人教版高中物理选修3-1答案
- 格式:docx
- 大小:13.55 KB
- 文档页数:1
高中物理选修3-1试题及答案第一章1. 如图所示,ql 、q2、q3分别表示在一条直线上的三个点电荷。
已知ql 与q2之间的距离为ll ,q2与q3之间的距离为l2,且每个电荷都处于平衡状态。
若q2为正电荷,则ql 为 电荷,q3为 电荷;ql 、q2、q3三者电荷量大小之比是 : :2 .在真空中的O 点放一点电荷Q=1.0×10-9C ,直线MN 过O 点,OM=30cm ,M 点放有一点电荷q=-2×10-10C ,如图所示。
求:(1)M 点的场强大小;(2)若M 点的电势比N 点的电势高15V ,则电荷q 从M 点移到N 点,电势能变化了多少?3. 如图所示,BC 是半径为R 的1/4圆弧形的光滑且绝缘的轨道,位于竖直平面内,其下端与水平绝缘轨道平滑连接,整个轨道处在水平向左的匀强电场中,电场强度为E.今有一质量为m 、带正电q 的小滑块(体积很小可视为质点),从C 点由静止释放,滑到水平轨道上的A 点时速度减为零。
若已知滑块与水平轨道间的动摩擦因数为μ,求:(1)滑块通过B 点时的速度大小; (2)水平轨道上A,B 两点之间的距离。
4.一个带电质点的带电荷量为3×10-9C 的正电荷,逆着电场方向从A 点移动到B 点的过程中外力做功为6×10-5J ,带电质点的动能增加了4.5×10-5J ,求A 、B 两点间的电势差UAB 。
5. 如图所示,水平放置的平行金属板A 、B 间距为d ,带电粒子的电荷量为q ,质量为m ,粒子以速度v 从两极板中央处水平飞入两极板间,当两板上不加电压时,粒子恰从下板的边缘飞出.现给AB 加上一电压,则粒子恰好从上极板边缘飞出求:(1)两极板间所加电压U ;(2)金属板的长度L6.如图14所示,在真空中用等长的绝缘丝线分别悬挂两个点电荷A 和 B ,其电荷量分别为+q 和-q .在水平方向的匀强电场作用下,两悬线保持竖直,此时A 、B 间的距离为L.求该匀强电场场强的大小和方向,7.如图15所示,在场强为E 的匀强电场中,一绝缘轻质细杆可绕O 点在竖直平面内自由转动,A 端有一个带正电的小球,电荷量为q ,质量为m 。
库仑定律课后作业限时:45分钟总分:100分一、选择题(8×5′,共40分)1.库仑定律的适用范围是( )A.真空中两个带电球体间的相互作用B.真空中任意带电体间的相互作用C.真空中两个点电荷间的相互作用D.真空中两个带电体的大小远小于它们之间的距离,则可应用库仑定律解析:库仑定律严格适用于点电荷间的相互作用力.答案:CD2.A、B两个点电荷间距离恒定,当其他电荷移近时,A、B之间的库仑力将( )A.可能变大B.可能变小C.一定不变D.无法确定解析:由F=k Q1Q2r2可以得出.答案:C3. (2011·海南卷)三个相同的金属小球1、2、3分别置于绝缘支架上,各球之间的距离远大于小球的直径.球1的带电荷量为q,球2的带电荷量为nq,球3不带电且离球1和球2很远,此时球1、2之间作用力的大小为F.现使球3先与球2接触,再与球1接触,然后将球3移至远处,此时1、2之间作用力的大小仍为F ,方向不变.由此可知( )A .n =3B .n =4C .n =5D .n =6解析:设1、2两电荷之间的距离为r,3和他们没有接触前,由库仑定律有kqnq r 2=F ,接触后,2球带电荷量为n 2q,1球带电荷量为n +24q ,由库仑定律有n +2nq 2k 8r 2=F ,联立上面两式解得n =6,D 项对.答案:D4.两个点电荷相距r 时相互作用力为F ,则( ) A .电量不变距离加倍时,作用力变为F /2B .其中一个电荷的电量和两电荷间距离都减半时,作用力为4FC .每个电荷的电量和两电荷间距离都减半时,作用力为4FD .每个电荷的电量和两电荷间距离都增加相同倍数时,作用力不变 解析:由F =kQ 1Q 2r 2,若Q 1、Q 2不变,而r 变为原来的两倍时,则F 要变为原来的14,故选项A 不正确;若其中一个电荷的电量和两电荷间距离减半时,则作用力变为原来的两倍,故选项B 错误;若每个电荷的电量和两电荷间距离都减半或增加相同的倍数时,则作用力保持不变,故C 错,D 对.答案:D5.关于静电力常量,下列说法中正确的是( )A .由k =F ·r 2/Q 1Q 2可知,当两个点电荷之间的距离r 越大,两个点电荷电量的乘积Q1Q2越小时,静电力常量k的值就越大B.k是一个无单位的常数C.因为静电力有方向,所以k是一个矢量D.k在数值上等于两个1 C的点电荷相距1 m时的相互作用力的大小答案:D6.如图8所示,在光滑绝缘的水平面上,固定着质量相等的三个带电小球a、b、c,三球在一条直线上,若释放a球,a球的初始加速度为-1 m/s2(向右为正);若释放c球,c球的初始加速度为-3 m/s2,当释放b球时,b球的初始加速度为( )图8A.4 m/s2B.-1 m/s2C.-4 m/s2D.1 m/s2解析:对a:F ba+F ca=ma a.①对c:F bc+F ac=ma c,②因为F ca=-F ac,所以①+②得:F ba+F bc=-(F ab+F cb)=m(a a+a c).又F ab+F cb=ma b,所以ma b=-m(a a+a c),所以a b=-(a a+a c)=-(-1-3)m/s2=4 m/s2.即b球的初始加速度大小为4 m/s2,方向向右.答案:A图97.如图9所示,三个完全相同的金属小球a、b、c位于等边三角形的三个顶点上.a和c带正电,b带负电,a所带电荷量的大小比b小,已知c受到a和b的静电力的合力可用图中四条有向线段中的一条表示,它应是( ) A.F1B.F2C.F3D.F4图10解析:取小球c为研究对象,c受到a的斥力F斥,方向沿ac连线如图10所示,c受到b的吸引力F引,由于F引>F斥,则c球受静电力的合力应为F2.答案:B图118.一个半径为R 的圆盘,带电荷量为Q ,OO ′为过圆盘的圆心O 的直线,且OO ′与圆盘面垂直,在OO ′上的M 点放电荷量为q 的另一个点电荷,此时Q 与q 的库仑力为F ,若将q 移至N 点,Q 与q 的库仑力为F ′.已知OM =MN =R ,如图11所示,则F ′等于( )A .2FB.12F C.F4D .以上答案都不对解析:由于点电荷q 和圆盘间距离为R ,而圆盘的半径也为R ,因而圆盘的大小和形状不能忽略,即不能看成点电荷,所以q 和圆盘间的库仑力也就不能使用库仑定律计算,故答案为D.答案:D二、非选择题(9、10题各10分,11、12题各20分,共60分)图129.如图12所示,质量为2 g 的小球A 用丝线悬起,把带电量为4.0×10-6C的小球B 靠近A ,当两小球在同一高度相距30 cm 时,A 球恰好平衡,丝线与竖直方向夹角α为30°,则B 球受到的静电引力为________、方向为________;A 带________电,带电量为________.(g 取10 N/kg)图13解析:对A 球受力分析如图13,则F =m A g tan30°=0.012 N ,因为F =k Q B Q A L 2,所以Q A =3×10-8C.由于A 、B 为异种电荷,A 为负电荷.找准研究对象、对研究对象进行正确的受力分析是解此题的关键.答案:0.012 N ;水平向左;负;3×10-8C图1410.两个半径完全相同的金属小球带有等量的正电荷,放于一竖直半圆环光滑的绝缘面内,静止时两球位置如图14所示,已知两球的质量都为m ,环的半径为R (小金属球的半径可以忽略).∠AOC =∠BOC =θ,则小球受到的库仑力的大小F =________,每个小球上的电荷量Q =________.图15解析:如图15所示,F =mg tan θ. 因为F =kQ 22R sin θ2,所以Q =2R sin θmg tan θk.答案:mg tan θ;2R sin θmg tan θk图1611.如图16所示,两个同样的气球充满氢气(气球重力不计),气球带有等量同种电荷,两根等长的细线下端系上5.0×103 kg 的重物后就漂浮着,求每个气球的带电量.(g 取10 N/kg).解:先对重物受力分析,求出细线的拉力,如图17甲所示,2T cos θ=mg .同样再对左面气球受力分析,如图乙所示,知F =T sin θ,而F =k Q 2r 2,最后可得Q≈8.7×10-4C.图1712.“真空中两个静止点电荷相距10 cm ,它们之间的相互作用力大小为9×10-4 N ,当它们合在一起时,成为一个带电荷量为3×10-8C 的点电荷.问原来两电荷的带电量各为多少?”某同学求解如下:根据电荷守恒定律:q1+q2=3×10-8C=a①,根据库仑定律:q1q2=r2kF=10×10-229×109×9×10-4C2=1×10-15C2=b,将q2=b/q1代入①式得:q21-aq1+b=0,解得q1=12(a±a2-4b)=12(3×10-8±9×10-16-4×10-15),根号中的数值小于0,经检查,运算无误.试指出求解过程中的问题并给出正确的解答.解:分析题意得:题中仅给出两电荷之间的相互作用力的大小,并没有给出带电的性质,所以两点电荷也可能异号.按电荷异号计算,由q1-q2=3×10-8C=a①;q1q2=1×10-15C2=b②联立方程得:q21-aq1-b=0,由此代入数据解得:q1=5×10-8C,q2=2×10-8C(q1、q2异号).。
高中物理学习材料金戈铁骑整理制作高中物理每日练习(有答案)1.(18分)如图所示,在电子枪右侧依次存在加速电场,两水平放置的平行金属板和竖直放置的荧光屏。
加速电场的电压为U 1。
两平行金属板的板长、板间距离均为d 。
荧光屏距两平行金属板右侧距离也为d 。
电子枪发射的质量为m 、电荷量为–e 的电子,从两平行金属板的中央穿过,打在荧光屏的中点O 。
不计电子在进入加速电场前的速度及电子重力。
(1)求电子进入两金属板间时的速度大小v 0;(2)若两金属板间只存在方向垂直纸面向外的匀强磁场,求电子到达荧光屏的位置与O 点距离的最大值m y 和此时磁感应强度B 的大小;(3)若两金属板间只存在竖直方向的匀强电场,两板间的偏转电压为U 2,电子会打在荧光屏上某点,该点距O 点距离为2d ,求此时U 1与U 2的比值;若使电子打在荧光屏上某点,该点距O 点距离为d ,只改变一个条件的情况下,请你提供一种方案,并说明理由。
:(1) 设电子经电场加速后进入偏转场区的速度大小为v 0,由动能定理得① ②(2) 偏转场区中只有匀强磁场时,电子进入磁场区受洛仑兹力作用做匀速圆周运动,经磁场偏转后,沿直线运动到荧光屏。
磁场的磁感应强度越大,偏转越大,电子偏转的临界状态是恰好从上板的右端射出,做直线运动到达荧光屏。
它的位置与O 点距离即为最大值,如图所示。
电子做圆周运动,有 ③由图可得 ④ ⑤ 可得⑥ 由③式和 得 ⑦(3)偏转区内只有匀强电场时,电子进入偏转区做匀加速曲线运动,如图所示。
离开偏转电场时沿电场方向的位移 速度方向偏转角设为,打到荧光屏的位置距O 点的距离⑧可得 由可知,改变加速电压U 1或偏转电压U 2的大小,即可改变电子打到荧光屏的的位置:方案一:保持U 1的大小不变,将偏转电压U 2加倍即可。
方案二:保持U2的大小不变,将加速电压U1减半即可。
2.如图所示的空间分为I、II、III三个区域,各竖直边界面相互平行,I、II区域均存在电场强度为E的匀强电场,方向垂直界面向右;同时II区域存在垂直纸面向外的匀强磁场;III区域空间有一与FD边界成450角的匀强磁场,磁感应强度大小为B,其下边界为水平线DH,右边界是GH:一质量为、电荷量为q的带正电的粒子(重力不计)从O点由静止释放,到达A点时速度为v0,粒子在C点沿着区域III的磁感线方向进人III区域,在DH上的M点反弹,反弹前、后速度大小不变,方向与过碰撞点的竖直线对称,已知粒子在III区域内垂直于磁场方向的平面内做匀速圆周运动的轨道半径为r= ,C点与M点的距离为,M点到右边界GH的垂直距离为。
电荷及其守恒定律课后作业限时:45分钟总分:100分一、选择题(8×5′,共40分)1.下列关于电现象的叙述正确的是( )A.玻璃棒无论与什么物体摩擦都带正电,橡胶棒无论与什么物体摩擦都带负电B.物体不带电就是物体内部没有电荷存在C.带电现象的本质是电子的转移,物体得到多余的电子就一定显负电性,失去电子就一定显正电性D.当一种电荷出现时,必然有等量异种电荷出现,当一种电荷消失时,必然有等量异种电荷消失解析:电荷只能在物体间转移,不能消失.答案:C2.关于元电荷的理解,下列说法正确的是( )A.元电荷就是电子B.元电荷是表示跟电子所带电量相等的电量C.元电荷就是质子D.物体所带的电量只能是元电荷的整数倍解析:元电荷是一个电量,e=1.6×10-19C,所有带电体的带电量是这个数的整数倍.图33.如图3所示,不带电的枕形导体的A、B两端各贴有一对金箔.当枕形导体的A端靠近一带电导体C时( )A.A端金箔张开,B端金箔闭合B.用手触摸枕形导体后,A端金箔仍张开,B端金箔闭合C.用手触摸枕形导体后,将手和C都移走,两对金箔均张开D.两对金箔分别带异种电荷解析:当导体靠近带电导体C时,枕形导体A端感应出负电,B端感应出正电,两侧金箔也相应地带上负、正电,故D项正确;用手触摸枕形导体后,B侧感应出的正电荷被中和,呈电中性,金箔闭合,故B项正确;触摸枕形导体后,C 移走,枕形导体带负电,金箔由于带同种电荷而张开,故C项对.答案:BCD4.对物体带电现象的叙述,正确的是( )A.物体带电一定具有多余的电子B.摩擦起电实质上是电荷从一个物体转移到另一个物体的过程C.物体所带电荷量可能很小,甚至小于eD.电荷中和是等量异种电荷完全相互抵消的现象5.毛皮与橡胶棒摩擦后,毛皮带正电,这是因为( )A.毛皮上的一些电子转移到橡胶棒上B.毛皮上的一些正电荷转移到橡胶棒上C.橡胶棒上的一些电子转移到毛皮上D.橡胶棒上的一些正电荷转移到毛皮上答案:A6.用一绝缘柄将一带正电玻璃棒a接触另一不带电玻璃棒b,使之接触起电.以下说法正确的是( )A.在此接触起电过程中,玻璃棒a上的正电荷向玻璃棒b上转移B.在此接触起电过程中,玻璃棒b上的负电荷向玻璃棒a上转移C.在此接触起电过程中,它们的电荷的代数和不变D.在此接触起电过程中,电荷并不一定遵循电荷守恒定律答案:BC7.一带负电绝缘金属小球被放在潮湿的空气中,经过一段时间后,发现该小球上净电荷几乎不存在.这说明( )A.小球上原有的负电荷逐渐消失了B.在此现象中,电荷不守恒C.小球上负电荷减少的主要原因是潮湿的空气将电子导走了D.该现象是由于电子的转移引起,仍然遵循电荷守恒定律解析:绝缘小球上电荷减少是由于电子通过空气导电转移到外界,只是小球上电荷量减少,但是这些电子并没有消失.就小球和整个外界组成的系统而言,其电荷的总量仍保持不变,遵循电荷守恒定律.答案:CD8.某验电器金属小球和金属箔均不带电,金属箔闭合.现将带负电的硬橡胶棒接近验电器金属小球.则将出现的现象是( )A.金属箔带负电,其两片张开B.金属箔带正电,其两片张开C.金属箔可能带正电,也可能带负电,但两片一定张开D.由于硬橡胶棒并没有接触验电器小球,故金属箔两片因不带电仍闭合答案:A二、非选择题(9、10题各10分,11、12题各20分,共60分)9.半径相同的两个金属小球A、B带有相等的电荷量,相隔一定的距离,今让第三个半径相同的不带电的金属小球先后与A、B接触后移开.①若A、B两球带同种电荷,接触后的电荷量之比为________.②若A、B两球带异种电荷,接触后两球的电荷量之比为______________.答案:①2∶3 ②2∶1图410.如图4,导体AB与地面绝缘,将带正电的物体C靠近AB,用手接触一下B端,放开手再移去C,则此时AB带________电,若用手接触一下A端,放开手再移去C ,则此时AB 带____________电.答案:负 负11.有两个完全相同的绝缘金属球A 、B ,A 球所带电荷量为q ,B 球所带电荷量为-q ,现要使A 、B 所带电荷量都为-q 4,应该怎么办? 答案:先用手接触一下A 球,使A 球所带电传入大地,再将A 、B 接触一下,分开A 、B ,再用手接触一下A 球,再将A 、B 接触一下再分开,这时A 、B 所带电荷量都是-q 4. 12.现有一个带负电的电荷A ,另有一不能拆开的导体B ,而再也找不到其他的导体可供利用.你如何能使导体B 带上正电?答案:因为A 带负电,要使B 带正电,必须用感应起电的方法才可以,因为接触带电只能使B 带负电,根据感应起电的原理可知,要使B 带电还需另外一块导体,但现在这块导体没有.其实人体就是一块很好的导体,只要把A 靠近B ,用手摸一下B ,再拿开手,通过静电感应,B 就带上了正电荷.。
第3节欧姆定律1.电阻反映了导体对电流阻碍作用的大小,其定义式为R =U I,电阻的大小取决于导体本身,与U 和I 无关。
2.欧姆定律的表达式为I =U R,此式仅适用于纯电阻电路。
3.在温度不变时,线性元件的伏安特性曲线是一条过原点的倾斜直线。
4.所有金属的电阻率均随温度的升高而变大。
一、欧姆定律 1.电阻(1)定义:导体两端的电压与通过导体的电流大小之比,用R 表示。
(2)定义式:R =U I。
(3)单位:欧姆(Ω),常用的单位还有k Ω、M Ω,且1 Ω=10-3k Ω=10-6M Ω。
(4)物理意义:反映导体对电流阻碍作用的大小。
2.欧姆定律(1)内容:导体中的电流跟导体两端的电压U 成正比,跟导体的电阻R 成反比。
(2)表达式:I =U R。
(3)适用范围:适用于金属导电、电解液导电的纯电阻电路(不含电动机、电解槽等的电路),而对气体导电、半导体导电不适用。
二、导体的伏安特性曲线 1.定义建立平面直角坐标系,用纵轴表示电流I ,用横轴表示电压U ,画出导体的I -U 图线。
2.线性元件导体的伏安特性曲线为过原点的直线,即电流与电压成正比的线性关系的元件,如金属导体、电解液等。
3.非线性元件伏安特性曲线不是直线的,即电流与电压不成正比的电学元件,如气态导体、半导体等。
1.自主思考——判一判(1)定值电阻满足R =U I,U 和I 变化时,二者变化的倍数相同。
(√) (2)电阻越大,表示导体对电流的阻碍作用越大,导体的导电能力越强。
(×) (3)对于金属导体,电压变化时,可能导致电阻发生变化。
(√) (4)无论是线性元件还是非线性元件,其伏安特性曲线均过原点。
(√) (5)U -I 图线和I -U 图线中,图线上的点与原点连线的斜率的含义不同。
(√) 2.合作探究——议一议(1)一台电动机接入电路中,正常工作时能用欧姆定律求电流吗? 提示:不能。
(2)某同学用正确的方法描绘出了某种半导体元件的伏安特性曲线如图所示,这种元件是线性元件吗?该元件的电阻随U 的增大是如何变化的?提示:该元件是非线性元件,该元件的电阻随U 的增大而减小。
人教 高中物理选修3-1:计算题(附答案)1 / 11选修3-1计算题一、计算题1. 如图所示,BC 是半径为R 的圆弧形的光滑且绝缘的轨道,位于竖直平面内,其下端与水平绝缘轨道平滑连接,整个轨道处在水平向左的匀强电场中,电场强度为 , 为一质量为m ,带正电q 的小滑块 体积很小可视为质点 ,重力加速度为g .若小滑块P 能在圆弧轨道上某处静止,求其静止时所受轨道的支持力的大小.若将小滑块P 从C 点由静止释放,滑到水平轨道上的A 点时速度减为零,已知滑块与水平轨道间的动摩擦因数为 求:滑块通过圆弧轨道末端B 点时的速度大小以及所受轨道的支持力大小 水平轨道上A 、B 两点之间的距离.2. 在电场强度为 ,方向水平向右的匀强电场中,用一根长 的绝缘轻细杆,固定一个带正电的小球,细杆可绕轴O 在竖直平面内自由转动 如图所示,现将杆从水平位置A 轻轻释放,在小球运动到最低点B 的过程中, 取 求: 、B 两位置的电势差多少? 电场力对小球做功多少? 小球的电势能变化了多少? 3. 4.5.如图所示为一真空示波管的示意图,电子从灯丝K发出初速度可忽略不计,经灯丝与A板间的电压加速,从A板中心孔沿中心线KO射出,然后进入两块平行金属板M、N形成的偏转电场中偏转电场可视为匀强电场,电子进入M、N间电场时的速度与电场方向垂直,电子经过偏转电场后打在荧光屏上的P点已知M、N两板间的电压为,两板间的距离为d,板长为L,电子的质量为m,电荷量为e,不计电子受到的重力及它们之间的相互作用力.求电子穿过A板时速度的大小;求电子从偏转电场射出时的侧移量y;若要使电子打在荧光屏上P点的上方,应使M、N两板间的电压增大还是减小?6.回旋加速器是用来加速带电粒子的装置,如图所示它的核心部分是两个D形金属盒,两盒相距很近缝隙的宽度远小于盒半径,分别和高频交流电源相连接,使带电粒子每通过缝隙时恰好在最大电压下被加速两盒放在匀强磁场中,磁场方向垂直于盒面,带电粒子在磁场中做圆周运动,粒子通过两盒的缝隙时反复被加速,直到最大圆周半径时通过特殊装置被引出若D形盒半径为R,所加磁场的磁感应强度为设两D形盒之间所加的交流电压的最大值为U,被加速的粒子为粒子,其质量为m、电量为粒子从D形盒中央开始被加速初动能可以忽略,经若干次加速后,粒子从D形盒边缘被引出求:粒子被加速后获得的最大动能;粒子在第n次加速后进入一个D形盒中的回旋半径与紧接着第次加速后进入另一个D形盒后的回旋半径之比;粒子在回旋加速器中运动的时间;若使用此回旋加速器加速氘核,要想使氘核获得与粒子相同的动能,请你通过分析,提出一个简单可行的办法.人教 高中物理选修3-1:计算题(附答案)3 / 117. 有一种“双聚焦分析器”质谱仪,工作原理如图所示 其中加速电场的电压为U ,静电分析器中有会聚电场,即与圆心 等距的各点电场强度大小相同,方向沿径向指向圆心 磁分析器中以 为圆心、圆心角为 的扇形区域内,分布着方向垂直于纸面的匀强磁场,其左边界与静电分析器的右边界平行 由离子源发出一个质量为m 、电荷量为q 的正离子 初速度为零,重力不计 ,经加速电场加速后,从M 点沿垂直于该点的场强方向进入静电分析器,在静电分析器中,离子沿半径为R 的四分之一圆弧轨道做匀速圆周运动,并从N 点射出静电分析器 而后离子由P 点垂直于磁分析器的左边界且垂直于磁场方向射入磁分析器中,最后离子垂直于磁分析器下边界从Q 点射出,并进入收集器 测量出Q 点与圆心 的距离为 位于Q 点正下方的收集器入口离Q 点的距离为 题中的U 、m 、q 、R 、d 都为已知量求静电分析器中离子运动轨迹处电场强度E 的大小; 求磁分析器中磁场的磁感应强度B 的大小和方向;现将离子换成质量为4m ,电荷量仍为q 的另一种正离子,其它条件不变 磁分析器空间足够大,离子不会从圆弧边界射出,收集器的位置可以沿水平方向左右移动,要使此时射出磁分析器的离子仍能进入收集器,求收集器水平移动的距离.8. 质谱仪是测量带电粒子的质量和分析同位素的重要工具 如图所示为质谱仪的原理示意图 现利用这种质谱议对某电荷进行测量 电荷的带电量为q ,质量为m ,电荷从容器A 下方的小孔S ,无初速度飘入电势差为U 的加速电场 加速后垂直进入磁感强度为B 的匀强磁场中,然后从D 点穿出,从而被接收器接受 问: 电荷的电性;的水平距离为多少.9.质谱仪是一种精密仪器,是测量带电粒子的质量和分析同位素的重要工具图中所示的质谱仪是由加速电场和偏转磁场组成带电粒子从容器A下方的小孔飘入电势差为U的加速电场,其初速度几乎为0,然后经过沿着与磁场垂直的方向进入磁感应强度为B的匀强磁场中,最后打到照相底片D上不计粒子重力.若由容器A进入电场的是质量为m、电荷量为q的粒子,求:粒子进入磁场时的速度大小v;粒子在磁场中运动的轨道半径若由容器A进入电场的是互为同位素的两种原子核、,由底片上获知、在磁场中运动轨迹的直径之比是:求、的质量之比:.10.质谱仪是一种测定带电粒子质量和分析同位素的重要工具,它的构造原理如图所示离子源S产生的各种不同正离子束速度可看作为零,经加速电场加速电场极板间的距离为d、电势差为加速,然后垂直进入磁感应强度为B的有界匀强磁场中做匀速圆周运动,最后到达记录它的照相底片P上设离子在P上的位置与入口处之间的距离为x.求该离子的荷质比;若离子源产生的是带电量为q、质量为和的同位素离子,它们分别到达照相底片上的、位置图中末画出,求、间的距离.人教 高中物理选修3-1:计算题(附答案)5 / 1111. 如图所示,两平行金属导轨所在的平面与水平面夹角 ,导轨的一端接有电动势 、内阻 的直流电源,导轨间的距离 在导轨所在空间内分布着磁感应强度 、方向垂直于导轨所在平面向上的匀强磁场 现把一个质量 的导体棒ab 放在金属导轨上,导体棒与金属导轨垂直、且接触良好,导体棒的电阻 ,导体棒恰好能静止 金属导轨电阻不计 取 , , 求:受到的安培力大小; 受到的摩擦力大小.12. 如图所示,PQ 和MN 为水平平行放置的金属导轨,相距1m ,导体棒ab 跨放在导轨上,棒的质量为 ,棒的中点用细绳经滑轮与物体相连,物体的质量 ,棒与导轨的动摩擦因数为 ,匀强磁场的磁感应强度 ,方向竖直向下,为了使物体以加速度 加速上升,应在棒中通入多大的电流?方向如何?13. 如图回旋加速器D 形盒的半径为r ,匀强磁场的磁感应强度为 一个质量了m 、电荷量为q 的粒子在加速器的中央从速度为零开始加速.求该回旋加速器所加交变电场的频率; 求粒子离开回旋加速器时获得的动能;设两D 形盒间的加速电压为U ,质子每次经电场加速后能量增加,加速到上述能量所需时间 不计在电场中的加速时间 .答案和解析【答案】1. 解:受力如图,滑块在某点受重力、支持力、电场力平衡,有:,由牛顿第三定律得:小滑块从C到B的过程中,设滑块通过B点时的速度为,由动能定理得:代入数据解得:,通过B前,滑块还是做圆周运动,由牛顿第二定律得:支由牛顿第三定律得:压支代入数据解得:压令A、B之间的距离为,小滑块从C经B到A的过程中,由动能定理得:解得:答:滑块通过B点时的速度大小为;滑块通过B点前瞬间对轨道的压力;水平轨道上A、B两点之间的距离.2. 解:之间沿电场方向的距离为L,则两点之间的电势差:电场力做功:电场力做正功,小球的电势能减小,减小为答:、B两位置的电势差是10000 v电场力对小球做功;小球的电势能减小.3. 设电子经电压加速后的速度为,由动能定理有:解得:.电子以速度进入偏转电场后,垂直于电场方向做匀速直线运动,沿电场方向做初速度为零的匀加速直线运动设偏转电场的电场强度为E,电子在偏转电场中运动的时间为t,加速度为a,电子离开偏转电场时的侧移量为由牛顿第二定律和运动学公式有:,,人教 高中物理选修3-1:计算题(附答案)7 / 11解得:.由知,增大偏转电压 可增大y 值,从而使电子打到屏上的位置在P 点上方.答: 电子穿过A 板时速度的大小为.电子从偏转电场射出时的侧移量为.要使电子打在荧光屏上P 点的上方,应使M 、N 两板间的电压 增大.4. 解: 粒子在D 形盒内做圆周运动,轨道半径达到最大时被引出,具有最大动能 设此时的速度为v ,有可得粒子的最大动能粒子被加速一次所获得的能量为 , 粒子被第n 次和 次加速后的动能分别为可得设 粒子被电场加速的总次数为a ,则可得粒子在加速器中运动的时间是 粒子在D 形盒中旋转a 个半圆周的总时间t .解得加速器加速带电粒子的能量为,由 粒子换成氘核,有,则 ,即磁感应强度需增大为原来的 倍;高频交流电源的周期,由 粒子换为氘核时,交流电源的周期应为原来的倍5. 解: 设离子进入静电分析器时的速度为v ,离子在加速电场中加速的过程中,由动能定理得:离子在静电分析器中做匀速圆周运动,由静电力提供向心力,根据牛顿第二定律有:联立两式,解得:离子在磁分析器中做匀速圆周运动,由牛顿第二定律有:由题意可知,圆周运动的轨道半径为:故解得:,由左手定则判断得知磁场方向垂直纸面向外.设质量为4m的正离子经电场加速后的速度为.由动能定理有,离子在静电分析器中做匀速圆周运动,由静电力提供向心力,根据牛顿第二定律有:得:质量为4m的正离子在磁分析器中做匀速圆周运动,由牛顿第二定律有:可得磁场中运动的半径:由几何关系可知,收集器水平向右移动的距离为:答:静电分析器中离子运动轨迹处电场强度E的大小为;磁分析器中磁感应强度B的大小为;收集器水平移动的距离为.6. 解:由题意知,粒子进入磁场时洛伦兹力方向水平向左,根据左手定则知,电荷带正电.根据动能定理得,解得粒子进入磁场的速度.根据得,.则SD的水平距离.答:粒子带正电.的水平距离为.7. 解:、在加速电场中,由动能定理得:,解得:;b、碘粒子在磁场中做匀速圆运动,洛伦兹力提供向心力,由牛顿第二定律得:,解得:;人教 高中物理选修3-1:计算题(附答案)9 / 11两种原子核 、 互为同位素,所以电荷量相等,由b 的结论可知:、 在磁场中运动轨迹的直径之比是 :1所以有:答: 粒子进入磁场时的速度大小是; 粒子在磁场中运动的轨道半径R 是;若由容器A 进入电场的是互为同位素的两种原子核 、 ,由底片上获知 、 在磁场中运动轨迹的直径之比是 : 、 的质量之比是2:1.8. 解: 离子在电场中加速,由动能定理得:;离子在磁场中做匀速圆周运动,由牛顿第二定律得:由 式可得:由 式可得粒子 在磁场中的运动半径是 ,则:对离子 ,同理得:照相底片上 、 间的距离:;答: 求该离子的荷质比; 、 间的距离.9. 解: 导体棒、金属导轨和直流电源构成闭合电路,根据闭合电路欧姆定律有:导体棒受到的安培力:安导体棒所受重力沿斜面向下的分力:由于 小于安培力,故导体棒沿斜面向下的摩擦力f ,根据共点力平衡条件得: 安 解得:安答: 导体棒受到的安培力大小是 ; 导体棒受到的摩擦力大小是 .10. 解:导体棒的最大静摩擦力大小为 , 的重力为 ,则 ,要保持导体棒匀速上升,则安培力方向必须水平向左,则根据左手定则判断得知棒中电流的方向为由a 到b . 根据受力分析,由牛顿第二定律,则有 安 安 ,联立得:答:应在棒中通入的电流,方向.11. 解:由回旋加速器的工作原理知,交变电场的频率与粒子在磁场运动的频率相等,由粒子得:;电粒子由洛伦兹力提供向心力得:所以:联立解得:加速次数:粒子每转动一圈加速两次,故转动的圈数为:粒子运动的时间为:联立解得:答:该回旋加速器所加交变电场的频率为;粒子离开回旋加速器时获得的动能为;设两D形盒间的加速电压为U,质子每次经电场加速后能量增加,加速到上述能量所需时间为.【解析】1. 滑块在某点受重力、支持力、电场力三个力处于平衡,根据共点力平衡求出支持力的大小小滑块从C到B的过程中,只有重力和电场力对它做功,根据动能定理求解.根据圆周运动向心力公式即可求解,由动能定理即可求出AB的长.本题考查分析和处理物体在复合场运动的能力对于电场力做功,为两点沿电场线方向的距离.2. 根据:即可计算出电势差;根据恒力做功的公式求电场力做的功;根据电场力做功情况判断电势能如何变化;电场力做正功,小球的电势能减小与之相等.解决本题的关键知道电场力做功与电势能的关系,知道电场力做正功,电势能减小,电场力做负功,电势能增加.3. 根据动能定理求出电子穿过A板时的速度大小电子在偏转电场中,在垂直电场方向上做匀速直线运动,在沿电场方向上做匀加速直线运动,根据牛顿第二定律,结合运动学公式求出电子从偏转电场射出时的侧移量解决本题的关键掌握处理类平抛运动的方法,结合牛顿第二定律和运动学公式综合求解,难度中等.4. 根据知,当R最大时,速度最大,求出最大速度,根据求出粒子的最大动能.粒子被加速一次所获得的能量为qU,求出第n次和次加速后的动能,,从而求出回旋半径之比.求出粒子被加速的次数,在一个周期内加速两次,求出周期,从而求出粒子在回旋加速器中运动的时间.回旋加速器加速粒子时,粒子在磁场中运动的周期和交流电变化的周期相同已知氘核与粒子的质量比和电荷比,人教高中物理选修3-1:计算题(附答案)根据最大动能相等,得出磁感应强度的关系,以及根据周期公式,得出交流电的周期变化.解决本题的关键知道回旋加速器利用磁场偏转和电场加速实现加速粒子,粒子在磁场中运动的周期和交流电的周期相等.5. 运用动能定理研究加速电场,求出进入静电分析器的速度为v,离子在电场力作用下做匀速圆周运动,由牛顿第二定律列出等式求解电场强度E的大小.离子在洛伦兹力作用下做匀速圆周运动,由牛顿第二定律列出等式再结合几何关系求出已知长度与半径的关系,从而算出磁感应强度大小并确定方向.根据动能定理可知,当粒子电量不变,质量变为4m时的速度,从而求个粒子磁场中运动的半径,故可求得收集器水平移动的距离.明确研究对象的运动过程是解决问题的前提,根据题目已知条件和求解的物理量选择物理规律解决问题对于圆周运动,关键找出圆周运动所需的向心力,列出等式解决问题.6. 根据左手定则,结合洛伦兹力的方向判断出电荷的电性;根据洛伦兹力提供向心力得出粒子的偏转半径,从而得出SD的水平距离.解决本题的关键掌握洛伦兹力判断磁场方向、粒子运动方向、洛伦兹力方向的关系,以及掌握粒子在磁场中运动的半径公式,并能灵活运用.7. 带电粒子在电场中被加速,应用动能定理可以求出粒子的速度粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律可以求出粒子的轨道半径.、互为同位素,所以电荷量相等,由b的结论得出半径与质量之间的关系,然后由题目的条件即可求出.本题考查了粒子在电场与磁场中的运动,分析清楚粒子运动过程是正确解题的关键,应用动能定理与牛顿第二定律可以解题.8. 根据粒子在磁场中的运动半径,通过半径公式求出粒子的速度,再根据动能定理得出粒子的比荷.根据动能定理、半径公式求出粒子打到照相机底片上位置与入口处的距离,从而求出、间的距离.本题考查了带电粒子在电场中的加速和在磁场中的偏转,结合牛顿第二定律和运动学公式综合求解.9. 先根据闭合电路欧姆定律求出电路中的电流由公式安求解安培力大小;导体棒处于静止状态,合力为零,根据平衡条件列式求解摩擦力的大小.本题是通电导体在磁场中平衡问题,关键是安培力的分析和计算,运用平衡条件研究.10. 若要保持物体匀速上升,受力必须平衡由于M所受的最大静摩擦力为,而M的重力为,要保持导体以加速度加速上升,则安培力方向必须水平向左,则根据左手定则判断电流的方向根据牛顿第二定律和安培力公式求出导体棒中电流的大小.此题是通电导体在磁场中加速问题,要抓住静摩擦力会外力的变化而变化,根据牛顿第二定律进行求解.11. 回旋加速器运用电场加速磁场偏转来加速粒子,根据洛伦兹力提供向心力可以求出粒子的最大速度,从而求出最大动能在加速粒子的过程中,电场的变化周期与粒子在磁场中运动的周期相等,故频率也相等;考虑在磁场中运动的时间即可.解决本题的关键知道回旋加速器电场和磁场的作用,知道最大动能与什么因素有关,以及知道粒子在磁场中运动的周期与电场的变化的周期相等,会求解加速时间.11 / 11。
第2节电_动_势1.电动势与电压的单位都是伏特,但二者意义不同,电动势是表征电源把其他形式的能转化为电能的本领大小的物理量,电动势的大小仅取决于电源本身。
2.电动势的定义式为E=Wq,电动势和内阻是电源的两个重要参数。
3.干电池的电动势一般为1.5 V,不同型号的干电池内阻不同,容量也不同。
一、电源在电路中的作用1.非静电力(1)定义:非静电力是指电源把正电荷(负电荷)从负极(正极)搬运到正极(负极)的过程中做功的力,这种非静电力做的功,使电荷的电势能增加。
(2)在电池中,非静电力是化学作用,它使化学能转化为电势能;在发电机中,非静电力是电磁作用,它使机械能转化为电势能。
2.电源(1)定义:通过非静电力做功把其他形式的能转化为电势能的装置。
(2)不同的电源,非静电力做功的本领不同,这是由电源本身性质决定的。
二、电源的电动势和内阻1.电动势(1)物理意义:反映电源非静电力做功的本领的大小。
(2)大小:在数值上等于非静电力把1 C的正电荷在电源内部从负极移送到正极所做的功。
即E=W非q。
(3)单位:伏特(V)。
(4)大小的决定因素:由电源中非静电力的特性决定,跟电源的体积无关,跟外电路也无关。
(5)常用电池的电动势2.内阻:电源内部导体的电阻。
3.容量:电池放电时能输出的总电荷量,其单位是:A·h或mA·h。
1.自主思考——判一判(1)在电源内部,电荷移动过程中,电场力做负功,电荷电势能增加。
(√)(2)在电源内部,电荷移动过程中,非静电力做正功,电荷电势能减少。
(×)(3)所有的电源,均是将化学能转化为电能的装置。
(×)(4)电动势在数值上等于一秒内非静电力所做的功。
(×)(5)电动势相同的电池,内阻也一定相同。
(×)(6)容量越大的电池,储存的化学能越多。
(×)2.合作探究——议一议(1)电源中,非静电力的作用是什么?提示:在电源中,非静电力做功,把一定数量的正电荷在电源内部从负极搬运到正极,使电荷的电势能增加,从而把其他形式的能转化为电势能。
高中物理学习材料金戈铁骑整理制作第一章 第八节电容器的电容 同步习题 (附详解答案)1.一个平行板电容器,它的电容 ( )A .跟正对面积成正比,跟两板间的距离成正比B .跟正对面积成正比,跟两板间的距离成反比C .跟正对面积成反比,跟两板间的距离成正比D .跟正对面积成反比,跟两板间的距离成反比答案:B2.(2009·河南宝丰一中高二检测)以下说法正确的是 ( )A .由E =F q可知电场中某点的电场强度E 与F 成正比 B .由公式φ=E p q可知电场中某点的电势φ与q 成反比 C .由U ab =Ed 可知,匀强电场中的任意两点a 、b 间的距离越大,则两点间的电势差也越大D .公式C =Q /U ,电容器的电容大小C 与电容器两极板间电势差U 无关 答案:D3.如图所示,当被测物体在左右方向发生位移时,电介质板随之在电容器两极板之间移动.如果测出了电容的变化,就能知道物体位移的变化.若电容器的电容变大,则物体的位移可能的变化是 ( )A .加速向右移动B .加速向左移动C .减速向右移动D .减速向左移动 答案:BD 解析:本题由于相对介电常数ε发生变化而引起电容器的电容C 的变化,根据C =εS 4πkd可知:当电容C 变大时,ε应该增大,电介质板应向左移动,所以答案B 与D 正确. 点评:本题考查相对介电常数ε对平行板电容器电容的影响.电介质板插入电容器板间的部分越多,相对介电常数ε越大,电容C 越大,故只有电介质板移动的方向会影响ε的大小,而与加速、减速无关.4.如图所示,平行板电容器C 和电阻组成电路,当增大电容器极板间的距离时,则( )A .在回路中有从a 经R 流向b 的电流B .在回路中有从b 经R 流向a 的电流C .回路中无电流D .回路中的电流方向无法确定答案:A解析:依图知电容器a 板带正电,b 板带负电.当d 增大时,由公式C =εS /4πkd 知,电容C 减小.由于电容器一直接在电源上,故电容器两极板间的电压U 不变,所以由公式:C =Q /U ,得Q =UC ,电容器所带电量应减小,即将d 增大时,电容器应放电.电容器放电时,其电流由正极板流向负极板,即从a 板流出经R 流向b 板,所以选项A 正确.5.(2009·苍山高二检测)如图所示,用静电计可以测量已充电的平行板电容器两极板之间的电势差U ,现使B 板带电,则下列判断正确的是 ( )A .增大两极之间的距离,指针张角变大B .将A 板稍微上移,静电计指针张角将变大C .若将玻璃板插入两板之间,则静电计指针张角变大D .若将A 板拿走,则静电计指针张角变为零答案:AB解析:电容器上所带电量一定,由公式C =εr S 4πkd ,当d 变大时,C 变小.再由C =Q U得U 变大.当A 板上移时,正对面积S 变小,C 也变小,U 变大,当插入玻璃板时,C 变大,U 变小,当将A 板拿走时,相当于使d 变得更大,C 更小,故U 应更大,故选A 、B.6.(2009·河南宝丰一中高二检测)一平行板电容器电容为C ,两极板水平放置,两极板间距为d ,接到电压为U 的电源上,两极板间一个质量为m 的带电液滴处于静止,此液滴的电量q =________,若将两个极板之间的距离变为d /2,带电液滴将向________运动,(填“上、下、左或右”),电容器的电容将________.(填“变大、变小、或不变”)答案:mg d U向上 变大 7.如图所示,平行板电容器的两个极板A 、B 分别接在电压为60V 的恒定电源上,两板间距为3cm ,电容器带电荷量为6×10-8C ,A 极板接地.求:(1)平行板电容器的电容;(2)平行板两板间的电场强度;(3)距B 板2cm 的C 点的电势.答案:(1)1×10-9F (2)2×103V/m (3)-20V解析:(1)C =Q U =6×10-860F =1.0×10-9F (2)E =U d =60V 0.03m=2×103V/m (3)φ=Ed ′=2×103×0.01V =20V1.电容式传感器是用来将各种非电信号转变为电信号的装置.由于电容器的电容C 取决于极板正对面积S 、极板间距离d 以及极板间的电介质这几个因素,当某一物理量发生变化时就能引起上述某个因素的变化,从而又可推出另一个物理量的值,如图是四种电容式传感器的示意图,关于这四种传感器的作用下列说法不正确的是()A.甲图的传感器可以用来测量角度B.乙图的传感器可以用来测量液面的高度C.丙图的传感器可以用来测量压力D.丁图的传感器可以用来测量速度答案:D解析:丁图的传感器是位移传感器.2.如图所示,两块水平放置的平行正对的金属板a、b与电池相连,在距离两板等距的M点有一个带电液滴处于静止状态.若将a板向下平移一小段距离,但仍在M点上方,稳定后,下列说法中正确的是()A.液滴将加速向下运动B.M点电势升高,液滴在M点的电势能将减小C.M点的电场强度变小了D.在a板移动前后两种情况下,若将液滴从a板移到b板,电场力做功相同答案:BD解析:当将a向下平移时,板间场强增大,则液滴所受电场力增大,液滴将向上加速运动,A、C错误.由于b板接地且b与M间距未变,由U=Ed可知M点电势将升高,液滴的电势能将减小,B正确.由于前后两种情况a与b板间电势差不变,所以将液滴从a板移到b板电场力做功相同,D正确.3.如图所示,为一只电容式传感器部分构件的示意图.当动片(实线圈)和定片(虚线圈)之间正对扇形区的圆心角的角度θ发生变化时,电容C便发生变化,于是通过测量电容C的变化情况就可以知道θ的变化情况.那么,在图中,能正确反映C和θ间函数关系的是()答案:D4.如图所示,平行金属板AB间的距离为6cm,电势差是300V.将一块3cm厚的矩形空腔导体放入AB两板之间,它的左侧面P与A板平行,且距A板1cm.C是A、B两板正中央的一点,则C点的电势是________V.答案:200解析:E =U d =300(6-3)×10-2V/m =10000V/m.C 点电势即CB 间电势差,即:U ′=Ed ′=10000×2×10-2V =200V .5.如图所示,水平放置面积相同的两金属板A 、B .A 板挂在天平的一端,B 板用绝缘支架固定,当天平平衡时,两极板间的距离为5mm ,若在两板间加400V 电压后,在天平右端要增加4g 砝码,天平才能恢复平衡,可见金属板A 所带的电荷量为________C.答案:5×10-7 解析:在AB 间加上电压后,A 板受到电场力EQ =U d·Q =Δmg 所以Q =Δmg ·d /U =4×10-3×10×5×10-3/400C =5×10-7C6.如图所示,带负电的小球静止在水平放置的平行板电容器两板间,距下板0.8cm ,两板间的电势差为300V ,如果两板间电势差减小到60V ,则带电小球运动到极板上需多长时间?答案:4.5×10-2s.解析:取带电小球为研究对象,设它带电荷量为q ,则带电小球受重力mg 和电场力qE 的作用.当U 1=300V 时,小球平衡:mg =q U 1d① 当U 2=60V 时,带电小球向下板做匀加速直线运动:mg -q U 2d=ma ② 又h =12at 2③ 由①②③得:t =2U 1h (U 1-U 2)g =2×0.8×10-2×300(300-60)×10s =4.5×10-2s. 7.如图所示,两块水平放置的平行金属板a 、b ,相距为d ,组成一个电容为C 的平行板电容器,a 板接地,a 板的正中央有一小孔B .从B 孔正上方h 处的A 点,一滴一滴地由静止滴下质量为m 、电量为q 的带电油滴,油滴穿过B 孔后落到b 板,把全部电量传给b 板,若不计空气阻力及板外电场.问:(1)第几滴油滴将在a 、b 板间作匀速直线运动?(2)能达到b 板的液滴不会超过多少滴?答案:mgdC q 2+1,mgC (h +d )q 2+1. 解析:理解液滴在板间作匀速运动的条件、到达b 板液滴不会超过多少滴的含义.(1)当液滴在a 、b 间作匀速运动时,Eq =mg .设这时已有n 滴液滴落在b 板,板间场强为E =U d =nq dC ,n =mgdC q 2.作匀速运动的应是第mgdC q 2+1滴; (2)设第N 滴正好到达b 板,则它到达b 板的速度正好为零.此时b 板的带电量Q ′=(N -1)q ,a 、b 间的电压U =(N -1)q C .根据动能定理:mg (h +d )-qU =0,N =mgC (h +d )q 2+1.能够到达b 板的液滴不会超过mgC (h +d )q 2+1滴. a。
第|一章 4根底夯实一、选择题(1~4题为单项选择题,5~7题为多项选择题),在O点的点电荷+Q形成的电场中,试探电荷+q由A点移到B点电场力做功为W1 ,以OA为半径画弧交OB于C ,再把试探电荷由A点移到C点电场力做功为W2 ,由C点移到B点电场力做功为W3 ,那么三者关系为()A.W1=W2=W3<0B.W1>W2=W3>0C.W1=W3>W2=0 D.W3>W1=W2=0答案:C解析:因A、C两点处于同一等势面上,所以W1=W3>W2=0 ,所以C正确.2.(江西师大附中2021~2021学年高二上学期检测)将一带电荷量为-q的试探电荷从无穷远处移到电场中的A点,该过程中电场力做功为W,假设规定无穷远处的电势为零,那么试探电荷在A点的电势能及电场中A点的电势分别为()A.-W ,Wq B.W ,-WqC.W ,Wq D.-W ,-Wq答案:A解析:依题意,电荷量为-q的试探电荷从无穷远处被移到电场中的A点时,电场力做的功为W,那么试探电荷的电势能减少W,无穷远处该试探电荷的电势能为零,那么该试探电荷在A点的电势能为E p=-W ,A点的电势φA=E p-q=-W-q=Wq,应选项A正确.3.如下图,某区域电场线左右对称分布,M、N为对称线上的两点.以下说法正确的选项是()A.M点电势一定低于N点电势B.M点场强一定大于N点场强C.正电荷在M点的电势能大于在N点的电势能D.将电子从M点移动到N点,电场力做正功答案:C解析:从图示电场线的分布示意图可知,MN所在直线的电场线方向由M指向N,那么M点电势一定高于N点电势;由于N点所在处电场线分布密,所以N点场强大于M点场强;正电荷在电势高处电势能大,故在M点电势能大于在N点电势能;电子从M点移动到N点,要克服电场力做功.综上所述,C选项正确.4.(曲阜师大附中2021~2021学年高二上学期检测)如下图为某示波管内的聚焦电场,实线和虚线分别表示电场线和等势线.两电子分别从a、b两点运动到c点,设电场力对两电子做的功分别为W a和W b ,a、b两点的电场强度大小分别为E a和E b ,那么()A.W a=W b ,E a>E b B.W a≠W b ,E a>E bC.W a=W b ,E a<E b D.W a≠W b ,E a<E b答案:A解析:a、b两点在同一等势线上,所以从a运动到c和从b运动到c电场力做的功相等,即W a=W b;由电场线的特点知,a点所处位置的电场线比b点的密,故电场强度大,即E a>E b ,综上所述,选项A正确.A、B两点,以下判断正确的选项是()A.电势φA>φB ,场强E A>E BB.电势φA>φB ,场强E A<E BC.将电荷量为q的正电荷从A点移到B点,电场力做正功,电势能减少D.将电荷量为q的负电荷分别放在A、B两点,电荷具有的电势能E p A>E p B答案:BC解析:顺着电场线电势逐渐降低,即φA>φB ,由电场线疏密可知,E A<E B ,故A错,B对;由电场力做功与电势能变化的关系可知,+q从A移到B ,电场力做正功,电势能减少,C对;负电荷从A移到B ,电场力做负功,电势能增加,E p A<E p B ,故D错..两粒子M、N质量相等,所带电荷的绝|对值也相等.现将M、N从虚线上的O点以相同速率射出,两粒子在电场中运动的轨迹分别如图中两条实线所示.点a、b、c为实线与虚线的交点,O点电势高于c点.假设不计重力,那么()A.M带负电荷,N带正电荷B.N在a点的速度与M在c点的速度大小相等C.N在从O点运动至|a点的过程中克服电场力做功D.M在从O点运动至|b点的过程中,电场力对它做的功等于零答案:BD解析:由O点电势高于c点电势知,场强方向垂直虚线向下,由两粒子运动轨迹的弯曲方向知N粒子所受电场力方向向上,M粒子所受电场力方向向下,故M粒子带正电、N粒子带负电,A错误 .N粒子从O点运动到a点,电场力做正功.M粒子从O点运动到c点电场力也做正功.因为U aO=U Oc ,且M、N粒子质量相等,电荷的绝|对值相等,由动能定理易知B 正确.因O点电势低于a点电势,且N粒子带负电,故N粒子运动中电势能减少,电场力做正功,C错误.O、b两点位于同一等势线上,D正确.7.(吉林一中2021~2021学年高二上学期检测)如下图,某点O处固定点电荷+Q ,另一带电-q的粒子以O为焦点做椭圆轨道运动,运动过程中经过最|近点a和最|远点b,下述说法正确的选项是()A.粒子在a点运动速率大于在b点速率B.粒子在a点运动加速度大于在b点加速度C.粒子在a点的电势能大于在b点的电势能D.+Q所产生的电场中,a点电势高于b点答案:ABD解析:C粒子在从b到a的过程中,电场力做正功,动能增大,电势能减小;粒子在从a 到b的过程中,电场力做负功,动能减小,电势能增大,可知粒子在a点的动能大于在b点的动能,那么粒子在a点运动速率大于在b点速率,粒子在a点电势能小于在b点电势能.故A正确,C错误 .粒子在运动过程中只受到库仑力作用,粒子在a点离Q点近,根据库仑定律分析可知粒子在a点受到的库仑力大,加速度大,故B正确.+Q所产生的电场中, 电场线从Q出发到无穷远终止,a点离Q较近,电势较高.故D正确.二、非选择题,在场强E =104N/C 的水平匀强电场中 ,有一根长l =15cm 的细线 ,一端固定在O 点 ,另一端系一个质量m =3g 、电荷量q =2×10-6C 的带正电小球 ,当细线处于水平位置时 ,小球从静止开始释放 ,g 取10m/s 2 .求:(1)小球到达最|低点B 的过程中重力势能、电势能分别变化了多少 ?(2)假设取A 点电势为零 ,小球在B 点的电势能、电势分别为多大 ?(3)小球到B 点时速度为多大 ?绳子张力为多大 ?答案:(1)×10-3J 电势能增加3×10-3J (2)3×10-3J ×103V (3)1m/s 5×10-2N 解析:(1)从A →B 重力做正功 ,重力势能减少ΔE =W G =mgL ×10-3J从A →B 电场力做负功 ,电势能增加ΔE p =W E =EqL =3×10-3J(2)假设取φA =0 ,那么E pB =3×10-3JφB =E pB q ×103V (3)从A →B 由动能定理知mgL -EqL =12m v 2B代入数据 得v B =1m/s在B 点由牛顿第二定律知F -mg =m v 2B l代入数据 得F =5×10-2N能力提升一、选择题(1~4题为单项选择题 ,5~6题为多项选择题)1.(安徽黄山市2021~2021学年高二上学期期末)一带电粒子从某点电荷电场中的A 点运动到B 点 ,径迹如图中虚线所示 ,不计粒子所受重力 ,那么以下说法正确的选项是( )A .该电场是某正点电荷电场B .粒子的速度逐渐增大C .粒子的加速度逐渐增大D .粒子的电势能逐渐增大答案:D解析:只知道电场的分布,没法判断是正电荷产生的电场,故A错误;由于带电粒子是从A到B ,带电粒子受电场力的方向大致斜向左方,故电场力做负功,带电粒子的速度减少,故B错误;A点电场线密集,故电场强度大,故粒子在A点受到的电场力大于B点,由牛顿第二定律可得在A点的加速度大于B点,故C错误;由于带电粒子是从A到B ,带电粒子受电场力的方向大致斜向左方,故电场力做负功,带电粒子的电势能增大,故D正确.2.(河北冀州中学2021~2021学年高二上学期期中)位于A、B处的两个带有不等量负电的点电荷在平面内电势分布如下图,图中实线表示等势线,那么()A.a点和b点的电场强度相同B.正电荷从c点移到d点,电场力做正功C.负电荷从a点移到c点,电场力做正功D.正电荷从e点沿图中虚线移到f点电势能不变答案:C解析:同一检验电荷在a、b两点受力方向不同,所以A错误;因为A、B两处有负电荷,所以,等势线由外向内表示的电势越来越低.将正电荷从c点移到d点,正电荷的电势能增加,静电力做负功,B错误;负电荷从a点移到c点,电势能减少,静电力做正功,C正确;正电荷沿虚线从e点移到f点的过程中,电势先降低再升高,电势能先减小后增大,D错误.3.(合肥一中2021~2021学年高二上学期期中)在竖直向上的匀强电场中,一根不可伸长的绝|缘细绳的一端系着一个带电小球,另一端固定于O点,小球在竖直平面内做匀速圆周运动,最|高点为a,最|低点为b,不计空气阻力,那么()A.小球带负电B.电场力跟重力平衡C.小球在从a点运动到b点的过程中,电势能减小D.小球在运动过程中机械能守恒答案:B解析:因为小球在竖直平面内做匀速圆周运动,受到重力、电场力和细绳的拉力,电场力与重力平衡,那么知小球带正电,故A错误,B正确;小球在从a点运动到b点的过程中,电场力做负功,小球的电势能增大,故C错误;由于电场力做功,所以小球在运动过程中机械能不守恒,故D错误.应选B .4.(沈阳市2021~2021学年高二上学期期末)真空中相距为3a的两个点电荷M、N分别固定于x轴上x1=0和x2=3a的两点上,在它们连线上各点场强随x变化关系如下图,以下判断中正确的选项是()A.x=a点的电势高于x=2a点的电势B.点电荷M、N所带电荷量的绝|对值之比为4∶1C.点电荷M、N一定为异种电荷D.x=2a处的电势一定为零答案:B解析:由于不知道M、N的所带电荷的性质,故需要讨论,假设都带正电荷,那么0~2a 场强的方向向右,而沿电场线方向电势降低,故x=a点的电势高于x=2a点的电势;假设都带负电荷,那么0~2a场强的方向向左,故x=a点的电势低于x=2a点的电势,故A错误.M在2a处产生的场强E1=kQ M(2a)2,而N在2a处产生的场强E2=KQ Na2,由于2a处场强为0 ,故E1=E2 ,所以Q M=4Q N ,故B正确.由于M、N之间的场强的方向相反,故点电荷M、N一定为同种电荷,故C错误.由于电势是一个相对性的概念,即零电势的选择是任意的,人为的,故x=2a处的电势可以为零,也可以不为零,故D错误.5.如下图,Q1、Q2为两个固定点电荷,其中Q1带正电,它们连线的延长线上有a、b 两点.一正试探电荷以一定的初速度沿直线从b点开始经a点向远处运动,其速度图象如下图,那么()A.Q2带正电B.Q2带负电C.试探电荷从b到a的过程中电势能增大D.试探电荷从b到a的过程中电势能减小答案:BC解析:逐项分析如下:选项诊断结论A 由v -t 图 ,v ↓ ,故试探电荷受向左的库仑力 ,因此Q 2带负电 × B同上 √ C由于静电力(库仑力)做负功 ,故其电势能增大 √ D 同选项C ×6.(沈阳市东北育才学校2021~2021学年高二检测)如下图 ,真空中有一个固定的点电荷 ,电荷量为+Q .图中的虚线表示该点电荷形成的电场中的四个等势面 .有两个一价离子M 、N (不计重力 ,也不计它们之间的电场力)先后从a 点以相同的速率v 0射入该电场 ,运动轨迹分别为曲线apb 和aqc ,其中p 、q 分别是它们离固定点电荷最|近的位置 .以上说法中正确的选项是( )A .M 一定是正离子 ,N 一定是负离子B .M 在p 点的速率一定大于N 在q 点的速率C .M 在b 点的速率一定大于N 在c 点的速率D .M 从p →b 过程电势能的增量一定小于N 从a →q 电势能的增量答案:BD解析:根据轨迹向合外力的方向弯曲可知 ,M 一定是负离子 ,N 一定是正离子 ,A 错误;M 离子从a 到p 静电力做正功 ,动能增加 ,N 离子从a 到q 静电力做负功 ,动能减少 ,而初速度相等 ,故M 在p 点的速率一定大于N 在q 点的速率 ,B 正确;abc 在同一等势面上 ,离子由a 到b 和由a 到c 电场力都不做功 ,故M 在b 点的速率等于N 在c 点的速率 ,C 错误;由等势面可知φq >φp ,所以M 从p →b 过程电势能的增量小于N 从a →q 电势能的增量 ,故D 正确 .二、非选择题7.(吉林市第|一中学2021~2021学年高二上学期检测)如下图 ,倾角为θ的斜面处于竖直向下的匀强电场中 ,在斜面上某点以初速度v 0水平抛出一个质量为m 的带正电小球 ,小球受到的电场力与重力相等 ,地球外表重力加速度为g ,设斜面足够长 ,求:(1)小球经多长时间落到斜面上;(2)从水平抛出至|落到斜面的过程中 ,小球的电势能减少了多少 ?答案:(1)v 0tan θg(2)电势能减小了m v 20tan 2θ 解析:(1)小球在运动过程中Eq +mg =maEq =mg ,得a =2gy =12at 2 x =v 0t又y x=tan θ 得t =v 0tan θg(2)y =12at 2=12×2g ×(v 0tan θg )2=v 20tan 2θg电场力做正功 ,电势能减小 ,那么有:ΔE =-W 电=-Eqy =-mgy =-m v 20tan 2θ。