圆周运动高考题(含答案)
- 格式:doc
- 大小:208.98 KB
- 文档页数:7
微专题—圆周运动习题选编一、单项选择题1.如图所示,B和C是一组塔轮,即B和C半径不同,但固定在同一转动轴上,其半径之比为R B∶R C=3∶2.A 轮的半径大小与C轮相同,它与B轮紧靠在一起,当A轮绕其中心的竖直轴转动时,由于摩擦作用,B轮也随之无滑动地转动起来,a、b、c分别为三轮边缘的三个点,则a、b、c三点在运动过程中()A.线速度大小之比为3∶2∶2B.角速度之比为3∶3∶2C.转速之比为2∶3∶2D.向心加速度大小之比为9∶6∶42.A、B两艘快艇在湖面上做匀速圆周运动(如图),在相同时间内,它们通过的路程之比是4:3,运动方向改变的角度之比是3:2,则它们()A.线速度大小之比为4:3B.角速度大小之比为3:4C.圆周运动的半径之比为2:1D.向心加速度大小之比为1:23.如图所示,一位同学玩飞镖游戏.圆盘最上端有一P点,飞镖抛出时与P等高,且距离P点为L.当飞镖以初速度v0垂直盘面瞄准P点抛出的同时,圆盘以经过盘心O点的水平轴在竖直平面内匀速转动.忽略空气阻力,重力加速度为g,若飞镖恰好击中P点,则()A .飞镖击中P 点所需的时间为0LvB .圆盘的半径可能为2202gL vC .圆盘转动角速度的最小值为2v Lπ D .P 点随圆盘转动的线速度不可能为54gLv π 4.如图,有一倾斜的匀质圆盘(半径足够大),盘面与水平面的夹角为θ,绕过圆心并垂直于盘面的转轴以角速度ω匀速转动,有一物体(可视为质点)与盘面间的动摩擦因数为(μ设最大静摩擦力等手滑动摩擦力),重力加速度为g .要使物体能与圆盘始终保持相对静止,则物体与转轴间最大距离为( )A .2cos g μθωB .2sin g θω C .2cos sin g μθθω- D .2cos sin g μθθω+ 5.未来的星际航行中,宇航员长期处于完全失重状态,为缓解这种状态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图所示.当旋转舱绕其轴线匀速旋转时,宇航员站在旋转舱内圆柱形侧壁上,可以受到与他站在地球表面时相同大小的支持力.为达到上述目的,下列说法正确的是( )A .旋转舱的半径越大,转动的角速度就应越大B .旋转舱的半径越大,转动的角速度就应越小C .宇航员质量越大,旋转舱的角速度就应越大D .宇航员质量越大,旋转舱的角速度就应越小6.在G20峰会“最忆是杭州”的文化文艺演出中,芭蕾舞演员保持如图所示姿势原地旋转,此时手臂上A、B 两点角速度大小分别为1ω、2ω,线速度大小分别为A v 、B v ,则( )A .12ωω<B .12ωω>C .A B v v <D .A B v v >7.一质量为2.0×103kg 的汽车在水平公路上行驶,路面对轮胎的径向最大静摩擦力为1.4×104N ,当汽车经过半径为80m 的弯道时,下列判断正确的是( )A .汽车转弯时所受的力有重力、弹力、摩擦力和向心力B .汽车转弯的速度为20m/s 时所需的向心力为1.4×104NC .汽车转弯的速度为20m/s 时汽车会发生侧滑D .汽车能安全转弯的向心加速度不超过7.0m/s 28.滑雪运动深受人民群众喜爱,某滑雪运动员(可视为质点)由坡道进入竖直面内的圆弧形滑道AB ,从滑道的A 点滑行到最低点B 的过程中,由于摩擦力的存在,运动员的速率不变,则运动员沿AB 下滑过程中( )A .合外力做功一定大于零B .所受摩擦力大小不变C .合外力始终与速度垂直D .机械能始终保持不变9.如图所示,照片中的汽车在水平路面上做匀速圆周运动,已知图中双向四车道的总宽度约为15m ,内径75m,假设汽车受到的最大静摩擦力等于车重的0.7倍,则运动的汽车()A.所受的合力可能为零B.只受重力和地面的支持力作用C.最大速度不能超过25m/sD.所需的向心力由重力和支持力的合力提供10.小球P和Q用不可伸长的轻绳悬挂在天花板上,P球的质量大于Q球的质量,悬挂P球的绳比悬挂Q 球的绳短.将两球拉起,使两绳均被水平拉直,如图所示,将两球由静止释放,在各自轨迹的最低点()A.P球的速度一定大于Q球的速度B.P球的动能一定小于Q球的动能C.P球所受绳的拉力一定大于Q球所受绳的拉力D.P球的向心加速度一定小于Q球的向心加速度11.如图所示,旋转秋千中的两个座椅A、B质量相等,通过相同长度的缆绳悬挂在旋转圆盘上.不考虑空气阻力的影响,当旋转圆盘绕竖直的中心轴匀速转动时,下列说法正确的是()A.A的速度比B的大B.A与B的向心加速度大小相等C.悬挂A、B的缆绳与竖直方向的夹角相等D.悬挂A的缆绳所受的拉力比悬挂B的小12.如图所示,转动轴垂直于光滑水平面,交点O的上方h处固定细绳的一端,细绳的另一端栓接一质量为m的小球B,绳长l>h,转动轴带动小球在光滑水平面上做圆周运动,当转动的角速度ω逐渐增大时,下列说法正确的是()A .小球始终受三个力的作用B .细绳上的拉力始终保持不变C .要使球离开水平面角速度至少为√gℎD .若小球飞离了水平面则线速度为√gl13.“太极球”运动是一项较流行的健身运动。
第3讲 圆周运动一、非选择题1.(2022·河北高三月考)国家雪车雪橇中心位于北京延庆区西北部,赛道全长1 975 m ,垂直落差121 m ,由16个角度、倾斜度都不同的弯道组成,其中全长179 m 的回旋弯赛道是全球首个360°回旋弯道。
2022年北京冬奥会期间,国家雪车雪橇中心将承担雪车、钢架雪车、雪橇三个项目的全部比赛,其中钢架雪车比赛惊险刺激,深受观众喜爱。
测试赛上,一钢架雪车选手单手扶车,助跑加速30 m 之后,迅速跳跃车上,以俯卧姿态滑行。
该选手推车助跑时间为4.98 s ,运动员质量为80 kg ,通过回旋弯道某点时的速度为108 km/h ,到达终点时的速度为124 km/h 。
该选手推车助跑过程视为匀加速直线运动,回旋弯道可近似看作水平面,重力加速度g 取10 m/s 2,结果保留两位有效数字。
求该选手:(1)助跑加速的末速度;(2)以108 km/h 的速度通过回旋弯道某点时钢架雪车对运动员作用力的大小。
[答案] (1)12 m/s (2)2.6×103 N[解析] (1)运动员助跑加速的末速度为v 1,可知s =12v 1t 代入数据,解得v 1=12 m/s 。
(2)回旋弯道全长179 m ,L =2πr ,运动员通过回旋弯道某点时,钢架雪车对运动员作用力设为F ,F y =mg ,F x =m v 2r,代入数据,解得F =F 2x +F 2y =2.6×103N 。
2.(2022·山东新泰月考)如图所示,水平传送带与水平轨道在B 点平滑连接,传送带AB 长度L 0=2.0 m ,一半径R =0.2 m 的竖直圆形光滑轨道与水平轨道相切于C 点,水平轨道CD 长度L =1.0 m ,在D 点固定一竖直挡板。
小物块与传送带AB 间的动摩擦因数μ1=0.9,BC 段光滑,CD 段动摩擦因数为μ2。
当传送带以v 0=6 m/s 沿顺时针方向匀速转动时,将质量m =1 kg 的可视为质点的小物块轻放在传送带左端A 点,小物块通过传送带、水平轨道、圆形轨道、水平轨道后与挡板碰撞,并以原速率弹回,经水平轨道CD 返回圆形轨道。
1 f; T匀速圆周运动二、匀速圆周运动的描述1.线速度、角速度、周期和频率的概念(1)线速度v 是描述质点沿圆周运动快慢的物理量,是矢量,其大小为v =s=2r t T其方向沿轨迹切线,国际单位制中单位符号是m/s;(2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量,其大小为==2t T在国际单位制中单位符号是rad/s;(3)周期T 是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s;(4)频率f 是质点在单位时间内完成一个完整圆运动的次数,在国际单位制中单位符号是Hz;(5)转速n 是质点在单位时间内转过的圈数,单位符号为r /s ,以及r/min.2、速度、角速度、周期和频率之间的关系线速度、角速度、周期和频率各量从不同角度描述质点运动的快慢,它们之间有关系v=rω.T =,v =2,= 2 f 。
由上可知,在角速度一定时,线速度大小与半径成正比;在线速度一定时,角速度大小与半径成反比.三、向心力和向心加速度1.向心力(1)向心力是改变物体运动方向,产生向心加速度的原因.(2)向心力的方向指向圆心,总与物体运动方向垂直,所以向心力只改变速度的方向.2.向心加速度(1)向心加速度由向心力产生,描述线速度方向变化的快慢,是矢量.(2)向心加速度方向与向心力方向恒一致,总沿半径指向圆心;向心加速度的大小为v 2 a n=r 公式:=2r 42rT 21. 线速度V=s/t=2πr/T ;== v 2. 角速度 ω=Φ/t =2π/T =2πf 3. 向心加速度 a =V 2/r =ω2r =(2π/T)2r4. 向心力 F 心=mV 2/r =m ω2r =mr(2π/T)2=m ωv=F 合5. 周期与频率:T =1/f6. 角速度与线速度的关系:V =ωr7. 角速度与转速的关系 ω=2πn (此处频率与转速意义相同)8. 主要物理量及单位:弧长 s:米(m);角度 Φ:弧度(rad );频率 f :赫(Hz );周期 T :秒(s );转速n :r/s ;半径 r :米(m );线速度 V :(m/s );角速度 ω:(rad/s );向心加速度:(m/s 2)。
高考物理生活中的圆周运动题20套(带答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大?(3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g s v H L=-201[1]42()s T mg H L L =+- 【解析】【分析】【详解】 (1)由万有引力等于向心力可知22Mm v G m R R= 2Mm G mg R= 可得2v g R= 则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t = 解得0024g sv H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:20 1142()sT mgH L L⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.2.如图所示,半径R=2.5m的竖直半圆光滑轨道在B点与水平面平滑连接,一个质量m=0.50kg 的小滑块(可视为质点)静止在A点.一瞬时冲量使滑块以一定的初速度从A点开始运动,经B点进入圆轨道,沿圆轨道运动到最高点C,并从C点水平飞出,落在水平面上的D点.经测量,D、B间的距离s1=10m,A、B间的距离s2=15m,滑块与水平面的动摩擦因数 ,重力加速度.求:(1)滑块通过C点时的速度大小;(2)滑块刚进入圆轨道时,在B点轨道对滑块的弹力;(3)滑块在A点受到的瞬时冲量的大小.【答案】(1)(2)45N(3)【解析】【详解】(1)设滑块从C点飞出时的速度为v c,从C点运动到D点时间为t滑块从C点飞出后,做平抛运动,竖直方向:2R=gt2水平方向:s1=v c t解得:v c=10m/s(2)设滑块通过B点时的速度为v B,根据机械能守恒定律mv B2=mv c2+2mgR解得:v B=10m/s设在B点滑块受轨道的压力为N,根据牛顿第二定律:N-mg=m解得:N=45N(3)设滑块从A点开始运动时的速度为v A,根据动能定理;-μmgs2=mv B2-mv A2解得:v A =16.1m/s设滑块在A 点受到的冲量大小为I ,根据动量定理I=mv A解得:I=8.1kg•m/s ;【点睛】本题综合考查动能定理、机械能守恒及牛顿第二定律,在解决此类问题时,要注意分析物体运动的过程,选择正确的物理规律求解.3.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g )(1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR =(2)123gR v =253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u = C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅ 解得:123gR v =253gR v =4.如图所示,一轨道由半径2R m =的四分之一竖直圆弧轨道AB 和水平直轨道BC 在B 点平滑连接而成.现有一质量为1m Kg =的小球从A 点正上方2R 处的O '点由静止释放,小球经过圆弧上的B 点时,轨道对小球的支持力大小18N F N =,最后从C 点水平飞离轨道,落到水平地面上的P 点.已知B 点与地面间的高度 3.2h m =,小球与BC 段轨道间的动摩擦因数0.2μ=,小球运动过程中可视为质点. (不计空气阻力,g 取10 m/s 2). 求:(1)小球运动至B 点时的速度大小B v(2)小球在圆弧轨道AB 上运动过程中克服摩擦力所做的功f W(3)水平轨道BC 的长度L 多大时,小球落点P 与B 点的水平距最大.【答案】(1)4?/B v m s = (2)22?f W J = (3) 3.36L m = 【解析】试题分析:(1)小球在B 点受到的重力与支持力的合力提供向心力,由此即可求出B 点的速度;(2)根据动能定理即可求出小球在圆弧轨道上克服摩擦力所做的功;(3)结合平抛运动的公式,即可求出为使小球落点P 与B 点的水平距离最大时BC 段的长度.(1)小球在B 点受到的重力与支持力的合力提供向心力,则有:2B N v F mg m R-= 解得:4/B v m s =(2)从O '到B 的过程中重力和阻力做功,由动能定理可得:21022f B R mg R W mv ⎛⎫+-=- ⎪⎝⎭ 解得:22f W J =(3)由B 到C 的过程中,由动能定理得:221122BC C B mgL mv mv μ-=- 解得:222B C BC v v L g μ-= 从C 点到落地的时间:020.8h t s g== B 到P 的水平距离:2202B C C v v L v t gμ-=+代入数据,联立并整理可得:214445C C L v v =-+ 由数学知识可知,当 1.6/C v m s =时,P 到B 的水平距离最大,为:L=3.36m【点睛】该题结合机械能守恒考查平抛运动以及竖直平面内的圆周运动,解题的关键就是对每一个过程进行受力分析,根据运动性质确定运动的方程,再根据几何关系求出最大值.5.如图所示,半径为4l ,质量为m 的小球与两根不可伸长的轻绳a ,b 连接,两轻绳的另一端分别固定在一根竖直光滑杆的A ,B 两点上.已知A ,B 两点相距为l ,当两轻绳伸直后A 、B 两点到球心的距离均为l ,重力加速度为g .(1)装置静止时,求小球受到的绳子的拉力大小T ;(2)现以竖直杆为轴转动并达到稳定(轻绳a ,b 与杆在同一竖直平面内).①小球恰好离开竖直杆时,竖直杆的角速度0ω多大?②轻绳b 伸直时,竖直杆的角速度ω多大?【答案】(1)415T =(2)①ω0=15215g l②2g l ω≥【解析】【详解】 (1)设轻绳a 与竖直杆的夹角为α15cos α=对小球进行受力分析得 cos mg T α=解得: 415T mg = (2)①小球恰好离开竖直杆时,小球与竖直杆间的作用力为零。
专题4.6 竖直面内的圆周运动问题1. 轻绳模型绳或光滑圆轨道的内侧,如图所示,它的特点是:在运动到最高点时均没有物体支撑着小球。
下面讨论小球(质量为m )在竖直平面内做圆周运动(半径为R )通过最高点时的情况:(1) 临界条件小球到达最高点时受到绳子的拉力恰好等于零,这时小球做圆周运动所需要的向心力仅由小球的重力来提供。
根据牛顿第二定律得,mg =m v 2临界R,即v 临界=Rg .这个速度可理解为小球恰好通过最高点或恰好通不过最高点时的速度,也可认为是小球通过最高点时的最小速度,通常叫临界速度。
(2) 小球能通过最高点的条件:当v >Rg 时,小球能通过最高点,这时绳子对球有作用力,为拉力。
当v =Rg 时,小球刚好能通过最高点,此时绳子对球不产生作用力。
(3) 小球不能通过最高点的条件:当v <Rg 时,小球不能通过最高点,实际上小球还没有到达最高点就已经脱离了轨道。
(如图)2. 轻杆模型杆和光滑管道,如图所示,它的特点是:在运动到最高点时有物体支撑着小球。
下面讨论小球(质量为m )在竖直平面内做圆周运动(半径为R )通过最高点时的情况:(1) 临界条件由于硬杆的支撑作用,小球恰能到达最高点的临界速度是:v 临界=0。
此时,硬杆对物体的支持力恰等于小球的重力mg。
(2) 如上图所示的小球通过最高点时,硬杆对小球的弹力情况为:当v=0时,硬杆对小球有竖直向上的支持力F N,其大小等于小球的重力,即F N=mg.当0<v<Rg时,杆对小球的支持力竖直向上,大小随速度的增加而减小,其取值范围为0<F N<mg.当v=Rg时,F N=0.这时小球的重力恰好提供小球做圆周运动的向心力。
当v>Rg时,硬杆对小球有指向圆心(即方向向下)的拉力,其大小随速度的增大而增大。
3. 两种模型分析比较如下:轻杆模型均是没有支撑的小球均是有支撑的小球4. 分析物体在竖直平面内做圆周运动时的易错易混点(1)绳模型和杆模型过最高点的临界条件不同,其原因是绳不能有支撑力,而杆可有支撑力。
一端固定在
A,
一个竖直放置的圆锥筒可绕其中心轴
和
另一端固定
匀速转动
求转盘转动的
2。
处有一个小孔,用细绳穿过小孔,绳两端各细一个小球A
球保持静止状态,
A
O
F N
A.6.0 N拉力
7、A、B两球质量分别为
相连,置于水平光滑桌面上,
的匀速圆周运动,空气对飞机作用力的大小等于( )
所示.已知小球
的小球,甩动手腕,
后落地,如图所示.已知,忽略手的运动半径和空气阻力.
的小滑块。
当圆盘转动
段斜面倾角为53°,BC段斜
R 1R 2R 3A B
C
D
v
第一圈轨道
第二圈轨道
第三圈轨道
L
L
L 1
在轨道最低处第n 次碰撞刚结束时各自。
圆周运动水平圆周运动【例题】如图所示,在匀速转动的圆筒内壁上,有一物体随圆筒一起转动而未滑动。
当圆筒的角速度增大以后,下列说法正确的是( D )A 、物体所受弹力增大,摩擦力也增大了B 、物体所受弹力增大,摩擦力减小了C 、物体所受弹力和摩擦力都减小了D 、物体所受弹力增大,摩擦力不变【例题】如图为表演杂技“飞车走壁”的示意图.演员骑摩托车在一个圆桶形结构的内壁上飞驰,做匀速圆周运动.图中a 、b 两个虚线圆表示同一位演员骑同一辆摩托,在离地面不同高度处进行表演的运动轨迹.不考虑车轮受到的侧向摩擦,下列说法中正确的是( B )A .在a 轨道上运动时角速度较大B .在a 轨道上运动时线速度较大C .在a 轨道上运动时摩托车对侧壁的压力较大D .在a 轨道上运动时摩托车和运动员所受的向心力较大【例题】长为L 的细线,拴一质量为m 的小球,一端固定于O 点,让其在水平面内做匀速圆周运动(这种运动通常称为圆锥摆运动),如图所示,当摆线L 与竖直方向的夹角是α时,求:(1)线的拉力F ;(2)小球运动的线速度的大小; (3)小球运动的角速度及周期。
★解析:做匀速圆周运动的小球受力如图所示,小球受重力mg 和绳子的拉力F 。
因为小球在水平面内做匀速圆周运动,所以小球受到的合力指向圆心O 1,且是水平方向。
由平行四边形法则得小球受到的合力大小为mgtanα,线对小球的拉力大小为F=mg/cosα由牛顿第二定律得mgtanα=mv 2/r 由几何关系得r=Lsinα 所以,小球做匀速圆周运动线速度的大小为an sin v gLt αα=a bLα O小球运动的角速度小球运动的周期2cos 2L T gπαπ==ω点评:在解决匀速圆周运动的过程中,弄清物体圆形轨道所在的平面,明确圆心和半径是一个关键环节,同时不可忽视对解题结果进行动态分析,明确各变量之间的制约关系、变化趋势以及结果涉及物理量的决定因素。
1、竖直平面内:(1)、如图所示,没有物体支撑的小球,在竖直平面内做圆周运动过最高点的情况:①临界条件:小球达最高点时绳子的拉力(或轨道的弹力)刚好等于零,小球的重力提供其做圆周运动的向心力,即rmv mg 2临界=⇒rg =临界υ(临界υ是小球通过最高点的最小速度,即临界速度)。
1.如图所示,从A点以v0=4m/s的水平速度抛出一质量m=1kg的小物块(可视为质点),当物块运动至B点时,恰好沿切线方向进入光滑圆弧轨道BC,经圆弧轨道后滑上与C点等高、静止在粗糙水平面的长木板上,圆弧轨道C端切线水平。
已知长木板的质量M=4kg,A、B两点距C点的高度分别为H=0.6m、h=0.15m,R=0.75m,物块与长木板之间的动摩擦因数μ1=0.5,长木板与地面间的动摩擦因数μ2=0.2,g=10m/s2 。
求:(1)小物块运动至B点时的速度大小和方向;(2)小物块滑动至C点时,对圆弧轨道C点的压力的大小; (3)长木板至少为多长,才能保证小物块不滑出长木板?2.如图所示,AOB是游乐场中的滑道模型,它位于竖直平面内,由两个半径都是R的圆周连接而成,它们的圆心O1、O2与两圆弧的连接点O在同一竖直线上。
O2B沿水池的水面,O2和B两点位于同一水平面上。
一个质量为m的小滑块可由弧AO的任意位置从静止开始滑下,不计一切摩擦。
(1)假设小滑块由A点静止下滑,求小滑块滑到O点时对O点的压力;(2)若小滑块能在O点脱离滑道,其落水点到O2的距离如何;(3)若小滑块从开始下滑到脱离滑道过程中,在两个圆弧上滑过的弧长相等,则小滑块开始下滑时应在圆弧A0上的何处?3.如图17所示,一个竖直放置的圆锥筒可绕其中心OO′转动,筒内壁粗糙,筒口半径和筒高分别为R和H,筒内壁A点的高度为筒高的一半。
内壁上有一质量为m的小物块。
求①当筒不转动时,物块静止在筒壁A点受到的摩擦力和支持力的大小;②当物块在A点随筒做匀速转动,且其受到的摩擦力为零时,筒转动的角速度。
4.如图所示,轻绳一端系一质量为m的小球,另一端做成一个绳圈套在图钉A和B上,此时小球在光滑的水平平台上做半径为a、角速度为ω的匀速圆周运动。
现拔掉图钉A让小球飞出,此后绳圈又被A正上方距A高为h的图钉B套住,达稳定后,小球又在平台上做匀速圆周运动。
高考物理《圆周运动与动能定理的综合考查》专题训练1.(2015·全国卷Ⅰ,17)如图,一半径为R 、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ 水平。
一质量为m 的质点自P 点上方高度R 处由静止开始下落,恰好从P 点进入轨道。
质点滑到轨道最低点N 时,对轨道的压力为4mg ,g 为重力加速度的大小。
用W 表示质点从P 点运动到N 点的过程中克服摩擦力所做的功。
则( )A .W =12mgR ,质点恰好可以到达Q 点B .W >12mgR ,质点不能到达Q 点C .W =12mgR ,质点到达Q 点后,继续上升一段距离D .W <12mgR ,质点到达Q 点后,继续上升一段距离【答案】:C【解析】:根据动能定理得P 点动能E k P =mgR ,经过N 点时,由牛顿第二定律和向心力公式可得4mg -mg =m v 2R ,所以N 点动能为E k N =3mgR 2,从P 点到N 点根据动能定理可得mgR -W =3mgR 2-mgR ,即克服摩擦力做功W =mgR2。
质点运动过程,半径方向的合力提供向心力即F N -mg cos θ=ma =m v 2R ,根据左右对称,在同一高度处,由于摩擦力做功导致在右边圆形轨道中的速度变小,轨道弹力变小,滑动摩擦力F f =μF N 变小,所以摩擦力做功变小,那么从N 到Q ,根据动能定理,Q 点动能E k Q =3mgR 2-mgR -W ′=12mgR -W ′,由于W ′<mgR 2,所以Q 点速度仍然没有减小到0,会继续向上运动一段距离,对照选项,C 正确。
2.如图,一半径为R 的半圆形轨道竖直固定放置,轨道两端等高,质量为m 的质点自轨道端点P 由静止开始滑下,滑到最低点Q 时,对轨道的正压力为2mg ,重力加速度大小为g 。
质点自P 滑到Q 的过程中,克服摩擦力所做的功为( )A.14mgR B.13mgR C.12mgR D.π4mgR 【答案】 C【解析】 在Q 点质点受到竖直向下的重力和竖直向上的支持力,两力的合力充当向心力,所以有FN -mg =m v2R ,FN =2mg ,联立解得v =gR ,下滑过程中,根据动能定理可得mgR -Wf =12mv2,解得Wf =12mgR ,所以克服摩擦力做功12mgR ,C 正确。
[课时作业] 单独成册 方便使用[基础题组]一、单项选择题1.在冬奥会短道速滑项目中,运动员绕周长仅111 m 的短道竞赛.运动员比赛过程中在通过弯道时如果不能很好地控制速度,将发生侧滑而摔离正常比赛路线.图中圆弧虚线Ob 代表弯道,即正常运动路线,Oa 为运动员在O 点时的速度方向(研究时可将运动员看成质点).下列论述正确的是( ) A .发生侧滑是因为运动员受到的合力方向背离圆心 B .发生侧滑是因为运动员受到的合力大于所需要的向心力 C .若在O 点发生侧滑,则滑动的方向在Oa 左侧D .若在O 点发生侧滑,则滑动的方向在Oa 右侧与Ob 之间解析:运动员发生侧滑是因为运动员受到指向圆心的合力小于所需要的向心力,A 、B 错误.若在O 点发生侧滑,如果向心力突然消失,则沿切线Oa 运动,而现在是由于所提供的向心力小于所需要的向心力,因此滑动的方向在Oa 与Ob 之间,D 正确. 答案:D2.如图是自行车传动结构的示意图,其中Ⅰ是半径为r 1的大齿轮,Ⅱ是半径为r 2的小齿轮,Ⅲ是半径为r 3的后轮.假设脚踏板的转速为n ,则自行车前进的速度为( )A.2πnr 1r 3r 2B.πnr 2r 3r 1C.πnr 1r 3r 2D .2πnr 2r 3r 1解析:前进速度即为Ⅲ轮的线速度,由同一个轮上的点角速度相等,同一链条上的点线速度大小相等可得:ω1r 1=ω2r 2,ω3=ω2,又有ω1=2πn ,v =ω3r 3,所以v =2πnr 1r 3r 2,A 正确.答案:A3.如图所示,圆弧形凹槽固定在水平地面上,其中ABC 是以O 为圆心的一段圆弧,位于竖直平面内.现有一小球从一水平桌面的边缘P 点向右水平飞出,该小球恰好能从A 点沿圆弧的切线方向进入圆轨道.OA 与竖直方向的夹角为θ1,P A 与竖直方向的夹角为θ2.下列关系式正确的是( ) A .tan θ1tan θ2=2 B .cot θ1tan θ2=2 C .cot θ1cot θ2=2D .tan θ1cot θ2=2解析:小球在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,小球在A 点时速度与水平方向的夹角为θ1,tan θ1=v y v 0=gt v 0,位移与竖直方向的夹角为θ2,tan θ2=x y =v 0t 12gt 2=2v 0gt ,则tan θ1tan θ2=2.故A 正确,B 、C 、D 错误. 答案:A4.(2018·安徽合肥高三模拟)如图所示,在粗糙水平木板上放一个物块,使木板和物块一起在竖直平面内沿逆时针方向做匀速圆周运动,ab 为水平直径,cd 为竖直直径,在运动过程中木板始终保持水平,物块相对木板始终静止,则( )A .物块始终受到三个力作用B .只有在a 、b 、c 、d 四点,物块受到合外力才指向圆心C .从a 到b ,物块所受的摩擦力先增大后减小D .从b 到a ,物块处于超重状态解析:在c 点处,物块可能只受重力作用,在d 点处,物块只受重力和支持力作用,在其他位置处,物块受到重力、支持力、静摩擦力作用,选项A 错误;物块做匀速圆周运动,合外力提供向心力,且始终指向圆心,选项B 错误;从a 运动到b ,向心力的水平分量先减小后增大,所以摩擦力先减小后增大,选项C 错误;从b 运动到a ,向心加速度有向上的分量,所以物块处于超重状态,选项D 正确. 答案:D5.如图所示,长为L 的细绳一端固定在O 点,另一端拴住一个小球.在O 点的正下方与O 点相距2L3的地方有一枚与竖直平面垂直的钉子A .把球拉起使细绳在水平方向伸直,由静止开始释放,当细绳碰到钉子后的瞬间(细绳没有断),下列说法中正确的是( )A .小球的向心加速度突然增大到原来的3倍B .小球的线速度突然增大到原来的3倍C .小球的角速度突然增大到原来的1.5倍D .细绳对小球的拉力突然增大到原来的1.5倍解析:细绳碰到钉子的瞬间,线速度不变,B 错误.圆周运动的半径由L 变为L3,由a =v 2r 知,a 增大到原来的3倍,A 正确.根据v =rω知,角速度ω增大到原来的3倍,C 错误.细绳碰到钉子前瞬间T -mg =m v 2L ,碰后瞬间T ′-mg =m v 2L 3,再根据机械能守恒有mgL =12m v 2,由此可得T ′=73T ,D 错误. 答案:A 二、多项选择题6.(2018·安徽皖江名校高三模拟)摩擦传动是传动装置中的一个重要模型,如图所示的两个水平放置的轮盘靠摩擦力传动,其中O 、O ′分别为两轮盘的轴心,已知两个轮盘的半径之比r 甲∶r 乙=3∶1,且在正常工作时两轮盘不打滑.今在两轮盘上分别放置两个同种材料制成的滑块A 、B ,两滑块与轮盘间的动摩擦因数相同,两滑块距离轴心O 、O ′的间距R A =2R B .若轮盘乙由静止开始缓慢地转动起来,且转速逐渐增加,则下列叙述正确的是( )A .滑块A 和B 在与轮盘相对静止时,角速度之比为ω甲∶ω乙=1∶3 B .滑块A 和B 在与轮盘相对静止时,向心加速度的比值为a A ∶a B =2∶9C .转速增加后滑块B 先发生滑动D .转速增加后两滑块一起发生滑动解析:假设轮盘乙的半径为R ,由题意可知两轮盘边缘的线速度大小相等,有ω甲(3R )=ω乙R ,得ω甲∶ω乙=1∶3,所以滑块相对轮盘滑动前,A 、B 的角速度之比为1∶3,A 正确;滑块相对轮盘滑动前,根据a =ω2r 得A 、B 的向心加速度之比为a A ∶a B =2∶9,B 正确;据题意可得滑块的最大静摩擦力分别为f a =μm A g ,f b =μm B g ,最大静摩擦力之比为f a ∶f b =m A ∶m B ,滑块相对轮盘滑动前所受的静摩擦力之比为f a ′∶f b ′=(m A a A )∶(m B a B )=m A ∶(4.5 m B ),综上分析可得滑块B 先达到最大静摩擦力,先开始滑动,C 正确,D 错误. 答案:ABC7.(2018·江苏如皋质检)质量为m 的小球由轻绳a 和b 分别系于一轻质细杆的A 点和B 点,如图所示,绳a 与水平方向成θ角,绳b 在水平方向且长为l ,当轻杆绕轴AB 以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,则下列说法正确的是( )A .a 绳的张力不可能为零B .a 绳的张力随角速度的增大而增大C .当角速度ω2>gl tan θ,b 绳将出现弹力D .若b 绳突然被剪断,则a 绳的弹力一定发生变化解析:对小球受力分析可得a 绳的弹力在竖直方向的分力平衡了小球的重力,解得T a =mgsin θ,为定值,A 正确,B 错误.当T a cos θ=mω2l ,即ω=gl tan θ时,b 绳的弹力为零,若角速度大于该值,则b绳将出现弹力,C 正确.由于b 绳可能没有弹力,故b 绳突然被剪断,a 绳的弹力可能不变,D 错误. 答案:AC8.如图所示,竖直放置的光滑圆轨道被固定在水平地面上,半径r =0.4 m ,最低点处有一小球(半径比r 小很多),现给小球一水平向右的初速度v 0,要使小球不脱离圆轨道运动,v 0应当满足(g 取10 m/s 2)( ) A .v 0≥0 B .v 0≥4 m/s C .v 0≥2 5 m/sD .v 0≤2 2 m/s解析:要使小球不脱离轨道运动,则需越过最高点或不越过四分之一圆周.越过最高点的临界情况:mg =m v 2r ,得v =gr =2 m/s ,由动能定理得-mg ·2r =12m v 2-12m v 20,解得v 0=2 5 m/s ;若不通过四分之一圆周,根据机械能守恒定律有mgr =12m v 20,解得v 0=2 2 m/s.所以v ≥2 5 m/s 或v ≤2 2 m/s 均符合要求,C 、D 正确,A 、B 错误. 答案:CD[能力题组]一、选择题9.如图所示,竖直面内的光滑圆轨道处于固定状态,一轻弹簧一端连接在圆轨道圆心的光滑转轴上,另一端与圆轨道上的小球相连,小球的质量为1 kg ,当小球以2 m/s 的速度通过圆轨道的最低点时,球对轨道的压力为20 N ,轨道的半径r =0.5 m ,重力加速度g 取10 m/s 2,则小球要能通过圆轨道的最高点,小球在最高点的速度至少为( ) A .1 m/s B .2 m/s C .3 m/sD .4 m/s解析:设小球在轨道最低点时所受轨道支持力为F 1、弹簧弹力大小为N ,则F 1-mg -N =m v 21r ,求得N =2 N ,可判断出弹簧处于压缩状态.小球以最小速度通过最高点时,球对轨道的压力刚好为零,则mg -N =m v 22r ,求得v 2=2 m/s ,B 项正确. 答案:B10.如图所示,细绳长为L ,挂一个质量为m 的小球,小球离地面的高度h =2L ,当绳受到大小为2mg 的拉力时就会断裂,绳的上端系一质量不计的环,环套在光滑水平杆上.现让环与小球一起以速度v =gL 向右运动,在A 处环被挡住而立即停止,A 离墙的水平距离也为L ,小球在以后的运动过程中,小球第一次碰撞点离墙角B 点的距离是ΔH (不计空气阻力),则( ) A .ΔH =12L B .ΔH =53L C .ΔH =23LD .ΔH =32L解析:环被A 挡住时,小球做圆周运动,受到重力和绳子的拉力作用,两者的合力充当向心力,故有T -mg =m v 2L ,因为v =gL ,代入解得T =2mg ,故绳子会断开,断开之后小球做平抛运动,设小球直接落地,则h =12gt 2,小球的水平位移x =v t =2L >L ,所以小球先与墙壁碰撞.设小球平抛后经时间t ′与墙壁碰撞,则t ′=L v =L g ,小球下落高度h ′=12gt ′2=L 2,碰撞点距B 的距离ΔH =2L -L 2=32L ,故D 正确. 答案:D11.(多选)(2018·湖南长沙高三联考)如图所示,质量为m 的小球在竖直放置的光滑圆形管道内做圆周运动,下列说法正确的有( ) A .小球通过最高点的速度可能小于gRB .小球通过最低点时对轨道的压力大小等于小球的重力C .小球在水平线ab 以下管道中运动时,外侧管壁对小球一定有作用力D .小球在水平线ab 以上管道中运动时,内侧管壁对小球一定有作用力解析:小球在光滑圆形管道内做圆周运动,只受重力和弹力,两者的合力提供向心力.小球通过最高点时,速度可以无限接近于零,选项A 正确;小球通过最低点时,受到重力和弹力,两者合力提供向心力,有N -mg =m v 2R ,选项B 错误;小球在水平线ab 以下管道中运动时,受到重力和弹力,合力沿半径方向的分力提供向心力,由于重力有背离圆心的分量,所以弹力一定指向圆心,因此外侧管壁必然对小球有作用力,选项C 正确;同理,小球在水平线ab 以上管道中运动时,由于重力有指向圆心的分量,所以弹力可以背离圆心,也可以指向圆心,选项D 错误.答案:AC二、非选择题12.(2018·陕西西安质检)某工厂生产流水线示意图如图所示,半径R =1 m 的水平圆盘边缘E 点固定一小桶,在圆盘直径DE 正上方平行放置的水平传送带沿顺时针方向匀速转动,传送带右端C 点与圆盘圆心O 在同一竖直线上,竖直高度h =1.25 m .AB 为一个与CO 在同一竖直平面内的四分之一光滑圆轨道,半径r =0.45 m ,且与水平传送带相切于B 点.一质量m =0.2 kg 的滑块(可视为质点)从A 点由静止释放,滑块与传送带间的动摩擦因数μ=0.2,当滑块到达B 点时,圆盘从图示位置以一定的角速度ω绕通过圆心O 的竖直轴匀速转动,滑块到达C 点时恰与传送带同速并水平抛出,刚好落入圆盘边缘的小桶内.取g =10 m/s 2,求:(1)滑块到达圆弧轨道B 点时对轨道的压力N B ; (2)传送带BC 部分的长度L ;(3)圆盘转动的角速度ω应满足的条件. 解析:(1)滑块从A 到B 过程中,由动能定理有 mgr =12m v 2B解得v B =2gr =3 m/s滑块到达B 点时,由牛顿第二定律有 N B ′-mg =m v 2B r 解得N B ′=6 N根据牛顿第三定律,滑块到达B 点时对轨道的压力大小为6 N ,方向竖直向下. (2)滑块离开C 点后做平抛运动,h =12gt 21 解得t 1=2hg =0.5 sv C =Rt 1=2 m/s滑块由B 到C 过程中,根据动能定理,有 -μmgL =12m v 2C -12m v 2B解得L =v 2B -v 2C2μg =1.25 m(3)滑块由B 到C 过程中,根据运动学公式,有 L =v B +v C 2t 2解得t 2=2Lv B +v C =0.5 s则t =t 1+t 2=1 s圆盘转动的角速度ω应满足条件 t =n ·2πω(n =1,2,3,…)解得ω=2n π rad/s(n =1,2,3,…). 答案:(1)6 N ,方向竖直向下 (2)1.25 m (3)ω=2n π rad/s(n =1,2,3,…)13.(2018·湖南六校联考)如图所示为水上乐园的设施,由弯曲滑道、竖直平面内的圆形滑道、水平滑道及水池组成,圆形滑道外侧半径R =2 m ,圆形滑道的最低点的水平入口B 和水平出口B ′相互错开,为保证安全,在圆形滑道内运动时,要求紧贴内侧滑行.水面离水平滑道高度h =5 m .现游客从滑道A 点由静止滑下,游客可视为质点,不计一切阻力,重力加速度g 取10 m/s 2,求:(1)起滑点A 至少离水平滑道多高?(2)为了保证游客安全,在水池中放有长度L =5 m 的安全气垫MN ,其厚度不计,满足(1)的游客恰落在M 端,要使游客能安全落在气垫上,安全滑下点A 距水平滑道的高度取值范围为多少? 解析:(1)游客在圆形滑道内侧恰好滑过最高点时,有 mg =m v 2R ①从A 到圆形滑道最高点,由机械能守恒,有 mgH 1=12m v 2+mg ×2R ② 解得H 1=52R =5 m ③(2)落在M 点时抛出速度最小,从A 到C 由机械能守恒 mgH 1=12m v 21④ v 1=2gH 1=10 m/s ⑤水平抛出,由平抛运动规律可知 h =12gt 2⑥ 得t =1 s 则s 1=v 1t =10 m落在N 点时s 2=s 1+L =15 m 则对应的抛出速度v 2=s 2t =15 m/s ⑧ 由mgH 2=12m v 22 得H 2=v 222g =11.25 m安全滑下点A 距水平滑道高度范围为5 m ≤H ≤11.25 m ⑨ 答案:(1)5 m (2)见解析。
圆周运动一、匀速圆周运动的描述1.线速度、角速度、周期和频率的概念(1)线速度v 是描述质点沿圆周运动快慢的物理量,是矢量,其大小为Trt s v π2==; 其方向沿轨迹切线,国际单位制中单位符号是m/s ;(2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量,其大小为Ttπφω2==; 在国际单位制中单位符号是rad /s ;(3)周期T 是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s ;(4)频率f 是质点在单位时间内完成一个完整圆运动的次数,在国际单位制中单位符号是 Hz ; (5)转速n 是质点在单位时间内转过的圈数,单位符号为r /s ,以及r /min . 2、速度、角速度、周期和频率之间的关系线速度、角速度、周期和频率各量从不同角度描述质点运动的快慢,它们之间有关系v =r ω.f T 1=,Tv π2=,f πω2=。
由上可知,在角速度一定时,线速度大小与半径成正比;在线速度一定时,角速度大小与半径成反比.二、向心力和向心加速度 1.向心力(1)向心力是改变物体运动方向,产生向心加速度的原因.(2)向心力的方向指向圆心,总与物体运动方向垂直,所以向心力只改变速度的方向. 2.向心加速度(1)向心加速度由向心力产生,描述线速度方向变化的快慢,是矢量.(2)向心加速度方向与向心力方向恒一致,总沿半径指向圆心;向心加速度的大小为22224T r r rv a n πω=== 公式:1.线速度V =s/t =2πr/T2.角速度ω=Φ/t =2π/T =2πf3.向心加速度a =V 2/r =ω2r =(2π/T)2r4.向心力F 心=mV 2/r =m ω2r =mr(2π/T)2=m ωv=F 合 5.周期与频率:T =1/f6.角速度与线速度的关系:V =ωr7.角速度与转速的关系ω=2πn (此处频率与转速意义相同)8.主要物理量及单位:弧长s:米(m);角度Φ:弧度(rad );频率f :赫(Hz );周期T :秒(s );转速n :r/s ;半径r :米(m );线速度V :(m/s );角速度ω:(rad/s );向心加速度:(m/s 2)。
三、向心力和加速度1、大小F =m ω2r rv m F 2=向心加速度a :(1)大小:a =ππω442222===r Tr r v 2 f 2r (2)方向:总指向圆心,时刻变化(3)物理意义:描述线速度方向改变的快慢。
四、应用举例(临界或动态分析问题)提供的向心力 需要的向心力rv m 2= 圆周运动 > 近心运动< 离心运动 =0 切线运动1、火车转弯如果车轮与铁轨间无挤压力,则向心力完全由重力和支持力提供rv m mg 2tan =ααtan gr v =⇒,v 增加,外轨挤压,如果v 减小,内轨挤压问题:飞机转弯的向心力的来源2、汽车过拱桥rv m N mg 2cos =-θmg sin θ = f如果在最高点,那么rv m N mg 2=- 此时汽车不平衡,mg ≠N说明:F =mv 2/ r 同样适用于变速圆周运动,F 和v 具有瞬时意义,F随v 的变化而变化。
3、圆锥问题θωωθωθθtan tan cos sin 22r g rgr m N mgN =⇒=⇒==例:小球在半径为R 的光滑半球内做水平面内的匀速圆周运动,试分析图中的θ(小球与半球球心连线跟竖直方向的夹角)与线速度v 、周期T 的关系。
Nmg22sin sin tan θωθθmR R mv mg ==,由此可得:gh g R T gR v πθπθθ2cos 2,sin tan ===,4、绳杆球这类问题的特点是:由于机械能守恒,物体做圆周运动的速率时刻在改变,物体在最高点处的速率最小,在最低点处的速率最大。
物体在最低点处向心力向上,而重力向下,所以弹力必然向上且大于重力;而在最高点处,向心力向下,重力也向下,所以弹力的方向就不能确定了,要分三种情况进行讨论。
①弹力只可能向下,如绳拉球。
这种情况下有mg Rmv mg F ≥=+2即gR v ≥,否则不能通过最高点。
②弹力只可能向上,如车过桥。
在这种情况下有:gR v mg Rmv F mg ≤∴≤=-,2,否则车将离开桥面,做平抛运动。
③弹力既可能向上又可能向下,如管内转(或杆连球、环穿珠)。
这种情况下,速度大小v 可以取任意值。
但可以进一步讨论:①当gR v >时物体受到的弹力必然是向下的;当gR v <时物体受到的弹力必然是向上的;当gR v =时物体受到的弹力恰好为零。
②当弹力大小F <mg 时,向心力有两解:mg ±F ;当弹力大小F >mg 时,向心力只有一解:F +mg ;当弹力F =mg 时,向心力等于零。
五、牛顿运动定律在圆周运动中的应用(圆周运动动力学问题)1.向心力 (1)大小:R f m R Tm R m R v m ma F 22222244ππω=====向 (2)方向:总指向圆心,时刻变化2.处理方法:一般地说,当做圆周运动物体所受的合力不指向圆心时,可以将它沿半径方向和切线方向正交分解,其沿半径方向的分力为向心力,只改变速度的方向,不改变速度的大小;其沿切线方向的分力为切向力,只改变速度的大小,不改变速度的方向。
分别与它们相应的向心加速度描述速度方向变化的快慢,切向加速度描述速度大小变化的快慢。
做圆周运动物体所受的向心力和向心加速度的关系同样遵从牛顿第二定律:F n =ma n 在列方程时,根据物体的受力分析,在方程左边写出外界给物体提供的合外力,右边写出物体需要的向心力(可选用R T m R m R mv 2222⎪⎭⎫ ⎝⎛πω或或等各种形式)。
N F θ绳 FG G F【例1】如图所示的装置是在竖直平面内放置光滑的绝缘轨道,处于水平向右的匀强电场中,以带负电荷的小球从高h的A处静止开始下滑,沿轨道ABC运动后进入圆环内作圆周运动。
已知小球所受到电场力是其重力的3/4,圆滑半径为R,斜面倾角为θ,s BC=2R。
若使小球在圆环内能作完整的圆周运动,h至少为多少?六、综合应用例析【例2】如图所示,用细绳一端系着的质量为M=0.6kg的物体A静止在水平转盘上,细绳另一端通过转盘中心的光滑小孔O吊着质量为m=0.3kg的小球B,A的重心到O点的距离为0.2m.若A与转盘间的最大静摩擦力为f=2N,为使小球B保持静止,求转盘绕中心O旋转的角速度ω的取值范围.【例3】一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R(比细管的半径大得多).在圆管中有两个直径与细管内径相同的小球(可视为质点).A球的质量为m1,B球的质量为m2.它们沿环形圆管顺时针运动,经过最低点时的速度都为v0.设A球运动到最低点时,B球恰好运动到最高点,若要此时两球作用于圆管的合力为零,那么m1、m2、R与v0应满足的关系式是______.【例5】如图所示,滑块在恒定外力作用下从水平轨道上的A点由静止出发到B点时撤去外力,又沿竖直面内的光滑半圆形轨道运动,且恰好通过轨道最高点C,滑块脱离半圆形轨道后又刚好落到原出发点A,试求滑块在AB段运动过程中的加速度.如图所示,小球从光滑的圆弧轨道下滑至水平轨道末端时,光电装置被触动,控制电路会使转筒立刻以某一角速度匀速连续转动起来.转筒的底面半径为R,已知轨道末端与转筒上部相平,与转筒的转轴距离为L,且与转筒侧壁上的小孔的高度差为h;开始时转筒静止,且小孔正对着轨道方向.现让一小球从圆弧轨道上的某处无初速滑下,若正好能钻入转筒的小孔(小孔比小球略大,小球视为质点,不计空气阻力,重力加速度为g),求:(1)小球从圆弧轨道上释放时的高度为H;(2)转筒转动的角速度ω.【例1】 解析:小球所受的重力和电场力都为恒力,故可两力等效为一个力F ,如图所示。
可知F =1.25mg ,方向与竖直方向左偏下37º,从图6中可知,能否作完整的圆周运动的临界点是能否通过D 点,若恰好能通过D 点,即达到D 点时球与环的弹力恰好为零。
由圆周运动知识得:R v m F D 2= 即:Rv m mg D225.1=由动能定理:221)37sin 2cot (43)37cos (D mv R R h mg R R h mg =︒++⨯-︒--θ 联立①、②可求出此时的高度h 。
【例2】解析:要使B 静止,A 必须相对于转盘静止——具有与转盘相同的角速度.A 需要的向心力由绳拉力和静摩擦力合成.角速度取最大值时,A 有离心趋势,静摩擦力指向圆心O ;角速度取最小值时,A 有向心运动的趋势,静摩擦力背离圆心O .对于B ,T =mg 对于A ,21ωMr f T =+ 22ωMr f T =-5.61=ωrad/s 9.22=ωrad/s 所以 2.9 rad/s 5.6≤≤ωrad/s解析:A 球通过圆管最低点时,圆管对球的压力竖直向上,所以球对圆管的压力竖直向下.若要此时两球作用于圆管的合力为零,B 球对圆管的压力一定是竖直向上的,所以圆管对B 球的压力一定是竖直向下的.最高点时20222221221v m R g m v m =⋅+ 根据牛顿运动定律对于A 球,R v m g m N 2111=- 对于B 球,Rv m g m N 2222=+【例5】解析:设圆周的半径为R ,则在C 点:mg =m RvC 2①离开C 点,滑块做平抛运动,则2R =gt 2/2 ② v C t =s AB ③由B 到C 过程: mv C 2/2+2mgR =mv B 2/2 ④由A 到B 运动过程: v B 2=2as AB ⑤ 由①②③④⑤式联立得到: a =5g /4又 N 1=N 2 解得 0)5()(212021=++-g m m Rv m m 解析:(1)设小球离开轨道进入小孔的时间为t ,则由平抛运动规律得h =12gt 2,L -R =v 0t小球在轨道上运动过程中机械能守恒,故有mgH =12mv 2联立解得:t=2hg,H=(L-R)24h.(2)在小球做平抛运动的时间内,圆筒必须恰好转整数转,小球才能钻进小孔,即ωt=2nπ(n=1,2,3…).所以ω=nπ2gh(n=1,2,3…)答案:(1)(L-R)24h(2)nπ2gh(n=1,2,3…)。