模式识别简介
- 格式:pdf
- 大小:185.84 KB
- 文档页数:4
什么是模式识别模式识别的方法与应用模式识别是通过计算机用数学技术方法来研究模式的自动处理和判读。
那么你对模式识别了解多少呢?以下是由店铺整理关于什么是模式识别的内容,希望大家喜欢!模式识别的简介模式识别(英语:Pattern Recognition),就是通过计算机用数学技术方法来研究模式的自动处理和判读。
我们把环境与客体统称为“模式”。
随着计算机技术的发展,人类有可能研究复杂的信息处理过程。
信息处理过程的一个重要形式是生命体对环境及客体的识别。
对人类来说,特别重要的是对光学信息(通过视觉器官来获得)和声学信息(通过听觉器官来获得)的识别。
这是模式识别的两个重要方面。
市场上可见到的代表性产品有光学字符识别、语音识别系统。
人们在观察事物或现象的时候,常常要寻找它与其他事物或现象的不同之处,并根据一定的目的把各个相似的但又不完全相同的事物或现象组成一类。
字符识别就是一个典型的例子。
例如数字“4”可以有各种写法,但都属于同一类别。
更为重要的是,即使对于某种写法的“4”,以前虽未见过,也能把它分到“4”所属的这一类别。
人脑的这种思维能力就构成了“模式”的概念。
在上述例子中,模式和集合的概念是分未弄的,只要认识这个集合中的有限数量的事物或现象,就可以识别属于这个集合的任意多的事物或现象。
为了强调从一些个别的事物或现象推断出事物或现象的总体,我们把这样一些个别的事物或现象叫作各个模式。
也有的学者认为应该把整个的类别叫作模去,这样的“模式”是一种抽象化的概念,如“房屋”等都是“模式”,而把具体的对象,如人民大会堂,叫作“房屋”这类模式中的一个样本。
这种名词上的不同含义是容易从上下文中弄淸楚的。
模式识别是人类的一项基本智能,在日常生活中,人们经常在进行“模式识别”。
随着20世纪40年代计算机的出现以及50年代人工智能的兴起,人们当然也希望能用计算机来代替或扩展人类的部分脑力劳动。
(计算机)模式识别在20世纪60年代初迅速发展并成为一门新学科。
什么是模式识别,它可以用来做什么
模式识别是一种计算机科学领域的分支,其目标是用于从输入数据中识别出规律和模式。
它主要包含对对象特征的分类,图像和语音识别,优化,生成,聚类分析,学习行为建模等内容。
这种方法可以用来有效地处理和提取大量信息,并可以根据需求进行定制化开发。
模式识别可以用来做些什么?它在各个领域都有其不可替代的作用:
1、机器视觉:模式识别可以用来识别和分析图像,实现自动
目标识别,例如车辆、行人以及其他物体的识别;
2、生物信息学:模式识别可以用来实现基因分析,以更好地
理解基因的行为;
3、机器学习:模式识别可以用来实现模型建模,以更好地理
解复杂的输入数据;
4、文本挖掘:模式识别可以用来实现文本分类,以更快更准
确地判断文本所属类别;
5、语音识别:模式识别可以用来实现语音识别,把人类的语
音转换成机器可以理解的信息,更加有效地进行信息处理。
总之,模式识别是基于计算机的有效工具,它能够处理大量的
输入数据,从而有效识别出规律和模式,在各个领域都能发挥重要作用,以此来实现人工智能应用的更好发展。
可编辑修改精选全文完整版《模式识别》课程标准一、课程概述1.课程性质《模式识别》是人工智能技术服务专业针对人工智能产业及其应用相关的企事业单位的人工智能技术应用开发、系统运维、产品营销、技术支持等岗位,经过对企业岗位典型工作任务的调研和分析后,归纳总结出来的为适应人工智能产品开发与测试、数据处理、系统运维等能力要求而设置的一门专业核心课程。
2.课程任务《模式识别》课程通过与各类特征识别应用案例开发相关的实际项目学习,增强学生对本专业智能感知与识别算法知识的认识,训练他们养成良好的解析思维习惯,在理解理论知识的基础之上,根据实现情况分析与设计出最优解决方案,再用编程方式实现特征提取和识别算法并加以应用的能力,从而满足企业对相应岗位的职业能力需求。
3.课程要求通过课程的学习培养学生智能感知与识别算法应用方面的岗位职业能力,分析问题、解决问题的能力,养成良好的职业道德,为后续课程的学习打下坚实的基础。
二、教学目标(一)知识目标(1)了解模式识别的概念,掌握通过编程实现模板匹配算法来解决简单的模式识别问题的能力;(2)了解常用模式识别算法的原理,能初步利用该类算法解决具体模式识别问题的一般方法;(3)理解特征提取与降维的概念及主要方法,并能够在解决模式识别问题的过程中加以应用;(4)详细了解BP神经网络的原理,熟练掌握利用该算法解决手写体识别问题的方法;(5)详细了解朴素贝叶斯分类器算法的原理,熟练掌握利用该算法解决打印体文字识别问题的方法;(6)详细了解基于隐马尔可夫模型的语音识别原理,熟练掌握利用该模型解决语音识别问题的方法;(7)详细了解基于PCA和SVM模型的人脸识别原理,熟练掌握利用该模型解决人脸识别问题的方法。
(二)能力目标(1)会识读程序流程图,能看懂案例程序代码;(2)会使用Python语言实现“模式识别”常规算法;(3)能按照任务要求,设计程序流程图,编写程序代码;(4)能够根据系统功能要求对程序进行调试;(5)能够对所编写的程序故障进行分析,提出解决方案并进行故障排除:(6)能根据系统工作情况,提出合理的改造方案,组织技术改造工作、绘制程序流程图、提出工艺要求、编制技术文件。
模式识别技术在智能电力供应中的应用智能电力供应是指在传统电力供应系统的基础上,通过引入先进的技术手段和智能化的设备,实现对电力供应的全面监控和管理,提高电力系统的可靠性、安全性和效益。
在智能电力供应中,模式识别技术被广泛应用,具有重要的作用和意义。
本文将探讨模式识别技术在智能电力供应中的应用,并辅以案例介绍。
一、模式识别技术简介模式识别技术是一门研究如何从大量数据中自动发现、学习和识别规律、模式的学科。
其主要目标是从数据中提取有价值的信息,进行自动识别、分类和预测。
模式识别技术可以分为监督学习和无监督学习两种类型,可以应用于各种领域,如图像识别、语音识别、行为识别等。
二、2.1 电力负荷预测与优化智能电力供应系统需要准确地预测电力负荷,并根据负荷情况进行优化调度。
通过模式识别技术,可以从历史数据中挖掘出负荷的规律和模式,建立负荷预测模型,并结合实时的负荷监测数据进行实时调整。
这样可以提高电力供应的准确性和稳定性,降低供需失衡的风险。
2.2 故障检测与诊断智能电力供应系统中的设备故障是造成电力中断和安全事故的主要原因之一。
通过模式识别技术,可以对设备运行情况进行监测和分析,及时发现故障的模式和特征。
一旦发现异常,系统可以及时报警并进行故障诊断,提供准确的维修建议,提高设备的可靠性和安全性。
2.3 能耗分析与优化智能电力供应系统需要对能耗进行精确测算和有效管理。
模式识别技术可以对电力使用的模式和特征进行识别和分析,帮助用户了解电力消耗的规律,以便进行能耗优化。
通过对用户的能耗习惯和行为进行分析,可以制定合理的节能策略,提高能源利用效率,降低资源消耗。
三、案例介绍在中国某大型地区电力供应系统中,引入了模式识别技术来优化电力供应。
系统通过对历史负荷数据的分析,建立了负荷预测模型,并结合实时监测数据进行动态调整。
预测模型基于监督学习方法,通过训练模型来对未来负荷进行预测,同时通过无监督学习方法来发现潜在的负荷模式和特征。
简述模式识别的过程
模式识别指的是用计算机对复杂的内容和形式的输入进行分析、识别和归类的过程。
模式识别的典型应用领域有图像处理、语音识别、生物识别、手写文本识别、指纹识别等。
模式识别的一般过程分为几个基本步骤:定义问题、构建特征空间、训练分类网络、
测试模型、评估分类质量。
1、定义问题:首先要明确学习和识别要解决的不同任务,确定模式识别的目标,就
是要求计算机系统搜索的特征。
2、构建特征空间:将输入的信息转换成可以被计算机分析和处理的数字特征向量空间,这是模式识别的关键步骤,它决定了模式识别得到的结果质量。
在构建特征空间时,
需要根据计算机模型的特征来正确选择特征,以使得计算机可以自动把问题中的所有信息
定量化和提取出来。
3、训练分类网络:根据构建好的特征空间进行分类,一般使用神经网络模型进行训练,学习训练数据的规律和模式,以便将未知数据进行分类。
4、测试模型:使用独立测试集对模型进行评价,这是模型识别效果总结。
5、评估分类质量:通过比较模型预测结果和实际标签,评价模型的分类质量,包括
预测的准确度和召回率。
模式识别与一般的数据处理和分析有所不同:它具有自动分类的能力,可以从无限复
杂的数据中自动识别出隐藏起来的规律,从而达到判断和预测的目标。
它具有专业性比较强,只有通过系统的学习和训练,才能正确的完成模式识别任务。
模式识别原理(PatternRecognition)、概念、系统、特征选择和特征§1.1 模式识别的基本概念⼀、⼴义定义1、模式:⼀个客观事物的描述,⼀个可⽤来仿效的完善的例⼦。
2、模式识别:按哲学的定义是⼀个“外部信息到达感觉器官,并被转换成有意义的感觉经验”的过程。
例:识别热⽔、字迹等⼆、狭义的定义1、模式:对某些感兴趣的客体的定量的或结构的描述。
模式类是具有某些共同特性的模式的集合。
2、模式识别:研究⼀种⾃动技术,依靠这种技术,计算机将⾃动地(或⼈尽量少地⼲涉)把待别识模式分配到各⾃的模式类中去。
注意:狭义的“模式”概念——是对客体的描述,不论是待识别客体,还是已知的客体。
⼴义的“模式”概念——是指“⽤于效仿的完善例⼦三、相关的计算机技术1、⽬前的计算机建⽴在诺依曼体系基础之上。
1946年:美籍匈⽛利数学家冯·诺依曼提出了关于计算机组成和⼯作⽅式的基本设想:数字计算机的数制采⽤⼆进制;计算机按照程序顺序执⾏,即 “程序存储”的概念。
1949年:研制出第⼀台冯·诺依曼式计算机。
1956年:第⼀次⼈⼯智能(artificial intelligence) 研讨会在美国召开。
2、第五代⼈⼯智能型计算机本质区别:主要功能将从信息处理上升为知识处理(学习、联想、推理、解释问题),使计算机具有⼈类的某些智能。
研制⼯作从80年代开始,⽬前尚未形成⼀致结论。
⼏种可能的发展⽅向:神经⽹络计算机--模拟⼈的⼤脑思维。
⽣物计算机--运⽤⽣物⼯程技术、蛋⽩分⼦作芯⽚。
光计算机--⽤光作为信息载体,通过对光的处理来完成对信息的处理。
四、研究和发展模式识别的⽬的提⾼计算机的感知能⼒,从⽽⼤⼤开拓计算机的应⽤。
§1.2 模式识别系统⼀、简例:建⽴感性认识以癌细胞识别为例,了解机器识别的全过程。
1、信息输⼊与数据获取将显微细胞图像转换成数字化细胞图像,像素的值反映光密度的⼤⼩,⼜称灰度数字图像。
模式识别模式识别(Pattern Recognition)是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。
模式识别又常称作模式分类,从处理问题的性质和解决问题的方法等角度,模式识别分为有监督的分类(Supervised Classification)和无监督的分类(Unsupervised Classification)两种定义1:借助计算机,就人类对外部世界某一特定环境中的客体、过程和现象的识别功能(包括视觉、听觉、触觉、判断等)进行自动模拟的科学技术。
所属学科:测绘学(一级学科);摄影测量与遥感学(二级学科)定义2:一类与计算机技术结合使用数据分类及空间结构识别方法的统称。
所属学科:地理学(一级学科);数量地理学(二级学科)定义3:昆虫将目标作为一幅完整图像来记忆和识别。
所属学科:昆虫学(一级学科);昆虫生理与生化(二级学科)定义4:主要指膜式识别受体对病原体相关分子模式的识别。
所属学科:免疫学(一级学科);概论(二级学科);免疫学相关名词(三级学科)模式识别研究内容:模式还可分成抽象的和具体的两种形式。
前者如意识、思想、议论等,属于概念识别研究的范畴,是人工智能的另一研究分支。
我们所指的模式识别主要是对语音波形、地震波、心电图、脑电图、图片、照片、文字、符号、生物传感器等对象的具体模式进行辨识和分类。
模式识别研究主要集中在两方面,一是研究生物体(包括人)是如何感知对象的,属于认识科学的范畴,二是在给定的任务下,如何用计算机实现模式识别的理论和方法。
前者是生理学家、心理学家、生物学家和神经生理学家的研究内容,后者通过数学家、信息学专家和计算机科学工作者近几十年来的努力,已经取得了系统的研究成果。
应用计算机对一组事件或过程进行辨识和分类,所识别的事件或过程可以是文字、声音、图像等具体对象,也可以是状态、程度等抽象对象。
模式识别技术概论模式识别技术的核心是建立模型,通过对已有数据进行学习和训练,从而实现对未知数据的自动分类和识别。
在训练阶段,需要提供已知分类的数据样本,并对这些数据进行特征提取和特征选择等预处理操作。
然后,利用这些数据样本来构建模型,也就是学习样本的分布规律和特征间的相互关系。
最后,在识别阶段,通过对新数据的特征提取和与模型的比对,将其归类为已知的其中一类别。
1.图像处理:图像识别和图像分类是其中的重要应用,可以应用于人脸识别、目标检测、医学图像分析等领域。
例如,在人脸识别中,模式识别技术可以通过学习人脸的特征,实现对不同人脸的自动识别和分类。
2.语音识别:可以应用于语音识别、语音合成、语音转换等领域。
例如,在语音识别中,模式识别技术可以通过学习语音的频率特征和语音模型,实现对不同语音的自动识别和转换。
3.生物信息学:可以应用于DNA序列比对、蛋白质结构分析、药物研发等领域。
例如,在DNA序列比对中,模式识别技术可以通过学习DNA序列的一些特征和结构规律,实现对不同DNA序列的自动识别和分析。
4.文本分类:可以应用于文本分类、情感分析、垃圾邮件过滤等领域。
例如,在情感分析中,模式识别技术可以通过学习文本的一些语义特征和情感规律,实现对文本的情感分类和分析。
1.特征提取和选择:对于输入的数据,需要从中提取出能够表示其特征的参数,以便进行模型的学习和特征的比对。
特征的选择和提取将直接影响到模式识别系统的识别性能。
2.模型的建立:通过对已知数据的学习和训练,建立模型来描述数据的分布和特征间的关系。
常见的模型包括贝叶斯网络、支持向量机、神经网络等。
3.分类决策规则的确定:通过比对输入数据的特征与模型的相似度,并根据一定的决策规则来对其进行分类和识别。
常见的决策规则包括最近邻法、贝叶斯决策、决策树等。
4.鲁棒性和泛化能力:模式识别系统不仅要在已知数据上具有良好的识别性能,还要具备在未知数据上的鲁棒性和泛化能力,能够正确地识别未见过的数据。
模式识别技术1. 概述模式识别(Pattern Recognition)是一门研究如何通过计算机和数学方法,识别事物或事件中的模式的学科。
它是人工智能和机器学习领域的重要研究方向之一,被广泛应用于图像处理、语音识别、生物医学、金融风险评估等领域。
模式识别技术主要包括以下几个方面:•特征提取:识别事物或事件中的模式需要对数据进行特征提取,通过数学方法将原始数据转化为有意义的信息。
•特征选择:选择最具代表性的特征,减少冗余和噪声,提高模式识别的准确率和效率。
•分类器设计:建立合适的分类模型,根据特征将数据分为不同的类别。
•训练和识别:使用训练数据对模型进行训练,然后利用训练好的模型对新的数据进行分类或识别。
2. 应用领域模式识别技术在许多领域都有广泛的应用,以下列举了几个主要的应用领域:2.1 图像处理图像识别是模式识别技术的重要应用之一。
通过计算机视觉和图像处理技术,可以将图像中的模式进行自动识别和分析。
这在人脸识别、指纹识别、车牌识别等领域都有重要的应用。
2.2 语音识别语音识别是将声音转化为文字或命令的过程。
模式识别技术可以通过分析声音特征,将声音与特定的词汇或指令进行匹配。
语音识别在智能助手、语音控制和语音翻译等领域有广泛的应用。
2.3 生物医学模式识别技术在医学领域的应用十分广泛,包括医学影像分析、疾病诊断和药物设计等方面。
通过分析病人的影像数据或遗传信息,可以帮助医生进行疾病的诊断和治疗。
2.4 金融风险评估模式识别技术在金融领域的应用越来越重要,特别是在金融风险评估方面。
通过对金融市场数据和交易历史进行分析和模式识别,可以帮助金融机构评估风险,并作出相应的决策。
3. 常用算法和工具模式识别技术使用了许多不同的算法和工具,以下介绍了一些常用的算法和工具:3.1 K近邻算法K近邻算法是一种简单而有效的分类算法。
它的基本原理是找出样本空间中最接近待分类样本的K个样本,然后根据这K个样本的类别进行决策。
什么是模式识别?它的特点有哪些?1. 引言模式识别是一种重要的信息处理技术,它在各个领域中得到广泛的应用。
本文将介绍模式识别的定义以及其特点,帮助读者更好地理解和应用这一技术。
2. 模式识别的定义模式识别是指从输入的数据中自动提取出一些规律和规则,将其归类或者进行识别的过程。
这些规律和规则可以是特征、模型、概念或者其他形式的表示。
模式识别不仅可以应用于图像、声音等传统领域,也可以应用于文本、时间序列等非传统领域。
3. 模式识别的特点3.1 自动化模式识别是一种自动化的过程,不需要人工干预。
它能够从大量的数据中自动提取出有用的信息,极大地提高了处理效率。
3.2 非确定性模式识别通常面临着非确定性的问题,即相同的模式在不同的环境和条件下可能会有不同的表现。
因此,模式识别的结果可能是不确定的,需要采用概率模型或者其他技术来进行处理。
3.3 多样性模式识别的模式和规律具有多样性。
一个模式可以有多种表现形式,而一个规律也可以从不同的角度进行描述。
因此,模式识别需要考虑到多样性,从多个角度对数据进行分析和处理。
3.4 鲁棒性模式识别需要具备一定的鲁棒性,即能够在面对噪声、失真等干扰时仍然能够准确地进行识别。
为了提高鲁棒性,可以采用特征选择、数据归一化等预处理方法。
3.5 可解释性模式识别的结果应该是可解释的,即能够被人理解和接受。
一个好的模式识别算法不仅要具备高的准确率,还需要能够解释为什么选择了这个结果。
3.6 学习能力模式识别系统应该具备学习能力,能够通过观察和分析数据,自动调整模型或者规则,从而提高准确率和鲁棒性。
通过学习,模式识别系统可以不断改进自身,适应不断变化的环境和数据。
4. 模式识别的应用模式识别在各个领域中都得到了广泛的应用。
以下是一些典型的应用场景:•图像识别:利用模式识别技术,可以实现人脸识别、车牌识别等任务。
•语音识别:模式识别可以用于语音识别、声纹识别等领域。
•文本分类:可以将文本数据进行分类,例如进行垃圾邮件过滤、情感分析等。
模式识别的概念及主要方法
模式识别是一个人工智能和机器学习的分支,主要研究如何让计算机从数据中“学习”出有用的信息,并能够进行分类和识别模式。
模式识别在许多领域都有应用,如语音识别、图像识别、自然语言处理等。
模式识别的基本方法包括:
1.监督学习:这种方法需要大量的标注数据,通过训练,让计算机学会如何将输入的数据映射到预定的类别中。
例如,在图像识别中,监督学习可以训练计算机识别出猫、狗等类别的图片。
2.无监督学习:与监督学习不同,无监督学习不需要标注数据,而是让计算机从数据中找出潜在的结构或模式。
例如,在聚类分析中,无监督学习可以将数据按照它们的相似性程度进行分组。
3.半监督学习:这种方法结合了监督学习和无监督学习的特点,通过利用部分标注的数据和大量的未标注数据来提高学习的效果。
4.深度学习:这是模式识别中一种新兴的方法,通过构建具有许多层的神经网络来学习数据的复杂特征。
深度学习已经在语音识别、图像识别、自然语言处理等领域取得了显著的成果。
5.表征学习:在这种方法中,计算机试图从原始数据中学习到有用的表征或特征,这些特征可以帮助计算机更好地进行分类或识别。
例如,在计算机视觉中,卷积神经网络可以从原始图像中提取出有用的特征,从而识别出不同的物体。
以上是模式识别的基本概念和主要方法,随着技术的不断发展,模式识别的应用领域也将不断扩大。
模式识别基础一、模式识别的定义和基本概念模式识别是指通过对事物或现象进行观察、分析、比较和归纳总结,从中发现规律性、相似性或差异性等特征,以便更好地理解和描述它们的过程。
模式识别涉及到多个学科领域,如数学、统计学、计算机科学、人工智能等。
在模式识别中,需要考虑的基本概念包括:样本集、特征向量、分类器和评价指标。
样本集是指用于训练和测试的数据集合;特征向量是用来描述每个样本的属性值;分类器是用来对样本进行分类的算法;评价指标则是用来评估分类器性能的度量方法。
二、模式识别的主要任务1. 分类任务分类任务是模式识别中最基础也最常见的任务之一。
其目标是将给定的样本分成若干类别中的一种。
常见的分类方法包括:KNN算法、朴素贝叶斯算法、支持向量机等。
2. 聚类任务聚类任务是将给定数据集合分成若干个簇,使得同一簇内部相似度高,不同簇之间相似度低。
常见的聚类方法包括:K-means算法、层次聚类法等。
3. 特征提取和降维任务特征提取和降维任务是模式识别中非常重要的任务之一。
其目标是从大量的原始数据中提取出最具代表性和区分性的特征,以便更好地进行分类或聚类等分析。
常见的特征提取方法包括:主成分分析、线性判别分析等;而常见的降维方法则包括:奇异值分解、局部线性嵌入等。
三、模式识别中常用的算法1. KNN算法KNN算法是一种基于邻近度量的分类算法,其基本思想是将新样本与已知样本集中距离最近的K个样本进行比较,并将其归为距离最近的那一类。
该算法简单易懂,但对数据规模较大或特征空间较高时计算复杂度较高。
2. 朴素贝叶斯算法朴素贝叶斯算法是一种基于概率统计理论的分类方法,其核心思想是根据先验概率和条件概率来计算后验概率,并将其作为分类依据。
该算法具有计算速度快、适用于大规模数据集等优点,但假设特征之间相互独立的前提条件较为苛刻。
3. 支持向量机支持向量机是一种基于几何间隔最大化的分类算法,其核心思想是将样本映射到高维空间中,以便更好地进行线性或非线性分类。
名词解释:1样本:对任一个具体的事物,在这门课中都称为一个样本,它是一类事物的一个具体体现,它与模式这个概念联用,则模式表示一类事物的统称,而样本则是该类事物的一个具体体现。
2模式:英语是pattern,表示一类事物,如印刷体A与手写体A属同一模式。
B与A则属于不同模式,而每一个具体的字母A、B则是它的模式的具体体现,称之为样本。
因此模式与样本共同使用时,样本是具体的事物,而模式是对同一类事物概念性的概况。
一个人的许多照片是这个人的许多样本,而这个人本身是一个模式。
3模式类:这个词与模式联合使用,此时模式表示具体的事物,而模式类则是对这一类事物的概念性描述。
4模式识别:人们在见到一个具体的物品时会分辨出它的类名,如方桌与圆桌都会归结为是桌子。
这是人们所具有的认识事物的功能,在这门课中就称为是模式识别。
具体的说是从具体事物辨别出它的概念。
这门课讨论的是让机器实现事物的分类,因此由机器实现模式识别。
这门课就是讨论机器认识事物的基本概念、基本方法。
5分类器:用来识别具体事物的类别的系统称为分类器6模式识别系统:用来实现对所见事物(样本)确定其类别的系统,也称为分类器。
7特征:一个事件(样本)有若干属性称为特征,对属性要进行度量,一般有两种方法,一种是定量的,如长度、体积、重量等,可用具体的数量表示,但也可用粗略的方法表示,如一个物体可用“重”、“轻”、“中等”表示,前种方法为定量表示,而后种方法则是定性表示。
重与轻变成了一种离散的,或称符号性的表示,它们在数值上有内在的联系。
在本门课中一般偏重定量的表示。
8特征向量:对一个具体事物(样本)往往可用其多个属性来描述,因此,描述该事物用了多个特征,将这些特征有序地排列起来,如一个桌子用长、宽、高三种属性的度量值有序地排列起来,就成为一个向量。
这种向量就称为特征向量。
每个属性称为它的一个分量,或一个元素。
9维数:一个向量具有的分量数目,如向量,则该向量的维数是3。
模式识别在智能摄像头中的应用智能摄像头是近年来普遍应用于各类场景的一种先进设备,其具备了自动识别、监测、分析和报警等功能,凭借其高效便捷的特点,被广泛应用于安防监控、智慧交通、智能家居等领域。
而其中的模式识别技术,则是智能摄像头实现这些功能的核心。
本文将围绕着模式识别在智能摄像头中的应用进行探讨。
一、模式识别简介模式识别是一门研究以人工智能技术为基础,通过对目标进行分析、归纳和理解,达到识别其所属类别或者找出其中某些特征的方法。
模式识别技术结合了统计学、数学建模、计算机科学与工程等多个学科,通过对大量数据的学习和模型的建立,实现对未知数据进行预测和分类。
在智能摄像头中,模式识别技术以其强大的能力为智能摄像头加入了智能化和自动化的特征。
二、智能摄像头的应用领域1. 安防监控领域智能摄像头在安防监控领域的应用是最为广泛的,其通过模式识别技术实现对异常行为的即时监测和报警。
例如,智能摄像头可以通过对人群行为的模式分析,判断是否存在恶性事件或不正常行为,如人群聚集、闯入等,一旦发现异常行为,系统会立即发出预警信号,提供给安防人员进行处理。
此外,智能摄像头还能对危险源进行识别和分析,如火灾、烟雾等,为安防工作提供更多的保障。
2. 智慧交通领域智能摄像头在智慧交通领域的应用亦十分重要。
通过模式识别技术,智能摄像头可以对道路交通状况进行实时监测和分析,例如识别车辆的类型、车速、行驶轨迹等。
同时,智能摄像头还能识别交通违法行为,如闯红灯、逆行、超速等,提供给交警部门进行违法行为的处罚和管理。
此外,智能摄像头还可实现停车场管理,通过车牌识别技术,准确记录车辆进出时间,并实现自动缴费等功能。
3. 智能家居领域智能摄像头在智能家居领域的应用则主要集中在安防、人脸识别等方面。
智能摄像头通过模式识别技术可以判断家中是否出现陌生人闯入,并通过手机等终端设备向用户发送报警信息。
在人脸识别方面,智能摄像头可以通过模式识别技术,实现家庭成员的自动识别和身份验证,从而实现门锁自动解锁、个性化设置等功能。
模式识别简介
Pattern recognition
诞生
狗的嗅觉的灵敏度非常高,大约是人的50至100倍。
狗通过这项特异的功能来识别各种各样的东西,帮助人类完成一些鉴别工作。
不仅如此,识别也是人类的一项基本技能,人们无时无处的在进行“模式识别”,古人有一成语“察言观色”表达的正是这个意思。
模式识别是人类的一项基本智能,在日常生活中,人们经常在进行“模式识别”。
随着20世纪40年代计算机的出现以及50年代人工智能的兴起,人们当然也希望能用计算机来代替或扩展人类的部分脑力劳动。
计算机模式识别在20世纪60年代初迅速发展并成为一门新学科。
概念
简单来说,模式识别就是通过计算机用数学技术方法来研究模式的自动处理和判读。
我们把环境与客体统称为“模式”。
随着计算机技术的发展,人类有可能研究复杂的信息处理过程。
信息处理过程的一个重要形式是生命体对环境及客体的识别。
对人类来说,特别重要的是对光学信息(通过视觉器官来获得)和声学信息(通过听觉器官来获得)的识别。
这是模式识别的两个重要方面。
市场上可见到的代表性产品有光学字符识别(Optical Character Recognition, OCR)、语音识别系统。
其计算机识别的显著特点是速度快,准确性高,效率高。
在将来完全可以取代人工录入。
模式识别是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。
研究
模式识别研究主要集中在两方面,一是研究生物体(包括人)是如何感知对象的,属于认识科学的范畴,二是在给定的任务下,如何用计算机实现模式识别的理论和方法。
前者是生理学家、心理学家、生物学家和神经生理学家的研究内容,后者通过数学家、信息学专家和计算机科学工作者近几十年来的努力,已经取得了系统的研究成果。
应用计算机对一组事件或过程进行辨识和分类,所识别的事件或过程可以是文字、声音、图像等具体对象,也可以是状态、程度等抽象对象。
这些对象与数字形式的信息相区别,称为模式信息。
模式识别所分类的类别数目由特定的识别问题决定。
有时,开始时无法得知实际的类别数,需要识别系统反复观测被识别对象以后确定。
模式识别与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系。
它与人工智能、图像处理的研究有交叉关系。
例如自适
应或自组织的模式识别系统包含了人工智能的学习机制;人工智能研究的景物理解、自然语言理解也包含模式识别问题。
又如模式识别中的预处理和特征抽取环节应用图像处理的技术;图像处理中的图像分析也应用模式识别的技术。
应用领域包括:计算机视觉、医学图像分析、光学文字识别、自然语言处理、语音识别、手写识别、生物特征识别、人脸识别、指纹识别、虹膜识别、文件分类、互联网搜索引擎、信用评分、测绘学、摄影测量与遥感学。
以“汉字识别”为例:
识别过程与人类的学习过程相似。
首先将汉字图象进行处理,抽取主要表达特征并将特征与汉字的代码存在计算机中。
就像老师教我
们“这个字叫什么、如何写”记在大脑中。
这一过程叫做“训练”。
识别过程就是将输入的汉字图象经处理后与计算机中的所有字进行比较,找出最相近的字就是识别结果。
这一过程叫做“匹配”。
还有一些比较典型的应用例子如:
去雾算法:
由有雾的图片处理成无雾的过程用的是一种基于暗影通道的去雾算法。
相机照出的相片=真实相片*透谢分布率+天空亮度。
这里要做的就是根据公式求出真实相片,另外三个未知量是可以求出来的。
交叉验证方法:
用来验证分类器的性能一种统计分析方法,基本思想是把在某种意义下将原始数据进行分组,一部分做为训练集,另一部分做为验证集,首先用训练集对分类器进行训练,在利用验证集来测试训练得到的模型,以此来做为评价分类器的性能指标。
纹理:
在自然图象中,纹理作为物体的一种重要外观特征,为视觉感知提供了无处不在的信息,它在计算机视觉、图形学、图像编码等领域都有着重要作用,例如,格式塔(Gestalt)心理学,早期视觉理论和Marr的原始简约图(Primal Sketch)都将纹理模式作为中心话题。
因此,对纹理的理解是视觉理解不可或缺的组成部分。
过去的几年里,纹理分析和合成的相关研究工作在基础理论上与实际应用两个方面都取得了振奋人心的发展,研究者结合计算机视觉,图形学,现代统计物理,心理学和神经系统科学等领域的知识,提出了很多关于纹理理解的新方法。
纹理的研究工作主要集中在两个领域:滤波理论(filtering theory)和统计建模(statistical modeling)理论。
滤波理论来源于在神经生理学中被发现并被广泛接受的多通道滤波机制,该机制认为,人类
视觉系统将视网膜图像分解为一组子带(sub-band)图像信号,而这些子带信号可以通过一组线性滤波器和图像卷积然后经过某些非线性操作计算得到。
滤波理论在纹理方面的应用主要有 Gabor 滤波器和小波(wavelet)塔等,它们在纹理分割和分类中有良好的性能。
统计建模理论认为,纹理图像是随机场上概率分布的采样,该理论涉及到时间序列模型(time series model),马尔可夫链(Markov chain)模型和马尔可夫随机场(Markov random Field,MRF)模型等建模方法。
基于统计的建模方法一般只需要用很少几个参数来描述纹理特征,因此能为纹理提供简练的表示,而且它能把纹理分析问题转化为一个明确的统计推理问题来处理。
计算机视觉研究中低层视觉的一个主要研究方向是图像分割。
由于一个场景中,不同的物体之间有不同层度的交叠,使得最理想的分割结果也会出现物体的不同部分(可视部分)之间分割开来,而不可视部分则为其它物体所覆盖的情况,这就不利于完整地展现物体。
因此,有必要利用由图像得到的相关信息,如原始简约图(Primal Sketch)、颜色一致性、方位一致性等,研究一套算法,把同一物体分在同一个层里面,然后再把它们相应的部分之间连接起来,组成完整的物体。
这就是2.1D Sketch的主要研究任务。
2.1D Sketch主要研究面物体,且不关心物体之间的深度信息,而只考虑它们之间的偏序关系(Partial Order)。
2.1D Sketch的研究成果将会用于图像分割、图像编辑、艺术图像生成以及图像序列分析中。
机器学习:
机器学习是人工智能的一个分支,它是关于让机器具有学习能力的一些算法。
许多情况这种算法给一些数据和从这些数据属性的推出的信息对将来出现的新的数据做出预测。
之所以可以这么做是因为大多数的非随机的数据包含一些模式,这些模式可以让机器去做泛化。
机器学习的相关概念扫盲:
监督式学习:训练数据中包含输入的向量集合并且有相应的目标值(labeled样例)
例如分类(Classification)、关联规则、回归(Regression)
非监督式学习:训练数据中不包含labeled样例
例如聚类(Cluster)、Density estimation、Visualization.
半监督式学习:组合了labled和unlabeled的Example去生成一个函数或分类
泛化(Generalization):通过训练数据训练之后能够识别新的数据。
特征提取(Feature Extraction): 为了降维去除不想关的特征,在数据预处理阶段把数据转化成容易处理的。
机器学习的局限性:
机器学习在大量的模式面前的泛化能力是不同的,如果一个模式不同于以前所看到的,那么这个算法很容易被误解。
由于当前的数据量不够,不能涵盖各种将来的情况,所以机器学习的方法很容易出现过度泛化,从而出现不准确性。
AdaBoost人脸检测原理:
一种基于积分图、级联检测器和AdaBoost 算法的方法,方法框架可以分为以下三大部分:
第一部分,使用Harr-like特征表示人脸,使用“ 积分图”实现特征数值的快速计算;
第二部分,使用Adaboost算法挑选出一些最能代表人脸的矩形特征( 弱分类器),按照加权投票的方式将弱分类器构造为一个强分类器;
第三部分,将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,级联结构能有效地提高分类器的检测速度。
总结
自20世纪50年代以来,模式识别在人工智能兴起后不久就迅速发展成一门学科。
它所研究的理论和方法在很多科学和技术领域得到广泛重视,推动了人工智能系统的发展,扩大了计算机应用的可能性。
经过多年的研究和发展,模式识别技术已广泛被应用于人工智能、计算机工程、机器学、神经生物学、医学、侦探学以及高能物理、考古学、地质勘探、宇航科学和武器技术等许多重要领域,如语音识别、语音翻译、人脸识别、指纹识别、手写体字符的识别、工业故障检测、精确制导等。
模式识别技术的快速发展和应用大大促进了国民经济建设和国防科技现代化建设。