霍尔效应及其应用
- 格式:doc
- 大小:220.00 KB
- 文档页数:5
霍尔效应的应用和原理1. 介绍霍尔效应是指在通过一定的电流流过具有一定形状和大小的金属或半导体的时候,垂直于电流方向的横向电压差。
该效应由美国物理学家爱德华·霍尔于1879年发现并命名。
霍尔效应不仅有重要的理论意义,还具有广泛的应用,包括传感器、电子器件、测量、电力、磁体等领域。
本文将重点介绍霍尔效应的应用和原理。
2. 应用2.1 磁场传感器霍尔效应可以用于制造磁场传感器,这些传感器可以测量磁场的强度和方向。
其中最常见的应用是如下几种:•磁力计:通过测量对象周围的磁场变化来检测物体的位置和运动。
•磁场计:测量磁场的大小和磁极的方向,并将其转化为电信号。
磁场传感器广泛应用于社交媒体、电子游戏、导航系统、安防系统等领域。
2.2 电流测量霍尔效应可以应用于电流测量。
通过将电流传导器件放在电路中,利用霍尔传感器测量横向电压差并根据一定的数学计算关系求得电流大小。
这种方法可以测量直流和交流电流。
电流测量是电力行业、电子设备制造业和电动车制造业中常见的应用。
2.3 速度测量霍尔效应也可以用于速度测量。
在车辆的制动系统中,可以使用霍尔传感器检测车轮的转速,并根据转速计算车辆的速度。
此外,霍尔传感器还可用于工业机械设备以及风力发电机组等领域的速度测量。
3. 原理3.1 霍尔元件霍尔元件通常由铬、铂、铜等金属制成的片状金属电极组成。
在元件的一边施加电流,而在另一边测量横向电压差。
元件两侧的接触电极与电流方向垂直,并且在两个接地电极之间有一定距离。
3.2 磁场作用当将一个垂直于电流方向的磁场加在霍尔元件上时,由于电子的洛仑兹力作用,电子会产生一个横向偏转运动,从而形成横向电压差。
这个横向电压差正比于电流的大小和磁场的强度。
通过测量这个横向电压差,可以间接测量电流或磁场的值。
4. 结论霍尔效应是一种重要的物理现象,它不仅有理论研究的意义,还在很多领域发挥着重要的应用价值。
磁场传感器、电流测量和速度测量是霍尔效应最常见的应用领域。
霍尔效应的应用举例及原理简介霍尔效应是指当电流通过载流子密度较高的材料时,在磁场的作用下,产生的电势差现象。
这种效应被广泛应用于各种电子设备和传感器中。
本文将介绍几个应用霍尔效应的实际例子,并解释其原理。
1. 磁场检测器霍尔效应的一个主要应用就是磁场检测器。
通过测量通过材料的电流和磁场之间的关系,可以实时监测磁场的强度和方向。
这种检测器常用于工业控制系统中,用于测量电机、传感器和磁铁生成的磁场。
•磁场强度测量:通过将霍尔元件置于被测磁场附近,可以根据霍尔电压的变化来推导磁场的强度。
由于霍尔效应对磁场的敏感性很高,因此可以非常准确地测量强磁场和弱磁场。
•磁场方向检测:通过在材料中放置多个霍尔元件,并分别测量它们的输出电压,可以判断磁场的方向。
根据霍尔电压的变化规律,可以获得磁场的方向信息。
2. 位置传感器霍尔效应在位置传感器中发挥着重要作用。
通过结合磁场和霍尔效应,可以实现非接触式的位置测量。
•线性位置传感器:线性霍尔元件被用于测量物体相对于传感器的位置。
通过不同位置上的磁场强度的变化,可以确定物体的具体位置。
这种传感器常用于汽车行程传感器、液位传感器等应用中。
•旋转位置传感器:旋转霍尔传感器可以测量物体的角度。
通过将磁场和霍尔元件组合在旋转部件上,可以实时记录旋转部件的位置。
这种传感器被广泛应用于工业自动化以及汽车行程控制系统中。
3. 电流测量器霍尔效应还可以用作电流测量器。
通过测量通过材料的电流和产生的磁场之间的关系,可以实时测量电流的强度。
•直流电流测量:通过将霍尔元件置于电流载流子流动的路径上,可以根据霍尔电势差的变化来测量电流强度。
可以将霍尔元件配合一个伏安表来实现准确的直流电流测量。
•交流电流测量:对于交流电流的测量,通常需要将霍尔元件与其他电路元件(如滤波电感、电容)组合使用,以消除干扰信号。
通过采集霍尔电势差的变化并根据对应的电路设计进行处理,可以实现交流电流测量。
4. 磁力计霍尔效应也常用于制作磁力计,用于测量磁场的强度。
霍尔效应及其在电子学中的应用引言:霍尔效应是指当电流通过一个导体时,如果该导体置于磁场中,则会产生一种垂直于电流方向和磁场方向的电势差,即霍尔电压。
霍尔效应的发现不仅为物理学研究提供了新的视角,而且在电子学领域中有着广泛的应用。
一、霍尔效应的基本原理:霍尔效应的基本原理可以通过洛兹定律来解释。
洛兹定律是基于洛伦兹力的作用而得出的,该力是指在磁场中有电荷运动时,电荷所受到的力。
当电流通过导体时,导体中的自由电荷受到磁场的作用,导致它们沿着导体宽度方向产生移动,从而形成正负电荷堆积。
这样,在导体两侧就会形成一个电势差,即霍尔电压。
二、霍尔效应的特点:1. 非接触性:霍尔效应的测量是通过测量导体侧面的霍尔电压来实现的,因此不需要直接接触到导体表面,具有非接触性的特点。
2. 与磁场强度成正比:霍尔电势差与磁场强度成正比,在实际应用中可以通过改变磁场强度来调节霍尔电势差的大小。
3. 与电流方向有关:霍尔电势差方向与电流方向、磁场方向及电荷载流子的类型有关。
根据霍尔电势差的正负可以确定电流方向以及电荷载流子的类型。
三、霍尔效应在电子学中的应用:1. 霍尔元件:霍尔元件是利用霍尔效应进行测量和控制的器件。
通过霍尔电势差的变化可以实现对磁场强度的测量,广泛应用于磁场传感器、电流传感器、角度传感器等领域。
在工业自动化、电力系统监测以及交通运输等方面都有广泛的应用。
2. 电流测量:由于霍尔电势差与电流成正比,因此可以利用霍尔元件进行电流的测量。
相比传统的电流测量方式,霍尔电流传感器具有无接触、无损耗、精度高等优点,广泛应用于电力仪表、电动机控制、电力系统保护等领域。
3. 磁场测量:霍尔传感器可以通过测量霍尔电势差来实现对磁场强度的测量。
在磁场监测、导航定位、磁存储等领域,霍尔传感器被广泛应用。
4. 磁场控制:通过控制霍尔效应产生的电势差,可以实现对磁场的控制。
在磁室、磁选择器等领域中,利用霍尔效应的特点可以实现精确的磁场控制。
霍尔效应的应用及其展望
1 霍尔效应简介
霍尔效应是指在横向磁场作用下,从导电材料中流过电流时,在垂直于磁场和电流方向的方向上产生一种电势差的现象。
这种电势差称为霍尔电压。
同时,产生的这种电势差会随着外界磁场的强弱而改变。
霍尔效应的典型应用是用来检测磁场的
大小和方向。
2 霍尔效应的应用
##2.1 磁传感器
霍尔磁传感器是一种常用的磁敏元件,通过霍尔效应来实现对磁场强度和方向的测量。
其性能各个方面都优于其它磁传感器,常用于汽车、电器、通讯、航空、航天等领域。
##2.2 霍尔元件
在自行车、电动车等领域中,常用霍尔元件来检测车轮转动的速度和方向,来实现自动上下档、变速等控制。
##2.3 磁场测量仪
霍尔效应不仅可以用来制作传感器,也可以通过磁场测量仪来利用。
磁场测量仪
可以实现磁场的非接触式测量和显示。
3 霍尔效应的展望
随着科技的不断进步和人类对各类信息的需求越来越多,将为霍尔效应的应用提供前所未有的机遇。
未来,我们有理由相信在领域、大气、环境监测,以及智能交通、家居、电器等领域中,霍尔效应将得到更加广泛的应用。
磁学中的霍尔效应及其应用磁学是物理学中的一个重要分支,研究物质在磁场中的行为和性质。
在磁学中,霍尔效应是一种非常重要的现象,具有广泛的应用。
本文将介绍霍尔效应的基本概念和原理,并探讨其在科学研究和工程应用中的意义。
一、霍尔效应的基本概念和原理霍尔效应是指在电流通过导体时,当导体处于垂直磁场中时,会在导体两侧产生电势差,这种现象被称为霍尔效应。
霍尔效应的基本原理可以通过洛伦兹力和电荷守恒定律来解释。
当电流通过导体时,电子在导体内部运动。
在垂直磁场的作用下,电子会受到洛伦兹力的作用,使得电子在导体内部发生偏转。
由于电子的偏转,导体两侧形成了电荷分布差异,进而产生了电势差。
这个电势差就是霍尔电势差,也称为霍尔电压。
二、霍尔效应的应用1. 磁场测量霍尔效应可以用于测量磁场的强度和方向。
通过将霍尔元件(霍尔传感器)安装在需要测量磁场的地方,当磁场通过霍尔元件时,会产生霍尔电势差。
通过测量霍尔电势差的大小和方向,可以计算出磁场的强度和方向。
2. 电流测量霍尔效应还可以用于测量电流的大小。
将霍尔元件安装在电路中,当电流通过霍尔元件时,会产生霍尔电势差。
通过测量霍尔电势差的大小,可以计算出电流的大小。
3. 速度测量霍尔效应在速度测量中也有广泛的应用。
将霍尔元件安装在运动物体上,当物体在磁场中运动时,会产生霍尔电势差。
通过测量霍尔电势差的大小和方向,可以计算出物体的速度。
4. 位置控制霍尔效应还可以用于位置控制。
将霍尔元件安装在需要控制位置的地方,当物体移动到特定位置时,会产生霍尔电势差。
通过测量霍尔电势差的大小和方向,可以实现对物体位置的精确控制。
5. 磁传感器霍尔效应还被广泛应用于磁传感器中。
磁传感器可以用于检测磁场的强度和方向,广泛应用于导航系统、磁条读写头等领域。
三、结语霍尔效应作为磁学中的重要现象,具有广泛的应用前景。
通过利用霍尔效应,可以实现对磁场、电流、速度和位置等物理量的测量和控制。
随着科学技术的不断进步,霍尔效应在各个领域的应用也将得到进一步的拓展和发展。
霍尔效应及其应用应用一、霍尔效应原理霍尔效应是1879年美国物理学家霍尔读研究生期间在做研究载流子导体在磁场中受力作用实验时发现的。
霍尔效应是载流试样在与之垂直的磁场中由于载流子受洛仑兹力作用发生偏转而在垂直于电流和磁场方向的试样的两个端面上出现等量异号电荷而产生横向电势差UH的现象。
电势差UH称为霍尔电压,EH称为霍尔电场强度。
此时的载流子既受到洛伦兹力作用又受到与洛伦兹力方向相反的霍尔电场力作用,当载流子所受的洛伦兹力与霍尔电场力相等时,霍尔电压保持相对稳定。
二、霍尔元件的特点和分类1.霍尔元件的特点。
霍尔元件的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀,调试方便等。
霍尔元件和永久磁体都能在很宽的温度范围(-40℃~1 50℃)、很强的振动冲击条件下工作,且磁场不受一般介质的阻隔。
另外它的变换器组件能够和相关的信号处理电路集成到同一片硅片上,体积小,成本低,且具有较好的抗电磁干扰性能。
2.霍尔元件的分类。
按照霍尔元件的结构可分为:一维霍尔元件、二维霍尔元件和三维霍尔元件。
一维霍尔元件又被称为单轴霍尔元件,它的主要参数是灵敏度、工作温度和频率响应。
运用此类器件时,就可将与适当的小磁钢一起运动的物体的位置、位移、速度、角度等信息以电信号的形式传感出来,达到了自动测量与控制的目的。
二维霍尔元件的结构是二维平面,也被称为平面霍尔元件;三维霍尔元件通常被称为非平面霍尔元件。
霍尔元件按功能可分为:线形元件、开关、锁存器和专用传感器。
三、霍尔效应的应用人们在利用霍尔效应原理开发的各种霍尔元件已广泛应用于精密测磁、自动化控制、通信、计算机、航天航空等工业部门及国防领域。
按被检测的对象的性质可将它们的应用分为直接应用和间接应用。
直接应用是直接检测出受检测对象本身的磁场或磁特性,间接应用是检测受检对象上人为设置的磁场,用这个磁场来作被检测的信息的载体,通过它将许多非电、非磁的物理量,如力、力矩、压力、应力、位置、位移、速度、加速度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变成电量来进行检测和控制。
霍尔效应的原理应用霍尔效应是指在电流通过导体时,在垂直于电流和磁场方向的轴上,会产生一种称为霍尔电压的电势差现象,这种现象是由霍尔效应器件中的霍尔电阻引起的。
霍尔电阻是一种特殊的半导体材料,其通常是在p型材料中加入一个n型材料形成的p-n结。
在霍尔电阻中,通过材料的电流产生了一个垂直于电流方向和磁场方向的电势差,这个电势差被称为霍尔电压。
霍尔效应在实际应用中有很多重要的用途。
以下是几个主要的应用:1.电流测量:由于霍尔电压与通过导体的电流成正比,可以利用霍尔效应来测量电流。
通过将一个霍尔电阻与电流源相连,当电流通过霍尔电阻时,可以测量到霍尔电压,并通过霍尔电压来计算电流的大小。
2.速度测量:霍尔效应也可以用来测量物体的速度。
当一个导体通过磁场移动时,霍尔电压的大小与导体的速度成正比。
因此,可以将一个霍尔电阻安装在移动物体上,通过测量霍尔电压来计算物体的速度。
3.位置传感器:霍尔效应还可以用来制造位置传感器。
在一个固定的磁场中,当一个导体通过磁场移动时,霍尔电压的大小与导体的位置成正比。
因此,可以使用霍尔电阻来测量导体的位置。
4.磁场测量:霍尔效应也可以用来测量磁场的强度和方向。
当一个霍尔电阻放置在磁场中时,磁场的强度和方向会影响到霍尔电压的大小和极性。
通过测量霍尔电压,可以计算出磁场的强度和方向。
5.开关应用:由于霍尔效应对磁场非常敏感,因此可以将霍尔电阻作为磁敏感开关来使用。
当磁场的强度达到一定的阈值时,霍尔电压会发生变化,可以利用这个特性来触发开关。
综上所述,霍尔效应在电流测量、速度测量、位置传感器、磁场测量和开关应用中都有重要的用途。
这些应用广泛应用于电子设备、汽车工业、仪器仪表和自动化控制系统等领域,为我们的生活和工作提供了便利和精确度。
霍尔效应及其应用
一·霍尔效应的发现和解释
霍尔效应(Hall effect),是电磁效应的一种,是指当电流垂直于外磁场通过导体时,在导体的平行于磁场和电流方向的两个端面之间会出现电势差,这一现象就是霍尔效应;这个电势差也被称为霍尔电势差;霍尔效应应使用左手定则判断。
除导体外,半导体也能产生霍尔效应,而且半导体的霍尔效应要强于导体。
霍尔效应是由美国物理学家霍尔(A.H.Hall,1855年-1938年)于1879年在研究金属的导电机制时发现的。
在半导体上外加与电流方向垂直的磁场,会使得半导体中的电子与空穴受到不同方向
的洛伦兹力而在不同方向上聚集,在聚集起来的电子与空穴之间会产生电场,此电场将会使
后来的电子和空穴受到电场力的作用而平衡掉磁场对其产生的洛伦兹力,使得后来的电子和
空穴能顺利通过不会偏移,此称为霍尔效应。
而产生的内建电压称为霍尔电压方便起见,假设导体为一个长方体,长度分别为a、b、d,磁场垂直ab平面。
电流经过ad,电流I = nqv(ad),n为电荷密度。
设霍尔电压为VH,导体沿霍尔电压方向的电场为VH / a。
设磁场强度为B。
洛伦兹力
f=qE+qvB/c(Gauss 单位制)
电荷在横向受力为零时不在发生横向偏转,结果电流在磁场作用下在器件的两个侧面
出现了稳定的异号电荷堆积从而形成横向霍尔电场
E= - vB/c
由实验可测出 E= UH/W 定义霍尔电阻为
RH= UH/I =EW/jW= E/j
j = q n v
RH=-vB/c /(qn v)=- B/(qnc)
UH=RH I= -B I /(q n c)。
实验七、霍尔效应
1879年,霍尔在研究截流导体在磁场中的受力情况时,发现了一种现象:给处于匀强磁场中的板状金属导体,通以垂直于磁场方向的电流时,肝在金属板的上下两表面间产生一个横向电势差,这一现象称为霍尔效应。
霍尔效应不只是在金属导体中产生,在半导体或导体中同样也能产生,且半导体中的霍尔效应更加显著。
霍尔效应是研究半导体材料性能的重要理论根据,利用半导体材料制成的霍尔元件,又称为霍尔传感器。
一、实验目的
1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。
2.学习用“对称测量法”消除副效应的影响,测量试样的VH-IS和VH-IM曲线。
3.确定试样的导电类型,载流了的浓度以及迁移率。
二、实验仪器
霍尔效应仪;霍尔效应测试仪、fx-3600p 计算器。
三、实验原理
霍尔效应从本质上
讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。
假定有如图所示的金属块中,通以水平向右的沿X轴正方向的电流I,外加沿Z轴正方向的磁感应强度为B的磁场。
由于金属中形成电流的是电子,电子的定向移动方向与电流方向相反,即沿X轴负方向。
此时电子在磁场中受洛仑兹力f H ,方向向下,则电子向金属块的下沿聚集,相应正电荷则在上板。
这样形成由上向下的电场E H ,使后来的电子在受到向下洛仑兹力f H 的同时,还受到向上的电场力f E ,最终两个力平衡,上下板的电荷达到稳定状态。
这时上下板之间的电压称之为霍尔电压,这种效应叫霍尔效应。
霍尔电压的计算公式的推导:设电子的电量为e ,单位体积中的自由移动的电荷数—即载流了浓度为n ,霍尔片的厚度为d,高度为b ,则由f H =qVB,f e =qE,I=neSv=nebdv;f e =f H.最后推出:
B I K ned
B
I b E U S H S H H ==
= (1) 其中U H 为霍尔电压(A !、A 之间的电压),它与I S B 的积成正比。
比例系数K H =1/ned 称为霍尔灵敏度,它反映材料的霍尔效应强弱的重要参数,表示该元
件在单位磁感应强度和单位工作电流时霍尔电压的大小。
B
I U K S H
H =
(V/A ·T ) 公式中各量引用国际单位:U H (伏),I S (安),B (T ),长度(米)。
霍尔片参数:d=0.5mm ;b=4mm ;l=4mm 。
根据R H 可进一步确定以下参数:
1、由K H 的符号(或霍尔电压的正负)判断样品的导电类型。
霍尔片一般由半导体组成,而半导体又有N 型和P 型之分,由R H 的符号可以判断其类型。
方法:按图一的I S 和B 的方向,若测得的V H 〈0(即点A !的电位低于A 的电位),则K H 为负,样品属N 型;反之,则为P 型。
2、由K H 求载流子浓度ed
K n H 1=。
(应该指出,这个关系式是假定所有的
载流子都具体相同的漂移速度得到的,如果严格些,应考虑载流子的速度的统计分布,需引入8
3π
修正因子。
即:ed
K n H 83π
=
)。
3、霍尔片的电导率σ
在霍尔片中测出A 、C 之间的电压和流过霍尔片中的电流I S ,由妪姆定律定出AC 段的电阻。
由霍尔片中宽度和高度的参数b 、d 确定出横截面积S ,结合
AC 的长度L ,由电阻定律S
L
R ρ=定出电阻率ρ。
由电导率与电阻率互为倒数,
可求出电导率σ。
4、求载流子的迁移率μ
载流子的迁移率μ是指单位时间通过单位垂直面积的载流子数多少或电量多少。
电导率σ与载流子浓度n 和迁移率μ之间的关系如下σ=ne μ,即μ=σd K H 。
5、实验中的付效应及其消除方法
在产生霍尔效应的同时,还会产生其它各种付效应,所以实验测到的U H 并不等于真实的霍尔电压值,而是包括着各种付效应所引起的虚假电压,如图二所示的不等势电压降U O ,这是由于测量霍尔电压的电极A 和A !的位置难做在一个等势面上,因此当有电流I S 通过时,即使不加磁场也会产生附加的电压U O =I S r ,其中r 为A 和A !的电阻。
U O 的符
号与电流的方向有关,与磁场B 的方向无关。
因此,U O 可以通过改变I S 的方向来消除。
除U O 之外,还存在着热电效应和热磁效应,不过这些效应除个别外,均可通过对称测量法,即改变I S 和磁场B 的方向加以消除。
具体说在规定了电流和磁场正、反方向后,分别测量由下列四组不同的方向的I S 和B 组合的U A!A
1:,U U I B A A S =++'; 2:,U U I B A A S =
+-';
3:,U U I B A A S =--'; 4:,U U I B A A S =-+'
然后求U 1,U 2,U 3、U 4的平均值:4
4
321U U U U U H -+-=
通过上述方法的测量,
虽然不能消除所有的付效应,但其引入的误差不大,可以略而不计。
四、实验内容与要求
按霍尔应仪箱内的线路连接电路,注意励磁电流I M 、电路电流I S 的“+”、“-”方向所指双刀转换开关的位置。
注意测定霍尔电压时,霍尔片下端A ˊ接测试仪电压表的正极端。
打开霍尔应测试仪电源关,观察面板上的测量仪表和励磁电流、电路电流转换开关,以及各仪表的量程。
记录励磁线圈上的励磁电流I M 与磁场B 的转换参数K 。
之后按表格所要的数据作实验。
1、保持I M 不变,测绘U H -I S 曲线,记录于表一中。
表一:(取I M =0.700A )M KI B =;B = A GS /= 特斯拉/A
H S (物教专业)将U m 、、
、I S 之值用计算器进行线性回归分析有截距A ,斜率B 和回归系数γ之值,并由此说明U H -
I S 曲线的关系。
H S (物教专业)将U M 、I M 之值用计算器进行线性回归分析,取出其截距A ;斜率B 和线行回归系数γ,并说明U M -I M 曲线的关系特点。
3、在零磁场下(即I M =0),取I S =0.15mA ,测量霍尔片A 、C 两引线的电压U AC 之值,以确定霍尔片的电导率σ。
(注意:I S 取值不要大于0.15mA ,否则U AC 过大,毫伏表超过量程(此时首位数码显示为1,后三位数码熄灭)。
4、确定确定霍尔片样品的导电类型。
5、求出K H 霍尔灵敏度。
(非物教专业:利用表一中的K H 求平均值作为结果;物教专业,利用表一数据线性回归的斜率计算出K H 作为结果)
6、计算n 、σ、μ。
五、思考题
1、简述利用霍尔元件测磁场的原理?
2、测霍尔电压U H 时,为何要按B 、I S 的四种组合,测四个数据取平均值?
3、若磁场B 不恰好与霍尔元件表面垂直,对测量结果有何影响?
4、霍尔元件的工作电流是否可用交流电? 测量举例
1、保持I M 不变,测绘U H-I S 曲线,记录于表一中。
表一:(取I M =0.700A )A GS K KI B M /1055.6,3⨯===0.655T/A
将U m 、、、I S 之值用计算器进行线性回归分析有截距A=5.169310-⨯;斜率B=0.163,回归系数γ=0.99998。
将U m 、、、I m 之值用计算器进行线性回归分析有截距A=5.547310-⨯;斜率B=0.0567,回归系数γ=0.99991。
表明U m -I m 之间的关系呈直线关系。
3、在零磁场下(即I M =0),取I S =0.15mA ,测量U AC 之值。
(注意:I S 取值不要大于0.15mA ,否则U AC 过大,毫伏表超过量程(此时首位数码显示为1,后三位数码熄灭)。
U AC = - 10.75mV
4、确定样品的导电类型,求出K H 、n 、σ、μ ①因为U H <0,故样品为N 型; ②平均K H = -13.385(V/A ·T )
③203
1910339.910
5.0370.910
6.11
1⨯=⨯⨯⨯⨯==
--d K q n H 个/米3 ④由333.711015.01075.103
3=⨯⨯==--S AC AC
I U R Ω,又由l bd
l bd R AC
σρ==得到: 5
3
3310009.733
.71104105.0104----⨯=⨯⨯⨯⨯⨯==AC lR bd σ(m/Ω) ⑤求μ)/(1061.4105.010009.7385.132836T m d K H ---⨯=⨯⨯⨯⨯==σ
实验心得体会:
1、如果知道K H ,根据S
H H
I K U B =
可以测定样品所处区域的磁场。
2、采用变换电流I S 磁场B 方向的方法消除霍尔负效应,从公式中可以看出,
实质上是在这几种情况下求霍尔电压的算术平均值。