第六章光外差检测系统2
- 格式:ppt
- 大小:524.57 KB
- 文档页数:34
第一章1.举例说明你知道的检测系统的工作原理激光检测一激光光源的应用用一定波长的红外激光照射第五版人民币上的荧光字,会使荧光字产生一定波长的激光,通过对此激光的检测可辨别钞票的真假。
山于仿制困难,故用于辨伪很准确。
2.简述光电检测系统的组成和特点组成:(1)光学变换:时域变换-------调制振幅,频率,相位,脉宽空域变换-------光学扫描光学参量调制:光强,波长,相位,偏振形成能被光电探测器接收,便于后续电学处理的光学信息。
(2)光电变换,变换电路,前置放大将信息变为能够驱动电路处理系统的电信息(电信号的放大和处理)(3)电路处理放大,滤波,调制,解调,A/D,D/A,微机与接口,控制。
第二章1.试归纳总结原子自发辐射,受激吸收,受激辐射三个过程的基本特征。
自发辐射:处于激发态的原子在激发态能级只能一段很短的时间,就自发地跃迁到较低能级中去,同时辐射出光子。
受激辐射:在外来光的作用下,原子从激发态能级跃迁到低能级,并发射一个与外来光完全相同的光子。
受激吸收:处于低能级的原子,在外来光的作用下,吸收光子的能量向高能级跃迁。
2.场致发光(电致发光)有哪几种形式,各有什么特点结型电致发光(注入式发光):在p-n结结构上面加上正向偏压(即p区接电源正极,n区接电源负极)时,引起电子由n区流入(在物理上称为“注入”)p区,空穴由p区流入n区,发生了电子和空穴复合而产生发光。
粉末电致发光:这是在电场作用下,晶体内部电子与空穴受激复合产生的发光现象。
两电极夹有发光材料薄膜电致发光:薄膜电致发光和粉末电致发光相似,也是在两电极间夹有发光材料,但材料是一层根薄的膜,它和电极直接接触,不混和介质。
3.为什么发光二极管的PN结要加正向电压才能发光加正向偏压时,外加电压削弱内建电场,使空间电荷区变窄,载流子的扩散运动加强,构成少数载流子的注入,产生电子和空穴的复合,从而释放能量,并产生电致发光现象。
4.发光二极管的外量子效率与射出的光子数,电子空穴对数,半导体材料的折射率有关。
第一章测试1.光电传感器是基于光电效应,将光信号转换为电信号的一种传感器A:对B:错答案:A2.PN结型的光电传感器有光电二级管、光电晶体管光电晶闸管等A:错B:对答案:B3.非PN结的光电传感器有光敏电阻、热敏电阻及光电管等A:对B:错答案:B4.一般的电子检测系统由三部分构成,分别是()、()和()A:发射器B:传感器C:信号调制器D:输出环节答案:BCD5.光电检测系统频率量级上比电子检测系统提高了几个数量级,因此在载波容量、角分辨率、距离分辨率和光谱分辨率上大大提高A:错B:对答案:B第二章测试1.热效应较小的光是A:红外B:紫光C:紫外D:红光答案:C2.半导体中受主能级的位置位于A:满带B:价带C:禁带D:导带答案:C3.波长为500nm的波属于A:太赫兹波B:X射线C:远红外D:可见光答案:D4.光度量是辐射度量的()倍A:683V(λ)B:V(λ)C:683D:1/683 V(λ)答案:A5.本征半导体在绝对零度时,在不受光的照射下,导带中没有电子,价带中没有空穴,此时不能导电。
A:错B:对答案:B第三章测试1.光电倍增管的光电阴极上发射出光电子的最大速度随入射光光子能量的增大而增大。
A:错B:对答案:B2.光敏电阻是光电导效应器件。
A:对B:错答案:AD器件按像敏元的排列形式可以分为一维和二维两种。
A:对B:错答案:A4.光电耦合器件具有信号传输的单向性,所以只适用于的直流或数字脉冲信号。
A:错B:对答案:B5.热敏电阻的种类不包括下列哪个A:ZTCB:NTCC:CTCD:PTC答案:A第四章测试1.信息的信噪比的大小决定了光电探测器件能否测量出改信息。
A:对B:错答案:B2.根据噪声来源,光电探测器的噪声有几种形式?A:低频噪声B:背景噪声C:热噪声D:散粒噪声答案:ACD3.设计光电信号检测电路必须满足下列哪些要求?A:最佳的信号检测能力B:灵敏的光电转换能力C:快速的动态响应能力D:长期工作的稳定性和可靠性答案:ABCD4.对于光伏型的光电信号输入电路,当入射光通量一定时,负载增大,输出电压也增大,但是当电阻达到一定值后输出电压变饱和。
第一章1.举例说明你知道的检测系统的工作原理激光检测一激光光源的应用用一定波长的红外激光照射第五版人民币上的荧光字,会使荧光字产生一定波长的激光,通过对此激光的检测可辨别钞票的真假。
山于仿制困难,故用于辨伪很准确。
2.简述光电检测系统的组成和特点组成:(1)光学变换:时域变换-------调制振幅,频率,相位,脉宽空域变换-------光学扫描光学参量调制:光强,波长,相位,偏振形成能被光电探测器接收,便于后续电学处理的光学信息。
(2)光电变换,变换电路,前置放大将信息变为能够驱动电路处理系统的电信息(电信号的放大和处理)(3)电路处理放大,滤波,调制,解调,A/D,D/A,微机与接口,控制。
第二章1.试归纳总结原子自发辐射,受激吸收,受激辐射三个过程的基本特征。
自发辐射:处于激发态的原子在激发态能级只能一段很短的时间,就自发地跃迁到较低能级中去,同时辐射出光子。
受激辐射:在外来光的作用下,原子从激发态能级跃迁到低能级,并发射一个与外来光完全相同的光子。
受激吸收:处于低能级的原子,在外来光的作用下,吸收光子的能量向高能级跃迁。
2.场致发光(电致发光)有哪几种形式,各有什么特点结型电致发光(注入式发光):在p-n结结构上面加上正向偏压(即p区接电源正极,n区接电源负极)时,引起电子由n区流入(在物理上称为“注入”)p区,空穴由p区流入n区,发生了电子和空穴复合而产生发光。
粉末电致发光:这是在电场作用下,晶体内部电子与空穴受激复合产生的发光现象。
两电极夹有发光材料薄膜电致发光:薄膜电致发光和粉末电致发光相似,也是在两电极间夹有发光材料,但材料是一层根薄的膜,它和电极直接接触,不混和介质。
3.为什么发光二极管的PN结要加正向电压才能发光加正向偏压时,外加电压削弱内建电场,使空间电荷区变窄,载流子的扩散运动加强,构成少数载流子的注入,产生电子和空穴的复合,从而释放能量,并产生电致发光现象。
4.发光二极管的外量子效率与射出的光子数,电子空穴对数,半导体材料的折射率有关。
基于光外差法的高速光电探测器带宽测量技术介绍高速光电探测器是现代通信和信息处理系统中不可或缺的重要组成部分。
为了能够充分发挥其性能,准确测量其带宽是非常重要的。
在这篇文章中,我们将介绍一种基于光外差法的高速光电探测器带宽测量技术。
光外差法的原理光外差法是一种常用的测量光电探测器带宽的方法。
其原理基于外差器的工作原理,通过将输入信号与一个参考信号光束进行光混频,得到混频信号的频谱分布,从而得到光电探测器的频率响应。
具体步骤如下:1.发射激光器发射一束光束,并将其分为两路,一路作为输入信号,另一路作为参考信号。
2.输入信号被光电探测器探测后,得到电信号。
3.参考信号经过一定的调制,与电信号进行光混频。
4.光混频得到的混频信号经过光电探测器探测,得到频谱分布。
5.分析频谱分布,得到光电探测器的频率响应,从而计算得到其带宽。
高速光电探测器带宽测量技术的关键问题在实际应用中,高速光电探测器带宽测量技术面临一些关键问题,需要特别注意和解决。
这些问题包括:1.参考信号的选择:选择合适的参考信号对于光外差法的测量结果至关重要。
参考信号需要具有足够的稳定性和纯净性,否则会引入误差。
2.光电探测器的线性度:光电探测器的线性度对于测量结果的准确性和可信度有着重要影响。
需要在实验前对光电探测器的线性度进行校准。
3.测量环境的稳定性:测量环境的温度、湿度等因素对测量结果会产生干扰。
需要保持测量环境的稳定性,或者对测量结果进行相应的校正和修正。
4.测量结果的处理与分析:得到的频谱分布需要进行处理和分析,提取出光电探测器的频率响应。
常见的处理和分析方法包括傅里叶变换、滤波器设计等。
测量技术改进和发展随着科技的进步和需求的不断增加,光电探测器带宽测量技术也在不断改进和发展。
一些新的测量技术和方法被提出,以满足高速通信和信息处理系统的需求。
以下是一些改进和发展的方向:1.多光谱波段测量:随着光通信的发展,需要对不同波段的光电探测器进行带宽测量。
光外差原理光外差探测是一种对光波振幅、频率和相位调制信号的检波方法、对于光强度调制信号。
只要选择光电探测器适当,都能无失真地转换为电信号,最后由电路完成检波任务,检出所需信息。
而光波振幅、频率和相位的调制信号因光频太高,不能直接被光电探测器所响应。
采用光外差法,光电探测器可以以输出电信号的形式检出所需信息。
光外差探测法在光通信中是很有发展前途的,目前在实时精密测量方面的应用已有显著成就。
一、实验目的(1) 验证和掌握光外差探测原理;(2) 训练相干探测的实验能力。
二、实验内容(1) 在信息仪平台上调整光路,了解外插法所必须的空间配准条件,也就是参考光束和物光束空间配准与接收口径之间的关系;(2) 用外插法所得到的信号可表示插入透明物体的透过光波的复振幅,也就是振幅与相位的变化。
三、基本原理光外差探测的基本原理是基于两束光的相干。
必须采用相干性好的激光器作光源,在接收信号光时同时加入参考光(本地振荡光)。
参考光的频率与信号光频率极为接近,使参考光和信号光在光电探测器的光敏面上形成拍频信号。
只要光电探测器对拍频信号的响应速度足够高,就能输出电信号检出信号光中的调制信号来,如图1所示即为一例。
图中用一个激光器射出激光,经半透、半反平面镜M 后分成两路。
一路透射光再经半透、半反平面镜M 3后直接投向光电探测器作为参考光;另一路反射光经反射镜M 1偏转90o 方向后投向声光调制器。
声光调制器出射光束,由光阑M 0选出其一级衍射光,它经反射镜M 2偏转后投向半透、半反平面镜M 3成为信号光。
微调M 3使信号光和参考光以几乎重合、平行地投向光电探测器,两束光在光敏面上相干。
如果这两束光偏振方向一致(或偏振方向一致的分量),它们就能形成差频信号。
声光调制器由声频信号提供声频ω1的信号加到声光调制器上。
若调制器是布拉格衍射,则出射的一级衍射光就是声频信号的调制光,其光频率为ω0+ω1或ω0-ω1(视入射方向而定)。
1、雪崩光电二极管的工作原理(当光敏二极管的PN结上加相当大的反向偏压(100~200V)时,在结区产生一个很强的电场,使进入场区的光生载流子获得足够的能量,在与原子碰撞时可使原子电离,而产生新的电子—空穴对。
只要电场足够强,此过程就将继续下去,使PN结内电流急剧增加,达到载流子的雪崩倍增,这种现象称为雪崩倍增效应。
)2、光生伏特效应与光电导效应的区别和联系(共性:同属于内光电效应。
区别:光生伏特效应是少数载流子导电的光电效应,而光电导效应是多数载流子导电的光电效应。
)什么是敏感器敏感器与传感器的区别和联系(将被测非电量转换为可用非电量的器件。
共性:对被测非电量进行转换。
区别:敏感器是把被测量转换为可用非电量,传感器是把被测非电量转换为电量)发光二极管的工作原理。
(在PN结附近,N型材料中的多数载流子是电子,P型材料中的多数载流子是空穴,PN结上未加电压时构成一定的势垒,当加上正向偏压时,在外电场作用下,P区的空穴和N区的电子就向对方扩散运动,构成少数载流子的注入,从而在PN 结附近产生导带电子和价带空穴的复合。
一个电子和一个空穴对每一次复合,将释放出与材料性质有关的一定复合能量,这个能量会以热能、光能、或部分热能和部分光能的形式辐射出来。
说明光子器件与热电器件的特点。
光子器件热电器件响应波长有选择性,一般有截止波长,超过该波长,器件无响应。
响应波长无选择性,对可见光到远红外的各种波长的辐射同样敏感响应快,吸收辐射产生信号需要的时间短,一般为纳秒到几百微秒响应慢,一般为几毫秒PIN型的光电二极管的结构、工作原理及特点(它的结构分三层,即P型半导体和N型半导体之间夹着较厚的本征半导体I层,它是用高阻N型硅片做I层,然后把它的两面抛光,再在两面分别作N+和P+杂质扩散,在两面制成欧姆接触而得到PIN光电二极管。
原理:层很厚,对光的吸收系数很小,入射光很容易进入材料内部被充分吸收而产生大量的电子-空穴对,因而大幅度提供了光电转换效率,从而使灵敏度得以很高。