Ansys 荷载组合
- 格式:doc
- 大小:28.00 KB
- 文档页数:2
若用ANSYS进行设计,往往要计算很多种工况组合,如果加载能分开加载独立计算然后结果叠加(仅限于弹性阶段)则效率可提高不少,下面推荐几个命令即可达到这种效果。
!★加自重——————————————————★1★allsel,allacel,0,0,0fdele,all,all,allsfadele,all,all,allacel,,,10lswrite,1allsel,all………………lswrite,N_LOAD !可加其他荷载,自己定义allsel,alloutpr,all,alllssolve,1,N_LOAD,1 !对各荷载独立求解fini!荷载组合/post1allsel,alllcase, 1 !读出自重荷载下的结构响应lcoper,add,2 !加上荷载2lcwrite,31 !作为工况组合31当然可以用lcfact定义荷载的分项系数,再进行组合。
善用这些命令,对于设计(往往是很多工况组合)就比较方便了/post1lcdef,1,1lcdef,2,2lcdef,3,3lcdef,4,4 !定义四种工况,分别为四种荷载下的计算结果lcfact,1,1.2lcfact,2,1.4lcfact,3,1.19lcfact,4,1.4 !指定各工况的组合系数lcase,1 !读入工况1,database=1sumtype,prin !指定加操作的对象lcoper,add,2 !荷载组合,database=database+2lcoper,add,4 !荷载组合,database=database+4lcoper,lprin !计算线性主应力lcwrite,11 !把database结果写到工况11,即恒荷载+活荷载+吊车荷载的结果lcase,1lcfact,2,1.19lcfact,4,1.19 !改变组合系数sumtype,prinlcoper,add,2lcoper,add,3lcoper,add,4lcoper,lprinlcwrite,12 !把database结果写到工况12,即恒荷载+活荷载+吊车荷载+风荷载的结果!... ...其他荷载组合!之后使用lcase,n 就可调入工况n,并查看它的变形和内力!可使用如下命令流得到工况11和12,13的较大者99,进而查看最大应力lcase,11lcase,min,12lcase,min,13lcwrite,98lcase 98!查看工况98的应力分布... ...lcase,11lcase,max,12lcase,max,13lcwrite,99lcase 99!查看工况99的应力分布... ...以下为定义和读取荷载工况用到的一些命令:LCDEF_从结果文件中的一列结果产生荷载工况LCDEF, LCNO, LSTEP, SBSTEP, KIMGLCNO:随意的指针数(1-99),要赋给LSTEP,SBSTEP和FILE命令指定的荷载工况。
ansys荷载工况组合 Load Case ansys荷载工况组合 (转自新浪微博——majun的博客)若用ANSYS进行设计,往往要计算很多种工况组合,如果加载能分开加载独立计算然后结果叠加(仅限于弹性阶段)则效率可提高不少,下面推荐几个命令即可达到这种效果。
!★加自重——————————————————★1★allsel,allacel,0,0,0fdele,all,all,allsfadele,all,all,allacel,,,10lswrite,1allsel,all………………lswrite,N_LOAD !可加其他荷载,自己定义allsel,alloutpr,all,alllssolve,1,N_LOAD,1 !对各荷载独立求解fini!荷载组合/post1allsel,alllcase, 1 !读出自重荷载下的结构响应lcoper,add,2 !加上荷载2lcwrite,31 !作为工况组合31当然可以用lcfact定义荷载的分项系数,再进行组合。
善用这些命令,对于设计(往往是很多工况组合)就比较方便了对单层或二层框架进行弹性分析,需要考虑四种荷载恒荷载,活荷载,风荷载和吊车荷载1,几何模型(beam3和beam54)建立后,定义所需的element table,主要包括杆端力和最大应力,最小应力等。
然后保存数据库。
分别施加四种荷载的标准值(不乘分项系数),并分别存成四个load step file。
2,使用solution->from ls files,求解四种荷载(LSSOLVE,1,4,1,)3,荷载组合,命令流如下:/post1lcdef,1,1lcdef,2,2lcdef,3,3lcdef,4,4 !定义四种工况,分别为四种荷载下的计算结果lcfact,1,1.2lcfact,2,1.4lcfact,3,1.19lcfact,4,1.4 !指定各工况的组合系数lcase,1 !读入工况1,database=1sumtype,prin !指定加操作的对象lcoper,add,2 !荷载组合,database=database+2lcoper,add,4 !荷载组合,database=database+4lcoper,lprin !计算线性主应力lcwrite,11 !把database结果写到工况11,即恒荷载+活荷载+吊车荷载的结果lcase,1lcfact,2,1.19lcfact,4,1.19 !改变组合系数sumtype,prinlcoper,add,2lcoper,add,3lcoper,add,4lcoper,lprinlcwrite,12 !把database结果写到工况12,即恒荷载+活荷载+吊车荷载+风荷载的结果!... ...其他荷载组合!之后使用lcase,n 就可调入工况n,并查看它的变形和内力!可使用如下命令流得到工况11和12,13的较大者99,进而查看最大应力lcase,11lcase,min,12lcase,min,13lcwrite,98lcase 98!查看工况98的应力分布... ...lcase,11lcase,max,12lcase,max,13lcwrite,99lcase 99!查看工况99的应力分布... ...以下为定义和读取荷载工况用到的一些命令:LCDEF_从结果文件中的一列结果产生荷载工况LCDEF, LCNO, LSTEP, SBSTEP, KIMGLCNO:随意的指针数(1-99),要赋给LSTEP,SBSTEP和FILE命令指定的荷载工况。
雨蓬结构计算(一)、荷载计算1、标高为5 m 处荷载计算(1). 风荷载计算:W:作用在雨蓬上的基本风压值:0.55 kN/m^2Wk:作用在雨蓬上的风荷载标准值 ( kN/m^2 )W:作用在雨蓬上的风荷载设计值 ( kN/m^2 )βgz: 6m 高处阵风系数(按B类区计算),由GB50009-2001表7.5.1得1.88μz: 6m 高处风压高度变化系数(按B类区计算),由GB50009-2001表7.2.1得1.00μs:风荷载体型系数,取为 -2γw:风荷载作用分项系数: 1.4W k =βgz×μz×μs×W(GB50009-2001) =1.88×1.00×2.0×0.55 =2.07 kN/m^2W=γW × Wk= 1.4×2.07 = 2.9 kN/m^2(2). 玻璃自重:采用 8 + 1.14PVB + 8 mm 夹胶钢化玻璃GAK:雨蓬玻璃的平均自重标准值 ( kN/m^2 )G A :雨蓬玻璃的平均自重设计值 ( kN/m^2 )γG:自重荷载作用分项系数: 1.35GAK=25.6×(8+8)/1000 = 0.41 kN/m^2GA=γG× GAK=1.35×0.41 = 0.55 kN/m^2(3). 结构自重(含不锈钢爪件):GBK=0.15kPaGA=γG× GAK=1.35×0.15 = 0.20 kN/m^2(4). 雪荷载计算:Sk:作用在幕墙上的雪荷载标准值,上海取为0.2 ( kN/m2 )S:作用在幕墙上的雪荷载设计值 ( kN/m2 )S:基本雪压,按《建筑结构荷载规范》GB50009-2001,取为 0.40γS:雪荷载作用分项系数: 1.4μr:屋面积雪分布系数,按GB50009-2001,取1.0Sk=μr×S(GB50009-2001 6.1.1)=1.0 × 0.20 = 0.20 kN/m^2S=γS× Sk=1.4 × 0.20 = 0.28 kN/m^2(5). 活荷载计算:q 活k :作用在雨蓬上的活荷载标准值:0.500 kN/m^2q 活:作用在雨蓬上的活荷载设计值 ( kN/m^2 )γ活 :活荷载作用分项系数: 1.4q 活 =γ活 ×q 活k :=1.4×0.50 = 0.70 kN/m^2(5). 荷载组合:计算钢结构时工况一: 重力 + 1 × 活荷载标准值 q k 设计值 q 0.41+0.15+1×0.50 0.55+0.2+1×0.70 = 1.06 kN/m^2= 1.45 kN/m^2工况二: 重力 + 1 × 雪荷载标准值 q k 设计值 q 0.15+0.41+1×0.20 0.2+0.55+1×0.28 = 0.76 kN/m^2= 1.03 kN/m^2工况三: 风力 - 重力标准值 q k 设计值 q 2.07 - 0.41-0.15 2.9 - 0.41-0.15 = 1.51 kN/m^2= 2.34 kN/m^2经比较,工况一和工况三更为不利,校核这两种工况下的结构受力情况。
Ansys 荷载组合1,几何模型(beam3和beam54)建立后,定义所需的element table,主要包括杆端力和最大应力,最小应力等。
然后保存数据库。
分别施加四种荷载的标准值(不乘分项系数),并分别存成四个load step file。
2,使用solution->from ls files,求解四种荷载3,荷载组合,命令流如下:/post1lcdef,1,1lcdef,2,2lcdef,3,3lcdef,4,4 !定义四种工况,分别为四种荷载下的计算结果lcfact,1,1.2lcfact,2,1.4lcfact,3,1.19lcfact,4,1.4 !指定各工况的组合系数lcase,1 !读入工况1,database=1sumtype,prin !指定加操作的对象lcoper,add,2 !荷载组合,database=database+2lcoper,add,4 !荷载组合,database=database+4lcoper,lprin !计算线性主应力lcwrite,11 !把database结果写到工况11,即恒荷载+活荷载+吊车荷载的结果lcase,1lcfact,2,1.19lcfact,4,1.19 !改变组合系数sumtype,prinlcoper,add,2lcoper,add,3lcoper,add,4lcoper,lprinlcwrite,12 !把database结果写到工况12,即恒荷载+活荷载+吊车荷载+风荷载的结果!... ...其他荷载组合!之后使用lcase,n 就可调入工况n,并查看它的变形和内力!可使用如下命令流得到工况11和12,13的较大者99,进而查看最大应力lcase,11lcase,min,12lcase,min,13lcwrite,98lcase 98!查看工况98的应力分布... ...lcase,11lcase,max,12lcase,max,13lcwrite,99lcase 99!查看工况99的应力分布... ...以下为定义和读取荷载工况用到的一些命令:LCDEF_从结果文件中的一列结果产生荷载工况LCDEF, LCNO, LSTEP, SBSTEP, KIMGLCNO:随意的指针数(1-99),要赋给LSTEP,SBSTEP和FILE命令指定的荷载工况。
Ansys多工况组合的方法Liutao8848()毫无疑问,实际工程设计一般要考虑多工况荷载组合的问题,这里通过一个例子说明Ansys的实现过程。
首先给出ansys荷载组合的定义:载荷工况的组合就是在载荷工况的结果数据之间进行运算处理,即当前处于数据库的载荷工况结果数据和另一独立结果文件中的载荷工况结果数据之间进行运算。
ANSYS中指定载荷工况的组合方式荷载组合有两种方法,○1:通过载荷工况文件组合;○2通过结果文件进行荷载组合;我们通过一个例子来说明它们的应用。
A:通过载荷工况文件组合如图-1所示一工字钢梁,分别有两种工况,一个是集中扭矩,作用于节点2,大小为-1000;一个是均布扭矩,作用于每个节点,大小为120。
图-1 工字钢梁模型当作用于每个节点的均布扭矩,其受荷Von mise应力图如图-2,各节点ROTX 见后表第一栏。
图-2 工字钢梁受均布扭矩后变形及Von mose应力图此时通过:/Post1-load case-write load case 建立工字钢梁受扭矩后的载荷工况文件:这样工作目录下会多一个载荷工况文件beam.101。
对该模型施加集中扭矩后,Von mose应力图如图-3,各节点UY变形见后表第二栏图-3 工字钢梁受集中扭矩后变形及Von mose应力图如果考虑取两种工况的扭转变形之和进行组合,则可以选择:组合后结果见表第三栏。
如果考虑第一种工况与第二种工况的0.8倍组合,则可以,按下步操作设置倍数:然后执行上面的加操作就可以了。
计算结果见第四栏。
附表:数据NODE ROTX1 0.0000 1 0.0000 1 0.0000 1 0.00002 5.4216 2 -4.3028 2 1.1187 2 0.34423E-013 0.51634 3 -0.21514 3 0.30120 3 0.197934 1.0069 4 -0.43028 4 0.57658 4 0.375215 1.4716 5 -0.64542 5 0.82614 5 0.531836 1.9105 6 -0.86057 6 1.0499 6 0.667807 2.3235 7 -1.0757 7 1.2478 7 0.783118 2.7108 8 -1.2908 8 1.4199 8 0.877789 3.0722 9 -1.5060 9 1.5662 9 0.9517810 3.4078 10 -1.7211 10 1.6867 10 1.005111 3.7176 11 -1.9363 11 1.7814 11 1.037812 4.0016 12 -2.1514 12 1.8502 12 1.049913 4.2598 13 -2.3666 13 1.8932 13 1.041314 4.4921 14 -2.5817 14 1.9105 14 1.012015 4.6987 15 -2.7968 15 1.9018 15 0.9621116 4.8794 16 -3.0120 16 1.8674 16 0.8915517 5.0343 17 -3.2271 17 1.8072 17 0.8003318 5.1634 18 -3.4423 18 1.7211 18 0.6884519 5.2667 19 -3.6574 19 1.6093 19 0.5559320 5.3441 20 -3.8725 20 1.4716 20 0.4027421 5.3957 21 -4.0877 21 1.3081 21 0.22891B:通过结果文件进行荷载组合定义载荷工况Main Menu: General Postproc > Load Case > Create Load Case 指定载荷工况数据来源(一般选“Results file”,即以前的多载荷步运算创建的结果文件)b: 单击OK.c. 指定参考名*.*或参考号,载荷步号和子步号d.单击OK.**名字必须在此之前定义,并与载荷工况参考号相对应后面的操作,和前面一样。
用Ansys进行荷载组合的一个算例本算例是一个工况0的恒载和工况1的活载进行组合的算例,我们对其进行强度分析。
组合如下: 1.0*1.2恒载+0.7*1.4活载从3D3S中导出的纯模型文件另存为Model.txt从3D3S中导出的荷载文件另存为:Force_C0.txt;Force_C1.txt操作如下:(1) 把Model.txt读入到Ansys中;(2) 采用如下的命令流进行荷载组合分析(强度分析);***********************************************************************************!---------------------- 删除所有荷载 ----------------------------/soluFKDELE,all,all ! 删除关键点集中荷载FDELE,all,all ! 删除节点集中荷载SFLDELE,all,all ! 删除线上面荷载SFADELE,all,all ! 删除面上面荷载SFEDELE,all,all ! 删除单元面荷载BFLDELE,all,all ! 删除线上体荷载BFADELE,all,all ! 删除面上体荷载BFVDELE,all,all! !删除体上体荷载BFKDELE,all,all !删除关键点上体荷载BFDELE,all,all !删除节点体荷载!=========================== 工况分析 ===========================esel,all/input,Force_C0,txt !读入工况0 恒载/soluantype,static !采用静力分析esel,all !选中所有单元solve 从结果文件创建荷载工况finish/post1lcdef,1,1,0lcwrite,1finish!---------------------- 删除所有荷载 ------------------------/soluFKDELE,all,allFDELE,all,allSFLDELE,all,allSFADELE,all,allSFEDELE,all,all,allBFLDELE,all,allBFADELE,all,allBFVDELE,all,allBFKDELE,all,allBFDELE,all,all! -------------------------------------------------------------esel,all/input,Force_C1,txt !读入工况1 活载/soluantype,staticesel,all solve finish/post1lcdef,2,1,0lcwrite,2finish! -------------------------------------------------------------/post1lcfact,1,1.2 !这里的1.2为1.0*1.2的结果lcfact,2,0.98 !这里的0.98为1.4*0.7的结果lcase,1lcoper,add,2lcdef,3,1,0lcwrite,3eplot/REPLOT,RESIZE*********************************************************************************** (3) 通过后处理命令:Main Menu>General Postproe>Load Case>Read Loadcase 读出组合后的计算结果,在本例中为Load case=3的组合结果。
ANSYSWorkbench偏心梁组合载荷分析前面提到的梁是为了获得纯弯曲的状态,想要与材料力学上基本物理量与ANSYS分析相对应起来。
我们材料力学里面接触的梁为欧拉伯努利梁,而ANSYS对应的为铁木辛科梁。
它们的主要区别就是在于:是否考虑横截面上的横向剪切应变对于梁变形的影响。
学习的时候我们并不清楚这些梁的概念,到底属于哪一种,但是我们从分析大致看出来它们的差别。
这一节我们学习在弯曲和拉伸组合下,梁的受力响应。
此处为了获得更多详细的细节,考虑采用实体单元。
偏心梁受组合载荷DM建立模型在ansys DM 里面建立如下模型,该模型为扫掠形成的实体。
扫掠截面建立在YZ平面内,路径建立在XY平面内。
路径和截面尺寸如下图所示:尺寸单位为Inch,截面圆角半径为0.2inch。
由于扫掠操作简单这里就不说明如何形成实体了。
准备材料参数之前忘了说明如何将临时使用的材料保存下来,这里提一下。
在材料里面定义如下参数的钢:从项目概图的界面,文件菜单下选择”Export Engineering Data“,切勿退出工程数据窗口,否则文件菜单下没有该选项。
导出的为xml文件格式,下次需要使用选择文件菜单下的”Import Engineering Data“,然后选择该xml导入即可,很方便。
增加边界条件之所以没有说明材料分配,实在是没有必要了,每次分析前确认好即可。
网格不是学习的重点,有多余的时间再学习。
边界条件施加如下所示:使用同样大小的载荷左右拉伸,打开分析设置下方的弱弹簧,以防止结构出现刚体位移。
那为什么在静力学分析中要防止刚体位移呢,如果出现刚体位移,则刚度矩阵奇异,那么就会存在不唯一的解。
结构位置是确定的,边界是确定的,静力学分析应该是有唯一解,所以两者矛盾,刚体位移需要防止。
那为什么不施加固定约束呢(Fixed Support),固定约束会人工引入应力集中,对出初学者并不友好。
还记得我们当初如何处理单杆双向拉伸的固定约束的么,其实本例亦有办法。
2.1 载荷概述有限元分析的主要目的是检查结构或构件对一定载荷条件的响应。
因此,在分析中指定合适的载荷条件是关键的一步。
在ANSYS程序中,可以用各种方式对模型加载,而且借助于载荷步选项,可以控制在求解中载荷如何使用。
2.2 什么是载荷在ANSYS术语中,载荷(loads)包括边界条件和外部或内部作用力函数,如图2-1所示。
不同学科中的载荷实例为:结构分析:位移,力,压力,温度(热应变),重力热分析:温度,热流速率,对流,内部热生成,无限表面磁场分析:磁势,磁通量,磁场段,源流密度,无限表面电场分析:电势(电压),电流,电荷,电荷密度,无限表面流体分析:速度,压力图2-1 “载荷”包括边界条件以及其它类型的载荷载荷分为六类:DOF约束,力(集中载荷),表面载荷,体积载荷、惯性力及耦合场载荷。
·DOF constraint(DOF约束)将用一已知值给定某个自由度。
例如,在结构分析中约束被指定为位移和对称边界条件;在热力分析中指定为温度和热通量平行的边界条件。
·Force(力)为施加于模型节点的集中载荷。
例如,在结构分析中被指定为力和力矩;在热力分析中为热流速率;在磁场分析中为电流段。
·Surface load(表面载荷)为施加于某个表面上的分布载荷。
例如,在结构分析中为压力;在热力分析中为对流和热通量。
·Body load(体积载荷)为体积的或场载荷。
例如,在结构分析中为温度和fluences;在热力分析中为热生成速率;在磁场分析中为流密度。
·Inertia loads(惯性载荷)由物体惯性引起的载荷,如重力加速度,角速度和角加速度。
主要在结构分析中使用。
·Coupled-field loads(耦合场载荷)为以上载荷的一种特殊情况,从一种分析得到的结果用作为另一分析的载荷。
例如,可施加磁场分析中计算出的磁力作为结构分析中的力载荷。
其它与载荷有关的术语的定义在下文中出现。
Ansys 荷载组合
1,几何模型(beam3和beam54)建立后,定义所需的element table,主要包括杆端力和最大应力,最小应力等。
然后保存数据库。
分别施加四种荷载的标准值(不乘分项系数),并分别存成四个load step file。
2,使用solution->from ls files,求解四种荷载
3,荷载组合,命令流如下:
/post1
lcdef,1,1
lcdef,2,2
lcdef,3,3
lcdef,4,4 !定义四种工况,分别为四种荷载下的计算结果
lcfact,1,1.2
lcfact,2,1.4
lcfact,3,1.19
lcfact,4,1.4 !指定各工况的组合系数
lcase,1 !读入工况1,database=1
sumtype,prin !指定加操作的对象
lcoper,add,2 !荷载组合,database=database+2
lcoper,add,4 !荷载组合,database=database+4
lcoper,lprin !计算线性主应力
lcwrite,11 !把database结果写到工况11,即恒荷载+活荷载+吊车荷载的结果
lcase,1
lcfact,2,1.19
lcfact,4,1.19 !改变组合系数
sumtype,prin
lcoper,add,2
lcoper,add,3
lcoper,add,4
lcoper,lprin
lcwrite,12 !把database结果写到工况12,即恒荷载+活荷载+吊车荷载+风荷载的结果
!... ...其他荷载组合
!之后使用lcase,n 就可调入工况n,并查看它的变形和内力
!可使用如下命令流得到工况11和12,13的较大者99,进而查看最大应力lcase,11
lcase,min,12
lcase,min,13
lcwrite,98
lcase 98
!查看工况98的应力分布... ...
lcase,11
lcase,max,12
lcase,max,13
lcwrite,99
lcase 99
!查看工况99的应力分布... ...
以下为定义和读取荷载工况用到的一些命令:
LCDEF_从结果文件中的一列结果产生荷载工况
LCDEF, LCNO, LSTEP, SBSTEP, KIMG
LCNO:随意的指针数(1-99),要赋给LSTEP,SBSTEP和FILE命令指定的荷载工况。
缺省为1加前一个值。
LLSTEP:要定义为荷载工况的荷载步的编号。
缺省为1。
SBSTEP:子荷载步的编号。
缺省为荷载步的最后一个子荷载步。
KIMG:仅用于复数分析0-用复数分析的实部 1-用虚部
注意:通过建立一个指向结果文件中的一列结果的指针产生一个荷载工况。
这个指针(LCNO)可以用在LCASE或LCOPER命令中来读荷载工况数据到数据库中。
lCDEF,ERASE来删除所有的荷载工况指针(和所有的荷载工况文件)。
用LCDEF,LCNO,ERASE来删除指定的荷载工况指针LCNO(和相应的文件)。
当选项为ERASE时,所有的指针都被删除,但是只有为缺省扩展名的文件(LCWRITE)被删除。
写LCDEF,STAT看所有选定的荷载工况(LCSEL)的状态,写
LCDEF,STAT ,ALL看所有荷载工况的状态。
STAT命令可以用来列出所有荷载工况。
看LCFILE如何建立一个指针指向荷载工况文件(由LCWRITE写)中一列结果。
谐单元从一个荷载工况结果文件读入的数据贮存在零度位置。
另外,ANSYS还是比较难研究透的,对于我来说,学习一两年是没有办法达到精通的。