光外差探测技术及其应用
- 格式:doc
- 大小:395.50 KB
- 文档页数:9
光外差原理光外差原理光外差探测是一种对光波振幅、频率和相位调制信号的检波方法、对于光强度调制信号。
只要选择光电探测器适当,都能无失真地转换为电信号,最后由电路完成检波任务,检出所需信息。
而光波振幅、频率和相位的调制信号因光频太高,不能直接被光电探测器所响应。
采用光外差法,光电探测器可以以输出电信号的形式检出所需信息。
光外差探测法在光通信中是很有发展前途的,目前在实时精密测量方面的应用已有显著成就。
一、实验目的(1)验证和掌握光外差探测原理;(2)训练相干探测的实验能力。
二、实验内容(1)在信息仪平台上调整光路,了解外差法所必须的空间配准条件,也就是参考光束和物光束空间配准与接收口径之间的关系;(2)用外插法所得到的信号可表示插入透明物体的透过光波的复振幅,也就是振幅与相位的变化。
三、基本原理光外差探测的基本原理是基于两束光的相干。
必须采用相干性好的激光器作光源,在接收信号光时同时加入参考光(本地振荡光)。
参考光的频率与信号光频率极为接近,使参考光和信号光在光电探测器的光敏面上形成拍频信号。
只要光电探测器对拍频信号的响应速度足够高,就能输出电信号检出信号光中的调制信号来,如图1所示即为一例。
图中用一个激光器射出激光,经半透、半反平面镜M 后分成两路。
一路透射光再经半透、半反平面镜M 3后直接投向光电探测器作为参考光;另一路反射光经反射镜M 1偏转90o 方向后投向声光调制器。
声光调制器出射光束,由光阑M 0选出其一级衍射光,它经反射镜M 2偏转后投向半透、半反平面镜M 3成为信号光。
微调M 3使信号光和参考光以几乎重合、平行地投向光电探测器,两束光在光敏面上相干。
如果这两束光偏振方向一致(或偏振方向一致的分量),它们就能形成差频信号。
声光调制器由声频信号提供声频ω1的信号加到声光调制器上。
若调制器是布拉格衍射,则出射的一级衍射光就是声频信号的调制光,其光频率为ω0+ω1或ω0-ω1(视入射方向而定)。
光外差探测原理范文光外差探测器是基于半导体材料的光探测器,常见的光探测材料包括硅(Si)、锗(Ge)、砷化镓(GaAs)等。
这些材料能够吸收入射光,并将其转换成电信号。
在光外差探测器中,我们通常使用两个光探测材料(材料1和材料2)。
材料1用于接收输入光信号,它对输入信号吸收并产生电子-空穴对。
这些载流子被一个电场或电压所控制,使它们分离并向材料1两侧运动。
材料2作为参考光源,它也会吸收光并产生电子-空穴对。
这些载流子同样被电场或电压所控制,使它们分离并向材料2两侧运动。
当材料1和材料2上的载流子到达两侧时,它们产生的电信号可以通过一个电路进行测量。
这个电路可以是一个前置放大器、一个滤波器和一个后置放大器等。
在光外差探测器中,输入光信号一般是一个调制的光信号。
这意味着输入光信号会在一个特定的频率上进行调制。
当输入光信号与参考光信号相遇时,两个光信号会形成干涉图样。
这种干涉可以是干涉系数的改变,也可以是干涉光的强度变化。
当输入光信号的频率与参考光信号的频率相同,并且两个信号的相位相同,干涉系数将取得最大值。
这时,在材料1中产生的载流子数也将取得最大值。
当输入光信号的频率与参考光信号的频率不同时,干涉系数会发生变化。
根据输入光信号的频率与参考光信号的相位差,材料1中产生的载流子数也会随之变化。
通过测量在电路中产生的电信号,我们可以从中获得输入光信号的频率和相位信息。
这个电信号可以是一个交流信号。
为了获得一个稳定的交流信号,我们需要通过前置放大器和后置放大器将电信号进行放大。
滤波器可以用来滤除其它频率成分,并提取出感兴趣的频率。
光外差探测器的原理允许我们通过改变参考光的频率来测量输入光信号的频率和相位信息。
根据这种原理,我们可以进行光通信系统中的频率调制解调,或者进行光谱分析中的频谱测量。
这使得光外差探测器成为一种重要的光学检测技术。
综上所述,光外差探测器是利用外差原理将光信号转换成电信号的一种技术。
它利用两个光探测材料接收输入光信号和参考光信号,并通过测量在电路中产生的电信号获得输入光信号的频率和相位信息。
光外差探测技术及其应用摘要:光外差探测又称为相干探测,其探测原理与微波及无线电外差探测原理相似,但是其探测精度亦比微波高3410~10数量级。
相干探测与直接探测[1]相比,其测量精度高7810~10数量级,它的灵敏度达到了量子噪声限。
关键字: 光外差探测、光子计数、量子噪声限[2]、激光测距、多普勒[6]测速1. 引言光外差检测在激光通信、雷达、测长、测速、测振和光谱学等方面都很有用途。
光外差检测的灵敏度达到了量子噪声限[2],其NEP [3]值可达2010 W 。
可以检测单个光子,进行光子计数。
在光电信息检测中,当光波频率很高时,每个光子的能量很大,很容易被检测出来,这时光外差检测技术并不特别有用。
相反,由于直接检测[1]不需要稳定激光频率,也不需要本振激光器,在光路上不需要精确的准直,因此,在这种情况下直接检测[1]更为可取。
在波长较长的情况下,已经有了高效率、大功率的光源可利用。
但在这个波段缺少像在可见光波段那样极高灵敏度的检测器。
因此,用一般的直接检测[1]方法无法实现接近量子噪声限[2]的检测,光外差检测技术就显示了它的优越性。
2. 原理光外差检测是有别于直接检测[1]的另一种检测技术。
光外差检测原理方框图示于图1-1。
图中,s f 为信号光波,l f 为本机振荡(本振)光波,这两束平面平行的相干光,经过分光镜[4]和可变光阑[4]入射到检测器表面进行混频,形成相干光场。
经检测器变换后,输出信号中包含c f =s f -L f 的差频信号,故又称相干检测。
图1-1. 外差检测原理示意图2co 激光器反射镜图1-2 外差检测实验装置图1-2是外差检测的实验装置,光源是经过稳频的2CO 激光器[5]。
由分束镜把入射光分成两路:一路经过反射的作为本振光波,其频率为L f ;另一路经过偏心轮[4]反射,并由透镜[4]聚焦到可变光阑[4]上作为信号光束。
偏心轮[4]转动相当于目标沿光波方向并有一运动速度,光的回波就产生了多普勒频移[6],其频率为s f 。
基于光外差法的高速光电探测器带宽测量
技术
基于光外差法的高速光电探测器带宽测量技术是一种非常重要的技术,它可以用来测量高速光电探测器的带宽。
这种技术的原理是利用光电探测器的非线性特性,将两个光信号混合在一起,然后通过光电探测器将混合后的信号转换成电信号,最后通过信号处理器对电信号进行分析,从而得到光电探测器的带宽。
这种技术的优点是可以测量非常高的带宽,同时还可以测量非常小的信号。
此外,这种技术还可以用来测量光电探测器的响应时间和噪声等参数,因此在光电探测器的研究和开发中具有非常重要的应用价值。
在实际应用中,基于光外差法的高速光电探测器带宽测量技术需要注意一些问题。
首先,需要选择合适的光源和光电探测器,以确保测量的准确性和可靠性。
其次,需要进行光路的优化和调整,以确保混合后的光信号能够被光电探测器准确地转换成电信号。
最后,需要进行信号处理和分析,以得到准确的测量结果。
基于光外差法的高速光电探测器带宽测量技术是一种非常重要的技术,它可以用来测量高速光电探测器的带宽、响应时间和噪声等参数,具有广泛的应用前景。
在实际应用中,需要注意一些问题,以确保测量的准确性和可靠性。
外差干涉测长的原理及应用1. 原理介绍外差干涉测长是一种基于干涉原理的测量方法,主要用于测量物体的长度、距离和形状等参数。
它利用光的干涉现象,通过两束光的相干干涉而产生干涉图像,从而可以得到被测物体的参数。
2. 工作原理外差干涉测长的基本原理是将激光光束分成两束,其中一束为参考光束,另一束为测量光束。
这两束光束分别经过分束器和反射镜,然后分别被引入被测物体和参考光程中。
在被测物体上,测量光束经过反射后与参考光束再次叠加,形成干涉图像。
通过干涉图像的变化,可以计算出被测物体的长度、距离和形状等参数。
3. 应用场景外差干涉测长广泛应用于工业制造、科学研究和生物医学等领域。
以下列举了一些常见的应用场景:•工业制造:外差干涉测长可以用于测量精密机械零件的尺寸,如轴承孔的直径、齿轮的模数等。
这种测量方法高精度、非接触,能够满足工业制造对精度要求较高的应用。
•科学研究:外差干涉测长在科学研究中也有很大的应用,例如在材料科学中,可以用于测量材料的膨胀系数、压力应力等参数的变化。
在物理学中,可以用于测量光源的波长稳定性以及光谱的测量等。
•生物医学:外差干涉测长在生物医学领域也有着广泛的应用,例如在眼科领域中,可以用于测量角膜的厚度和形状,以及眼底血管的直径和血流速度等。
在生物材料研究中,可以用于测量细胞、纤维和薄膜的尺寸变化。
4. 优点和挑战外差干涉测长具有以下优点:•高精度:外差干涉测长能够实现纳米级的测量精度,适用于对精度要求较高的应用。
•非接触:外差干涉测长不需要物体与测量仪器直接接触,减少了对被测物体的损伤和干扰。
•宽测量范围:外差干涉测长可根据需要选择不同的波长和光路配置,适用于不同尺寸和形状的物体测量。
然而,外差干涉测长也面临一些挑战:•环境干扰:外差干涉测长对环境的振动、温度、湿度等因素十分敏感,需要在稳定的环境条件下进行测量。
•复杂的仪器设备:外差干涉测长需要精密的光学元件和仪器设备,以及精准的光源和探测器,增加了设备的复杂性和成本。