0,6
121326>--=--t e e t t
(2))(2)(2)()(2)(3)("t e t e t e t y t y t y +'+''=+'+
解:
可先求系统 )()(2)(3)("t e t y t y t y =+'+ 的冲激励响应)(0t h ,
则,原系统的冲激响应为)(2)(2)()(0'0"0
t h t h t h t h ++=。
因为)()(2)(3)("t e t y t y t y =+'+的特征根为:1,221-=-=λλ 所以,可设冲激响应为:)()()(2210t e C e C t h t t ε⋅+=--
将)(0t h 代入系统方程,并确定待定系数后,可得:
)()()(20t e e t h t t ε⋅-=--
因为,)(2)(2)()(0'0"0
t h t h t h t h ++= 又因为,)()2()(2'0t e e t h t t ε⋅-=--,)()4()()(2"0t e e t t h t t εδ⋅--=-- 所以,
[]
)()(2)()2(2)()4()()(222t e e t e e t e e t t h t t t t t t εεεδ⋅-⋅+⋅-⋅+⋅--=------ )()2()(2t e e t t t εδ⋅--=-- 因为,单位阶跃响应⎰-⋅=t
d h t g 0)()(ττ 所以,[]
⎰-⋅--=--t t t d t e e t t g 02)()(2)()(τεδ ()
)(212t e e t t ε⋅-+=--
2–4 各信号的波形如题2–4图所示,试计算下列卷积,并画出其波形。
(1))()(21t f t f *
(2))()(31t f t f * (3))()(24t f t f * (4))()(34t f t f *
题2–4 图
解:
根据 )()()(00t t f t t t f -=-*δ,可方便地得到此题的卷积结果。
(1)
(2)
(3)
(4)
2–5 已知某LTI 连续系统的冲激响应)(t h 和各激励信号)(t e 的波形如题2–5图所示,试求此系统对激励信号的零状态响应。
题2–5图
解:
因为,)()()(t h t e t y zs *=
所以,[][])2()()2()()(--*--=t t t t t y zs εεεε
)2()2()2()()()2()()(-*-+-*-*--*=t t t t t t t t εεεεεεεε
)4()4()2()2(2)(--+---=t t t t t t εεε
2–6 题2–6图所示系统是由几个子系统组合而成的,各子系统的冲激响应分别为
)()(1t t h ε=,)1()(2-=t t h δ,)1()(3-=t t h ε
试求总系统的冲激响应)(t h 并画出其波形。
题2–6图
解: 根据系统框图,可得:
[])()()()()(1321t h t h t h t h t h **+=
[])()1()1()(t t t t εεδε*-*--=
[])()2()(t t t εεε*--=
)2()2()(-⋅--=t t t t εε
此系统的单位冲激响应的波形为:
2–7 题2–7图所示系统是由几个子系统组合而成,各子系统的冲激响应分别为
)1()(1-=t t h δ,)3()1()(2---=t t t h εε
试求总系统的冲激响应)(t h 并画出其波形。
题2–7图
解:根据系统框图,可得:
[])()()()()()(2111t h t h t h t h t t h **++=δ
[][])3()1()1()1()1()(---*-*-+-+=t t t t t t εεδδδδ [][])3()1()2()1()(---*-+-+=t t t t t εεδδδ
[][][])5()3()4()2()3()1(---+---+---=t t t t t t εεεεεε )5()4()2()1(-----+-=t t t t εεεε
此系统的单位冲激响应的波形为:。