应用多元统计分析课后答案
- 格式:doc
- 大小:1.09 MB
- 文档页数:20
2.1.试叙述多元联合分布和边际分布之间的关系。
解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=L 的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=L 的子向量的概率分布,其概率密度函数的维数小于p 。
2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。
解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。
2.3已知随机向量12()X X '的联合密度函数为其中1ax b ≤≤,2c x d ≤≤。
求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数;(3)判断1X 和2X 是否相互独立。
(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;所以 由于1X 服从均匀分布,则均值为2b a+,方差为()212b a -。
同理,由于2X 服从均匀分布[]2121,()0x x c d f x d c⎧∈⎪=-⎨⎪⎩其它,则均值为2d c+,方差为()212d c -。
(2)解:随机变量1X 和2X 的协方差和相关系数;(3)解:判断1X 和2X 是否相互独立。
1X 和2X 由于121212(,)()()x x f x x f x f x ≠,所以不独立。
2.4设12(,,)p X X X X '=L 服从正态分布,已知其协方差矩阵∑为对角阵,证明其分量是相互独立的随机变量。
解: 因为12(,,)p X X X X '=L 的密度函数为又由于21222p σσσ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭ΣO 212122111p σσσ-⎛⎫ ⎪ ⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ΣO则1(,...,)p f x x2121()()...()2pi i p i i x f x f x μσ=⎧⎫-=-=⎨⎬⎩⎭则其分量是相互独立。
第二章2.1.试表达多元联合分布和边际分布之间的关系。
解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=的子向量的概率分布,其概率密度函数的维数小于p 。
2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。
解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。
2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=-- 其中1a x b ≤≤,2c x d ≤≤。
求〔1〕随机变量1X 和2X 的边缘密度函数、均值和方差; 〔2〕随机变量1X 和2X 的协方差和相关系数; 〔3〕判断1X 和2X 是否相互独立。
〔1〕解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()dx cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()ddcc d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰12122222()()2[()2()]()()()()dd cc d c x a x b a t x a t dt b a d c b a d c ------=+----⎰2212122222()()[()2()]1()()()()d cdcd c x a x b a t x a t b a d c b a d c b a------=+=----- 所以由于1X 服从均匀分布,则均值为2b a +,方差为()212b a -。
2.1.试叙述多元联合分布和边际分布之间的关系。
解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=的子向量的概率分布,其概率密度函数的维数小于p 。
2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。
解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。
2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=--其中1ax b ≤≤,2c x d ≤≤。
求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数;(3)判断1X 和2X 是否相互独立。
(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()dx cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd c c d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 121222202()()2[()2()]()()()()dd c c d c x a x b a t x a t dt b a d c b a d c ------=+----⎰ 2212122222()()[()2()]1()()()()d cdc d c x a x b a t x a t b a d c b a d c b a------=+=----- 所以 由于1X 服从均匀分布,则均值为2b a+,方差为()212b a -。
2.1.试叙述多元联合分布和边际分布之间的关系。
解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=L 的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=L 的子向量的概率分布,其概率密度函数的维数小于p 。
2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。
解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。
2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=--其中1ax b ≤≤,2c x d ≤≤。
求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数;(3)判断1X 和2X 是否相互独立。
(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()dx cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd c c d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 121222202()()2[()2()]()()()()dd c c d c x a x b a t x a t dt b a d c b a d c ------=+----⎰ 2212122222()()[()2()]1()()()()d cdc d c x a x b a t x a t b a d c b a d c b a------=+=----- 所以 由于1X 服从均匀分布,则均值为2b a+,方差为()212b a -。
第二章2.1 试述多元联合分布和边缘分布之间的关系。
设X =(X 1,X 2,⋯X p )′是p 维随机向量,称由它的q (<p )个分量组成的子向量X(i)=(X i1,X i2,⋯X iq )′的分布为X 的边缘分布,相对地把X 的分布称为联合分布。
当X 的分布函数为F (x 1,x 2,⋯x p )时,X (1)的分布函数即边缘分布函数为F (x 1,x 2,⋯x p )=P(X 1≤x 1,⋯X q ≤x q ,X q+1≤∞,⋯X p ≤∞) = F (x 1,x 2,⋯x q ,∞,⋯∞)当X 有分布密度f (x 1,x 2,⋯x p )则X (1)也有分布密度,即边缘密度函数为:f (x 1,x 2,⋯x q )=∫⋯+∞−∞∫f (x 1,x 2,⋯x p )dx q+1⋯d +∞−∞x p 2.2 设随机向量X =(X 1,X 2)′服从二元正态分布,写出其联合分布密度函数和X 1,X 2各自的边缘密度函数。
联合分布密度函数12πσ1σ2(1−ρ2)1/2exp{−12(1−ρ2)[(x 1−μ1)2σ12−2ρ(x 1−μ1)(x 2−μ2)σ1σ2+f (x 1,x 2)=(x 2−μ2)2σ22]} , x 1>0,x 2>00 , 其他(x 1−μ1)2σ12−2ρ(x 1−μ1)(x 2−μ2)σ1σ2+(x 2−μ2)2σ22=(x 1−μ1)2σ12−2ρ(x 1−μ1)(x 2−μ2)σ1σ2+(x 2−μ2)2σ22+ρ2(x 1−μ1)2σ12−ρ2(x 1−μ1)2σ12=[ρ(x 1−μ1)σ1−(x 2−μ2)σ2]2+(1−ρ2)(x 1−μ1)2σ12所以指数部分变为−12{[11√1−ρ2σ1−22√1−ρ2σ2]2+(x 1−μ1)2σ12}令t=22√1−ρ2σ2−11√1−ρ2σ1 ∴dt =√1−ρ2σ22∴f (x 1)=∫f (x 1,x 2)+∞−∞dx 2=12πσ1σ2(1−ρ2)1/2exp{−(x 1−μ1)22σ12∫exp(+∞−∞−12t 2√1−ρ22dt =√2πσexp[−(x 1−μ1)22σ12] √2πσexp[−(x 1−μ1)22σ12] , x 1>0f (x 1)=0 ,其他 同理, √2πσ2exp[−(x 2−μ2)22σ22] , x 2>0f (x 2)=0 ,其他2.3 已知随机向量X =(X 1,X 2)′的联合分布密度函数为f (x 1,x 2)=2[(d−c )(x 1−a )+(b−a )(x 2−c )−2(x 1−a)(x 2−c)(b−a)2(d−c)2,其中,a ≤x 1≤b,c ≤x 2≤d 。
第二章2.1.试叙述多元联合分布和边际分布之间的关系。
解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=的子向量的概率分布,其概率密度函数的维数小于p 。
2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。
解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。
2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=--其中1a x b ≤≤,2c x d ≤≤。
求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数; (3)判断1X 和2X 是否相互独立。
(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()dx cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd cc d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 12122222()()2[()2()]()()()()dd cc d c x a x b a t x a t dt b a d c b a d c ------=+----⎰2212122222()()[()2()]1()()()()d cdcd c x a x b a t x a t b a d c b a d c b a------=+=----- 所以由于1X 服从均匀分布,则均值为2b a +,方差为()212b a -。
应用多元统计分析课后答案第五章 聚类分析5.1 判别分析和聚类分析有何区别?答:即根据一定的判别准则,判定一个样本归属于哪一类。
具体而言,设有n 个样本,对每个样本测得p 项指标(变量)的数据,已知每个样本属于k 个类别(或总体)中的某一类,通过找出一个最优的划分,使得不同类别的样本尽可能地区别开,并判别该样本属于哪个总体。
聚类分析是分析如何对样品(或变量)进行量化分类的问题。
在聚类之前,我们并不知道总体,而是通过一次次的聚类,使相近的样品(或变量)聚合形成总体。
通俗来讲,判别分析是在已知有多少类及是什么类的情况下进行分类,而聚类分析是在不知道类的情况下进行分类。
5.2 试述系统聚类的基本思想。
答:系统聚类的基本思想是:距离相近的样品(或变量)先聚成类,距离相远的后聚成类,过程一直进行下去,每个样品(或变量)总能聚到合适的类中。
5.3 对样品和变量进行聚类分析时, 所构造的统计量分别是什么?简要说明为什么这样构造?答:对样品进行聚类分析时,用距离来测定样品之间的相似程度。
因为我们把n 个样本看作p 维空间的n 个点。
点之间的距离即可代表样品间的相似度。
常用的距离为(一)闵可夫斯基距离:1/1()()pqqij ik jk k d q X X ==-∑q 取不同值,分为 (1)绝对距离(1q =)1(1)pij ik jk k d X X ==-∑(2)欧氏距离(2q =)21/21(2)()pij ik jk k d X X ==-∑(3)切比雪夫距离(q =∞)1()max ij ik jkk pd X X ≤≤∞=-(二)马氏距离(三)兰氏距离21()()()ij i j i j d M -'=--X X ΣX X 11()p ik jkij k ik jk X X d L p X X =-=+∑对变量的相似性,我们更多地要了解变量的变化趋势或变化方向,因此用相关性进行衡量。
将变量看作p 维空间的向量,一般用(一)夹角余弦(二)相关系数5.4 在进行系统聚类时,不同类间距离计算方法有何区别?选择距离公式应遵循哪些原则?答: 设d ij 表示样品X i 与X j 之间距离,用D ij 表示类G i 与G j 之间的距离。
(1). 最短距离法,mini k j rkr ij X G X G D d ∈∈=min{,}kp kq D D =(2)最长距离法,maxi p j qpq ij X G X G D d ∈∈=,maxi k j rkr ij X G X G D d ∈∈=max{,}kp kq D D =(3)中间距离法其中(4)重心法12211cos ()()pik jkk ij p pik jk k k X X X X θ====∑∑∑12211()()()()pik i jk j k ij p pik i jk j k k X X X X r X X X X ===--=--∑∑∑ij G X G X ij d D jj i i ∈∈=,min22222121pq kq kp kr D D D D β++=2()()pq p q p qD X X X X'=--)(1qqpprrXnXnnX+=22222p q p qkr kp kq pqr r rn n n nD D D Dn n n=+-(5)类平均法221i p j jpq ijX G X Gp qD dn n∈∈=∑∑221i k j rkr ijX G X Gk rD dn n∈∈=∑∑22p qkp kqr rn nD Dn n=+(6)可变类平均法其中β是可变的且β <1(7)可变法22221()2kr kp kq pqD D D Dββ-=++其中β是可变的且β <1(8)离差平方和法1()()tnt it t it ttS X X X X='=--∑2222k p k q kkr kp kq pqr k r k r kn n n n nD D D Dn n n n n n++=+-+++通常选择距离公式应注意遵循以下的基本原则:(1)要考虑所选择的距离公式在实际应用中有明确的意义。
如欧氏距离就有非常明确的空间距离概念。
马氏距离有消除量纲影响的作用。
(2)要综合考虑对样本观测数据的预处理和将要采用的聚类分析方法。
如在进行聚类分析之前已经对变量作了标准化处理,则通常就可采用欧氏距离。
(3)要考虑研究对象的特点和计算量的大小。
样品间距离公式的选择是一个比较复杂且带有一定主观性的问题,我们应根据研究对象的特点不同做出具体分折。
实际中,聚类分析前不妨试探性地多选择几个距离公式分别进行聚类,然后对聚类分析的结果进行对比分析,以2222(1)()p qkr kp kq pqr rn nD D D Dn nββ=-++确定最合适的距离测度方法。
5.5试述K 均值法与系统聚类法的异同。
答:相同:K —均值法和系统聚类法一样,都是以距离的远近亲疏为标准进行聚类的。
不同:系统聚类对不同的类数产生一系列的聚类结果,而K —均值法只能产生指定类数的聚类结果。
具体类数的确定,离不开实践经验的积累;有时也可以借助系统聚类法以一部分样品为对象进行聚类,其结果作为K —均值法确定类数的参考。
5.6 试述K 均值法与系统聚类有何区别?试述有序聚类法的基本思想。
答:K 均值法的基本思想是将每一个样品分配给最近中心(均值)的类中。
系统聚类对不同的类数产生一系列的聚类结果,而K —均值法只能产生指定类数的聚类结果。
具体类数的确定,有时也可以借助系统聚类法以一部分样品为对象进行聚类,其结果作为K 均值法确定类数的参考。
有序聚类就是解决样品的次序不能变动时的聚类分析问题。
如果用)()2()1(,,,n X X X Λ表示n 个有序的样品,则每一类必须是这样的形式,即)()1()(,,,j i i X X X Λ+,其中,1n i ≤≤且n j ≤,简记为},,1,{j i i G i Λ+=。
在同一类中的样品是次序相邻的。
一般的步骤是(1)计算直径{D (i,j )}。
(2)计算最小分类损失函数{L[p(l,k)]}。
(3)确定分类个数k 。
(4)最优分类。
5.7 检测某类产品的重量, 抽了六个样品, 每个样品只测了一个指标,分别为1,2,3,6,9,11.试用最短距离法,重心法进行聚类分析。
(1)用最短距离法进行聚类分析。
采用绝对值距离,计算样品间距离阵0 1 0 2 1 05 4 3 0 8 76 3 0 10 9 8 5 2 0由上表易知中最小元素是于是将,,聚为一类,记为计算距离阵3 06 3 08 5 2 0中最小元素是=2 于是将,聚为一类,记为计算样本距离阵3 06 3 0中最小元素是于是将,聚为一类,记为因此,(2)用重心法进行聚类分析计算样品间平方距离阵1 04 1 025 16 9 064 49 36 9 0100 81 64 25 4 0易知中最小元素是于是将,,聚为一类,记为计算距离阵16 049 9 081 25 4 0注:计算方法,其他以此类推。
中最小元素是=4 于是将,聚为一类,记为计算样本距离阵16 064 16 0中最小元素是于是将,聚为一类,记为因此,5.8 下表是15个上市公司2001年的一些主要财务指标,使用系统聚类法和K-均值法分别公司编号净资产收益率每股净利润总资产周转率资产负债率流动负债比率每股净资产净利润增长率总资产增长率1 11.09 0.21 0.05 96.98 70.53 1.86 -44.04 81.992 11.96 0.59 0.74 51.78 90.73 4.95 7.02 16.113 0 0.03 0.03 181.99 100 -2.98 103.33 21.184 11.58 0.13 0.17 46.07 92.18 1.14 6.55 -56.325 -6.19 -0.09 0.03 43.3 82.24 1.52 -1713.5 -3.366 10 0.47 0.48 68.4 86 4.7 -11.56 0.857 10.49 0.11 0.35 82.98 99.87 1.02 100.23 30.328 11.12 -1.69 0.12 132.14 100 -0.66 -4454.39 -62.759 3.41 0.04 0.2 67.86 98.51 1.25 -11.25 -11.4310 1.16 0.01 0.54 43.7 100 1.03 -87.18 -7.4111 30.22 0.16 0.4 87.36 94.88 0.53 729.41 -9.9712 8.19 0.22 0.38 30.31 100 2.73 -12.31 -2.7713 95.79 -5.2 0.5 252.34 99.34 -5.42 -9816.52 -46.8214 16.55 0.35 0.93 72.31 84.05 2.14 115.95 123.4115 -24.18 -1.16 0.79 56.26 97.8 4.81 -533.89 -27.74解:令净资产收益率为X1,每股净利润X2,总资产周转率为X3,资产负债率为X4,流动负债比率为X5,每股净资产为X6,净利润增长率为X7,总资产增长率为X8,用spss对公司聚类分析的步骤如下:a)系统聚类法:1.在SPSS窗口中选择Analyze→Classify→Hierachical Cluster,调出系统聚类分析主界面,并将变量X8X1移入Variables框中。
在Cluster栏中-选择Cases单选按钮,即对样品进行聚类(若选择Variables,则对变量进行聚类)。
在Display栏中选择Statistics和Plots复选框,这样在结果输出窗口中可以同时得到聚类结果统计量和统计图。
图5.1 系统分析法主界面2.点击Statistics按钮,设置在结果输出窗口中给出的聚类分析统计量。
我们选择Agglomeration schedule与Cluster Membership中的Range of solution 2-4,如图5.2所示,点击Continue按钮,返回主界面。
(其中,Agglomeration schedule表示在结果中给出聚类过程表,显示系统聚类的详细步骤;Proximity matrix 表示输出各个体之间的距离矩阵;Cluster Membership 表示在结果中输出一个表,表中显示每个个体被分配到的类别,Range of solution 2-4即将所有个体分为2至4类。
)3.点击Plots按钮,设置结果输出窗口中给出的聚类分析统计图。