电力系统继电保护课程设计
- 格式:doc
- 大小:471.50 KB
- 文档页数:36
电力系统继电保护原理课程设计作者姓名学号指导教师所在院系专业班级目录第一章绪论 (2)第1.1节电力系统继电保护概论 (2)第1.2节继电保护的构成与分类 (3)第二章数据分析 (3)第2.1节数据的分析和整理 (3)第2.2节继电保护的作用 (4)第2.3节计算系统中个原元件主要参数 (4)第2.4节节元件参数一览表 (5)第2.5节输电线路PT和CT的选择 (10)第三章短路电流计算 (11)第3.1节短路计算的目的规定和步骤 (11)第3.2节运行方式的确定 (11)第3.3节短路电流周期计算 (12)第四章电力网电流保护整定和灵敏度检验 (23)第4.1节对继电保护装置的基本要求 (23)第4.2节电流保护整定计算 (24)第五章电力网相间距离保护整定计算与灵敏度检验 (29)第5.1节继电保护的基本要求 (29)第5.2节距离保护整定计算 (30)第六章电力网零序继电保护整定计算 (35)第6.1节概述 (35)第6.2节零序电流保护整定计算 (36)第6.3节零序接地距离保护 (38)第七章高频保护的整定 (40)第八章自动重合闸装置的配置 (43)第7.1节自动重合闸的作用和要求 (43)第7.2节自动重合闸的配置 (43)附录 (44)参考文献 (48)第一章绪论第1.1节电力系统继电保护概论从科学技术的角度,电力系统继电保护隶属于电力系统及其自动化专业领域;从工业生产的角度,电力系统继电保护是电力工业的一个必不可少的组成部分,担负着保障电力系统安全运行的重要职责。
继电保护包括继电保护技术和继电保护装置。
继电保护技术是一个完整的电力技术理论体系。
它主要由电力系统故障分析、继电保护原理及实现、继电保护配置设计与继电保护运行及维护等技术构成。
1.1.1 继电保护的基本概念电力是当今世界使用最为广泛、地位最为重要的能源,电力系统的安全稳定运行对国民经济、人民生活乃至社会稳定都有着极为重大的影响。
电力系统继电保护是电力系统中的重要组成部分,它起着保护电力设备、保障电力系统安全运行的作用。
通过对电力系统继电保护原理的研究和设计,可以更好地理解电力系统的工作原理,提高继电保护的可靠性和灵活性。
本文将对《电力系统继电保护原理》课程设计进行全面的介绍,包括课程设计的目的、内容、方法和实施步骤。
一、课程设计的目的电力系统继电保护原理课程设计的目的是帮助学生全面了解电力系统继电保护的基本原理,掌握继电保护的设计方法和实施步骤,培养学生的综合应用能力和解决问题的能力。
通过课程设计,学生将深入了解电力系统继电保护的重要性和必要性,培养对电力系统安全稳定运行的责任感和使命感。
二、课程设计的内容1. 电力系统继电保护概念和原理电力系统继电保护的概念、分类和基本原理,包括过流保护、欠频保护、过电压保护等。
2. 继电保护设备的选用和配置继电保护设备的功能和性能要求,如何选择合适的继电保护设备,以及如何配置继电保护设备。
3. 继电保护系统的设计方法继电保护系统的设计步骤和方法,包括对电力系统的分析、保护方案的选择和参数设置等。
4. 继电保护系统的实施与维护继电保护系统的实施步骤、调试方法和维护要点,以及继电保护系统的故障排除和改进方法。
三、课程设计的方法1. 理论学习通过课堂讲授、教科书学习和参考文献阅读等方式,让学生掌握电力系统继电保护的基本原理和方法。
2. 实践操作组织学生参与继电保护设备的调试和实验操作,加强学生对继电保护设备的理解和掌握。
3. 课程论文要求学生根据所学知识,进行课程设计论文的撰写,包括电力系统的继电保护方案设计、继电保护设备的参数设置和继电保护系统的实施方案等。
四、课程设计的实施步骤1. 教师讲解教师首先对电力系统继电保护的基本原理和方法进行讲解,向学生介绍继电保护的重要性和必要性。
2. 学生学习学生通过课堂学习和自主学习,掌握电力系统继电保护的相关知识,理解继电保护设备的选用和配置原则。
电力系统继电保护课程设计电力系统是现代社会中不可或缺的基础设施,其稳定运行对于社会经济的发展至关重要。
然而,电力系统中存在着各种故障和异常情况,这些情况可能会导致系统的瘫痪,给社会带来不可估量的损失。
因此,电力系统的安全稳定运行是电力工程师们一直追求的目标。
而电力系统继电保护就是保障电力系统安全稳定运行的重要手段之一。
继电保护系统是一种用于检测电力系统中故障和异常情况的自动保护系统。
其主要功能是在电力系统发生故障时,及时切断故障部分,保护系统其他部分的安全运行。
因此,电力系统继电保护是电力系统中不可或缺的一部分。
本文将介绍电力系统继电保护课程设计的相关内容,包括课程设计的目的、内容、教学方法和评价方式等。
二、课程设计目的电力系统继电保护课程设计的主要目的是使学生掌握电力系统继电保护的基本原理、设计方法和实际应用技术。
通过学习本课程,学生应该能够:1.理解电力系统继电保护的基本原理和分类方法;2.掌握常见的继电保护装置的工作原理和应用场景;3.了解电力系统继电保护的实际应用技术和发展趋势。
三、课程设计内容1.电力系统继电保护的基本原理和分类方法本部分主要介绍电力系统继电保护的基本原理和分类方法。
包括故障检测原理、保护装置分类、保护装置的功能和特点等方面。
2.常见的继电保护装置的工作原理和应用场景本部分主要介绍常见的继电保护装置的工作原理和应用场景。
包括过流保护、地面保护、差动保护、距离保护等方面。
3.电力系统继电保护的实际应用技术和发展趋势本部分主要介绍电力系统继电保护的实际应用技术和发展趋势。
包括数字化保护、智能保护等方面。
四、教学方法本课程的教学方法主要采用理论与实践相结合的方法。
在理论教学中,采用讲解和讨论相结合的方式,让学生了解电力系统继电保护的基本原理和分类方法。
在实践教学中,采用实验和案例分析相结合的方式,让学生掌握常见的继电保护装置的工作原理和应用场景。
五、评价方式本课程的评价方式主要包括考试和实验报告两部分。
供电系统继电保护课程设计1. 介绍本课程设计旨在加深对于供电系统继电保护的理解和掌握,通过实际继电保护方案设计和仿真测试,提高电力系统工程师的实际操作能力和实际工作应用能力。
2. 设计思路本课程设计主要包括以下三个方面的内容: - 继电保护定制方案设计 - 继电保护仿真测试 - 继电保护应用实例2.1 继电保护定制方案设计通过了解不同的电力系统负载特性、供电系统拓扑结构和电力系统电源接入模式,结合各类电力设备本身的特性和操作要求,设计出合适的、可操作的继电保护方案。
2.2 继电保护仿真测试通过各类电力仿真软件,对设计的继电保护方案进行仿真测试,验证其可行性和稳定性,提高方案的设计质量和操作效果。
2.3 继电保护应用实例通过实际的电力系统应用实例,展示继电保护方案的应用和优势,同时总结出可供实际工作应用的继电保护方案和应用经验。
3. 设计步骤3.1 继电保护方案设计根据电力系统的实际需求,初步设计出继电保护方案,并结合各类电力设备本身的特性和操作要求,进行多方面的优化和完善,最终得到可操作性较高的继电保护方案,并分配各类继电保护设备的参数和接线。
3.2 继电保护仿真测试通过各类电力仿真软件(如Matlab、PSCAD等),对设计的继电保护方案进行仿真测试、优化和验证,辅助提高继电保护方案的可行性和稳定性,并进行详细的仿真数据分析和模型优化。
3.3 继电保护应用实例通过多组实际电力系统的应用实例,展示继电保护方案的应用,总结出可供实际工作应用的继电保护方案和应用经验,并提供实际工作中的继电保护操作建议和应急措施。
4. 课程结构本课程设计主要包括以下部分内容: 1. 继电保护基础概念介绍 2. 继电保护定制方案设计 3. 继电保护仿真测试 4. 继电保护应用实例 5. 继电保护工程实践技能训练 6. 继电保护总结与反思5. 课程目标通过本课程的学习和实践,学生应达到以下目标: - 掌握供电系统继电保护的基础概念和工作原理。
电力系统继电保护课程设计随着电力系统的不断发展,电网规模不断扩大,电力设备的复杂程度也越来越高。
在这种情况下,电力系统的安全稳定运行变得越来越重要。
而电力系统继电保护作为电力系统的重要组成部分,其作用愈发凸显。
因此,电力系统继电保护课程设计的意义也变得非常重要。
二、课程设计目标本课程设计的目标是,通过对电力系统继电保护的学习,使学生了解电力系统继电保护的基本原理、常见故障的诊断处理方法、典型继电保护方案的设计及其实现方法等方面的知识,培养学生的电力系统继电保护能力。
三、课程设计内容1. 电力系统继电保护的基本原理通过对电力系统继电保护的基本原理的学习,使学生了解电力系统继电保护的基本概念、组成结构、工作原理及其分类等方面的知识。
2. 常见故障的诊断处理方法通过对电力系统常见故障的诊断处理方法的学习,使学生了解电力系统中常见的故障类型、故障的诊断方法及其处理方法等方面的知识。
3. 典型继电保护方案的设计及其实现方法通过对典型继电保护方案的设计及其实现方法的学习,使学生了解电力系统中常用的继电保护方案、继电保护方案的设计方法及其实现方法等方面的知识。
4. 继电保护设备的调试及其应用实例通过对继电保护设备的调试及其应用实例的学习,使学生了解继电保护设备的调试方法、应用实例及其实现方法等方面的知识。
四、课程设计方法本课程设计采用理论讲授与实践操作相结合的方式进行。
在理论讲授方面,采用教师讲授、课堂讨论、案例分析等方式进行;在实践操作方面,采用实验操作、仿真实践等方式进行。
五、课程设计评价课程设计的评价主要分为两个方面:学生评价和教师评价。
学生评价主要从学生的实际学习效果、学习兴趣、学习体验等方面进行评价;教师评价主要从教学效果、教学方法、教学态度等方面进行评价。
六、课程设计总结电力系统继电保护课程设计是一门非常重要的课程,其对于电力系统的安全稳定运行具有重要的意义。
通过对电力系统继电保护的学习,可以培养学生的电力系统继电保护能力,提高电力系统的安全稳定运行水平。
电力系统继电保护上册课程设计一、设计题目设计一台电力系统继电保护装置,要求满足以下条件:1.适用于220kV输电系统线路保护;2.对单侧故障敏感;3.能够实现差动保护;4.能够实现过流保护;5.能够实现零序保护;6.能够进行保护复位或手动切除;7.能够实现保护数据存储与发送;8.能够进行调试与监测。
二、设计思路1. 设计原理电力系统继电保护装置是电力系统的一项重要设备,主要用于发现和清除系统异常,保障系统稳定运行。
在设计时需要考虑系统的稳定性、可靠性、精度和安全性等因素,对于线路保护,需要考虑电缆或输电线路的特性、故障类型与电流特性进行分析,对于差动保护需要考虑接线方式、运行条件、稳定性等因素。
本次设计涉及到差动保护、过流保护和零序保护。
差动保护采用基于主变压器相电流变化原理的差动保护方法,可以实现对单侧故障的敏感性,即只对出现故障的一侧进行保护信号响应。
过流保护和零序保护采用基于电路瞬时功率的计算方法,可以实现对电流偏离正常值的判断和响应。
2. 设计方案本次设计基于DSP(数字信号处理)芯片技术,采用C语言进行编程实现。
具体方案如下:1.采集线路电流信号,进行信号放大、滤波、折半处理和AD(模数转换)转换,得到数字电流信号;2.对数字电流信号进行计算,得到差动保护信号,过流保护信号和零序保护信号,并对信号进行比较,确定保护信号输出;3.对输出信号进行处理,包括保护切除、保护复位、数据存储、数据发送等。
三、设计实现1. 硬件实现本次设计采用TMS320F2809芯片作为主控制单元,基于PROTEUS仿真软件设计电路原理图和PCB电路板,使用IAR系统调试工具进行硬件调试。
具体器件如下:•TMS320F2809芯片 1块•电流互感器 1个•运算放大器 5个•滤波器 3个•线性逐段数模转换器 1个•串口通信器件 1个•其他辅助元器件2. 软件实现本次设计中,采用C语言进行软件编程,实现了以下功能:1.ADC采样模块;2.数字信号处理模块;3.过流保护、零序保护和差动保护模块;4.保护输出控制模块;5.参数调整模块;6.数据存储和发送模块;7.监控和告警模块。
电力系统继电保护课程设计1设计原始资料1.1具体题目如下图所示网络,系统参数为:115/Eϕ=,1=15G X Ω,23==11G G X X Ω,12==61km L L 错误!未找到引用源。
km,3=41km L ,-=51km,B C L 错误!未找到引用源。
-=31km,C D L - =21km,D E L 线路阻抗0.4Ω/km ,1=0.8re K ,0.85II IIIrel rel K K ==错误!未找到引用源。
B-C.max -.max -.max =311A, =211A, =151A, =1.5C D D E ss I I I K ,=1.85re K ,试对线路L1、L2、L3进行距离保护的设计。
AB图1 线路接线图1.2完成内容我们要完成的内容是实现对线路的距离保护,而在本题中我们要完成线路L1保护和保护3保护2相关的距离保护。
距离保护是利用短路时电压、电流同时变化的特征,测量电压与电流的比值,反应故障点到保护安装处的距离而工作的保护。
2分析课题设计内容2.1设计规程根据继电保护在电力系统中所担负的任务,一般情况下,对动作于跳闸的继电保护在技术上应满足四个基本要求:选择性、速动性、灵敏性、可靠性。
这几“性”之间,紧密联系,既矛盾又统一,按照电力系统运行的具体情况配置、配合、整定。
2.2保护配置2.2.1主保护配置距离保护Ⅰ段和距离保护Ⅱ段构成距离保护的主保护。
(1) 距离保护的Ⅰ段ABC图2.1 距离保护网络接线图瞬时动作,Ⅰt 是保护本身的固有动作时间。
保护1的整定值应满足:Ιset1AB Z <Z 考虑到阻抗继电器和电流、电压互感器的误差,引入可靠系数Ιrel K (一般取0.8-0.85),一般第I 段保护范围为本线路AB 长度的80%-85%,即A B Ιrel Ι1set Z K Z =⋅同理,保护2的I 段整定值为:BC Ιrel Ι2set Z K Z =⋅(2) 距离Ⅱ段与相邻线路距离保护I 段相配合。
电力系统继电保护课程设计电力系统继电保护课程设计是电力系统专业学生的重要基础课程之一,旨在培养学生对电力系统继电保护的理论知识和应用能力。
下面将从课程的目标、内容和参考教材三个方面进行介绍。
一、课程目标1. 理解电力系统继电保护的基本概念、原理和分类;2. 掌握电力系统继电保护的各种保护方式和保护装置的基本原理和运行特点;3. 学会电力系统继电保护的设计方法和计算模型,能够进行常规保护方案的设计;4. 具备电力系统继电保护故障分析和故障处理的能力;5.了解当前电力系统继电保护的发展趋势和新技术。
二、课程内容1. 电力系统继电保护概述a. 继电保护的定义和基本原理b. 继电保护的分类和发展历程2. 电力系统继电保护装置a. 出线保护装置b. 过流保护装置c. 距离保护装置d. 差动保护装置e. 频率保护装置f. 转子开路保护装置g. 母线保护装置3. 电力系统继电保护的设计方法a. 保护原则和设计准则b. 选用保护装置的依据和方法c. 保护的设置和参数的选择4. 继电保护的特殊问题a. 自动重新合闸保护b. 同期重切保护c. 同期选址抗饱和保护d. 光纤继电保护及其应用5. 继电保护设备的试验与调整a. 保护设备的试验方法b. 保护设备的调整和校验6. 电力系统继电保护的实例和案例分析三、参考教材1.《电力系统自动化技术基础》(高等教育出版社):该书包含了电力系统自动化技术的基础知识,包括电力系统继电保护的基本原理和设计方法等内容,适合作为该课程的主要教材。
2.《电力系统继电保护》(中国电力出版社):该书对电力系统继电保护的各种保护方式和保护装置进行了详细介绍,结合实例进行了深入的分析,有助于学生理解和掌握继电保护的设计和应用。
3.《电力系统继电保护》(机械工程出版社):该教材从电力系统继电保护概念到保护装置的详细原理,系统地介绍了继电保护的相关知识,且配有大量的案例分析,适合作为该课程的参考教材。
双电源网络线路继电保护设计一、原始资料某双电源网络如图所示:EAa) 线路AB (A 侧)和BC 的最大负荷电流分别为120安和100安;负荷的自起动系数为1.8。
b) 可靠系数1 1.25rel K =,2 1.15rel K =,3 1.2rel K =, 1.15rel K =(躲开最大振荡电流时采用),返回系数0.85re K =。
c) A 电源的.min 15s X =欧,.max 20s X =欧,B 电源的.min 20s X =欧,.max 25s X =欧;其它参数如图中所示。
试设计线路AB (A 侧)的三段式电流保护。
二、设计任务a) 线路AB (A 侧)继电保护的规划配置;b) CT 变比的选择;c) 短路电流计算和继电保护的整定计算;d) 用autocad 或visio 软件绘制线路继电保护原理图。
三、设计成品a) 编写设计报告书(包括短路电流计算和继电保护的整定计算);b) 用autocad 或visio 软件绘制线路继电保护原理图。
总体要求:根据设计指导教师的要求,参加设计指导课,独立完成各项设计任务,设计成果包括设计报告书和图纸,完成后上交给指导教师。
通过课程设计,掌握电力系统中电流保护、距离保护、纵联差动保护、变压器保护等的基本原理和实现方法。
主要参考书:《电力系统继电保护》,张明君主编,人民邮电出版社,2012《电力系统继电保护原理》(第三版), 张保会、尹项根主编,中国电力出版社,1996《电力系统继电保护原理》(第三版), 贺家李主编,中国电力出版社,1996《计算机继电保护原理与技术》,陈德树主编,中国电力出版社,1992《电力系统继电保护》,陈生贵主编,重庆大学出版社,2004《电力系统继电保护设计原理》,吕继绍主编,电力工业出版社,1990。
前言《电力系统继电保护》作为电气工程及其自动化专业的一门主要课程,主要包括课堂讲学、课程设计等几个主要部分。
在完成了理论的学习的基础上,为了进一步加深对理论知识的理解,本专业特安排了本次课程设计。
电能是现代社会中最重要、也是最方便的能源。
而发电厂正是把其他形式的能量转换成电能,电能经过变压器和不同电压等级的输电线路输送并被分配给用户,再通过各种用电设备转换成适合用户需要的其他形式的能量。
在输送电能的过程中,电力系统希望线路有比较好的可靠性,因此在电力系统受到外界干扰时,保护线路的各种继电装置应该有比较可靠的、及时的保护动作,从而切断故障点极大限度的降低电力系统供电范围。
电力系统继电保护就是为达到这个目的而设置的。
本次设计的任务主要包括了六大部分,分别为运行方式的选择、电网各个元件参数及负荷电流计算、短路电流计算、继电保护距离保护的整定计算和校验、继电保护零序电流保护的整定计算和校验、对所选择的保护装置进行综合评价。
其中短路电流的计算和电气设备的选择是本设计的重点。
通过此次线路保护的设计可以巩固我们本学期所学的《电力系统继电保护》这一课程的理论知识,能提高我们提出问题、思考问题、解决问题的能力。
{1 所做设计要求(2)发电厂的最大发电容量为(2×25+50)MW,最小发电容量为2×25MW; (3)网络的正常运行方式为发电厂发电容量最大且闭环运行; (4)允许的最大故障切除时间为; |(5)线路AC 、BC 、AB 、CD 的最大负荷电流分别为250、150、230和140A,负荷自起动系数5.1 ss K ;(6)时间阶梯△t =;(7)线路正序电抗每公里为Ω;任务1、k I 计算结果,计算结果用表格列出。
必须说明系统运行方式、短路点与短路类型的决定原则或依据,以及计算时考虑的其他因素。
2、保护方式的选择及整定计算结果要求要求说明选用保护方式的原则,各保护的整定计算条件,并用表格列出整定计算结果。
整定计算时所采用的公式及各种系数的数值也应列出。
2 运行方式的选择运行方式的选择原则¥发电机、变压器运行方式选择的原则(1)一个发电厂有两台机组时,一般应考虑全停方式,一台检修,另一台故障;当有三台以上机组时,则选择其中两台容量较大机组同时停用的方式。
对水电厂,还应根据水库运行方式选择。
(2)一个发电厂、变电站的母线上无论接几台变压器,一般应考虑其中容量最大的一台停用。
变压器中性点接地选择原则(1)发电厂、变电所低压侧有电源的变压器,中性点均要接地。
(2)自耦型和有绝缘要求的其它变压器,其中性点必须接地。
(3)T接于线路上的变压器,以不接地运行为宜。
(4)为防止操作过电压,在操作时应临时将变压器中性点接地,操作完毕后,再断开,这种情况不按接地运行考虑。
线路运行方式选择原则(1)一个发电厂、变电站线线上接有多条线路,一般考虑选择一条线路检修,另一条线路又故障的方式。
(2)双回路一般不考虑同时停用。
流过保护的最大、电小短路电流计算方式的选择(1)相间保护对单侧电源的辐射形网络,流过保护的最大短路电流出现在最大运行方式;而最小短路电流,则出现在最小运行方式。
对于双电源的网络,一般(当取Z1=Z2时)与对侧电源的运行方式无关,可按单侧电源的方法选择。
*对于环状网络中的线路,流过保护的电大短路电流应选取开环运行方式,开环点应选在所整定保护线路的相邻下一线线路上。
而对于电小短路电流,则应选闭环运行方式,同时再合理停用该保护背后的机组、变压器及线路。
(2)零序电流保护对于单侧电源的辐射形网络,流过保护的最大零序短路电流与最小零序电流,其选择方法可参照相间短路中所述,只需注意变压器接地点的变化。
对于双电源的网络及环状网,同样参照相间短路中所述,其重点也是考虑变压器接地点的变化。
选取流过保护的最大负荷电流的原则选取流过保护的最大负荷电流的原则如下:(1)备用电源自动投入引起的增加负荷。
(2)并联运行线路的减少,负荷的转移。
(3)环状网络的开环运行,负荷的转移。
(4)对于双侧电源的线路,当一侧电源突然切除发电机,引起另一侧增加负*荷。
本次设计的具体运行方式的选择电力系统运行方式的变化,直接影响保护的性能。
因此,在对继电保护进行整定计弊之前,首先应该分析运行方式。
这里要着重说明继电保护的最大运行方式是指电网在某种连接情况下通过保护的电流值最大,继电保护的最小运行方式是指电网在某种连接情况下通过保护的电流值最小。
因此,系统的最大运行方式不一定就是保护的最大运行方式;系统的最小运行方式也不一定就是保护的最小运行方式。
现结合本次设计具体说明如下,系统的最大运行方式是所有设备全部投入运行;系统的最小运行方式为发电机G1和G2投入,发电机G3停运。
对保护1而言,其最大运行方式应该是在系统最大运行方式下线路L1回路断开,其他设备全投;保护1的最小运行方式应该是:在系统的最小运行方式下线路L1+L2与L3并联运行。
3 电网各个元件参数计算及负荷电流计算基准值选择基准功率:S B=100MV·A,基准电压:V B=115V。
基准电流:I B=S B/ V B=100×103/×115=;基准电抗:Z B=V B/ I B=115×103/×502=Ω;电压标幺值:E=E(2)=电网各元件等值电抗计算输电线路等值电抗计算(1) 线路L1等值电抗计算》正序以及负序电抗:X L1= X1L1=×50=20ΩX L1*= X L1/ Z B=20/=零序电抗:X L10= X0L1= 3X1L1=3××50=60ΩX L10*= X L10/ Z B=60/=(2) 线路L2等值电抗计算正序以及负序电抗:X L2= X1L2=×40=16ΩX L2*= X L2/ Z B=16/=零序电抗:X L20= X0L2= 3X1L2=3××40=48ΩX L20*= X L20/ Z B=48/=(3) 线路L3等值电抗计算?正序以及负序电抗:X L3= X1L3=×90=36ΩX L3*= X L3/ Z B=36/=零序电抗:X L30= X0L3= 3X1L3=3××90=108ΩX L30*= X L30/ Z B=108/=(4) 线路L4等值电抗计算正序以及负序电抗:X L4= X1L4=×25=10ΩX L4*= X L4/ Z B=10/=零序电抗:X L40= X0L4= 3X1L4=3××25=30ΩX L40*= X L40/ Z B=30/=—变压器等值电抗计算(1) 变压器T1、T2等值电抗计算X T1= X T2=(U K %/100)×(V N 2×103/ S N )≈Ω X T1*= X T2*=X T1/ Z B ==(3) 变压器T4、、T6、等值电抗计算X T4==X T6==(U K %/100)×(V N 2×103/ S N )≈Ω X T6*= X T7* = X T4*= X T5*=发电机等值电抗计算(1)发电机G1、G2电抗标幺值计算X G1* = X G2*=X d1S B / S G1= X d1S B COS φ/ P G1=×100×25=&(2)发电机G3电抗标幺值计算X G3*=X d3S B / S G3= X d3S B COS φ/ P G3=×100×50=最大负荷电流计算(1) B 、C 母线最大负荷电流计算 最大负荷电流计算(拆算到110KV) I fhB ·max = I fhC ·max = P fhBmax V av 2 / U COS φ=20×103/×115×≈;各线路运行方式下流过断路器的最大负荷电流(2) 保护2的最大运行方式:发电机Fl 、P2、F3全投入,断开L3回路;通 过保护2最大负荷电流为A I fh 34179131131max =++=⋅。
保护2的最小运行方式;F3停,线路全部运行。
)(3) 保护4的最大运行方式:Fl 、F 2、F3全投,继开线路L3;通过保护4的最大负荷电流为A I fh 21079131max =+=⋅。
保护4的最小运行方式:F3停,线路全部运行。
(6) 保护6因正常运行时不可能有正向电流通过,要是有正向电流通过,一定是线路发生故障。
为此,在保护3和保护7上只需判别电流(功率)的方向即可,故不用分析保护3和保护6的运行方式。
4短路电流计算电网等效电路图由于短路电流计算是电网继电保护配置设计的基础,因此分别考虑最大运行方式(三台发电机全部投入,系统环网取开网运行)时各线路未端短路的情况,最小运行方下(三台中最小的一台投入,系统按环网计算)时各线路未端短路的情况。
电网等效电路图如图所示图电网等效电路图短路电流计算…d1点发生短路时流过断路1(1) d1点短路最大运行方式下等值图如图短路时最大运行方式下的等值电路图进一步简化后得图简化图X GT=(X G1+X T1)×(X G2+X T2)/(X G1+X T1+X G2+X T2)=X GT3=X G3+X T3=+=X L=X L1+X L2+X L3=++=图正序短路电路图其中:X dT=X GT×X GT3/(X GT+X GT3)=×+=…X ff1=X dT+X L=+=I d1·max*=E/X ff1=≈I d1·max=I d1·max*I B=×≈(2)最小运行方式两相短路正序短路电流X ff1=X d1+X T1+X L=++=X ff1(2)(2)=X ff1I fa(1)(2)=V f(0)/(X ff1+X ff1(2)(2))=V f(0)/2X ff1=2×=I f(2)*=(1)(2)=×=I f(2)=I f(2)*I B=×=(3)最大运行方式两相短路零序短路电流.@图零序短路电路图X TT(0)=X T1(0) /2=X T(0) =×+=+×++=X TL(0) =+×++=X TLB(0) =+×++ =X ff1(0)=X L3(0)+X TLB(0)=+=I ff1(0)*=E(0)/X ff1(0)==I ff1(0)=I ff1(0)*I B=×=d2发生短路时流过断路2;(1)最大运行方式正序短路电流X ff2=X dT+X L3=+=I d2·max*=E/X ff2=≈I d2·max=I d2·max*I B=×≈(2)最小运行方式两相短路正序短路电流X2 =(X L1+X L2)×X L3/( X L1+X L2+ X L3)= X L3/2=X ff2=X d1+X2=+=I f(3)*= E/2X ff1=2×=I f(3)=I f(3)*I B=×=I f(2)*=4X ff1=×4×=%流过断路器1、2、3、4、5和6的短路电流为:I f(2)=I f(2)*I B=×=(3)最大运行方式两相短路零序短路电流,如图示图短路等值电路X BL(0) =X L1(0)×X TB(0)/(X L1(0))+X TB(0))=×+=X TL(0) =(X L4(0)+X T8(0))×X TC(0)/(X L4(0)+X T8(0)+X TC(0))=X LB(0) =(X L2(0)+X BL(0))×X TL(0)/(X L2(0)+X TBL(0)+X TC(0))=X ff2(0) =(X L3(0)+X T(0))×X LB(0)/(X L3(0)+X T(0))+X LB(0))=I ff2(0)*=E(0)/X ff2(0)==[I ff2(0)=I ff2(0)*I B=×=d3发生短路时流过断路2(1)最大运行方式正序短路电流X ff3=X dT+X L=+=I d3·max*=E/X ff3=≈I d3·max=I d3·max*I B=×≈(2)最小运行方式两相短路正序短路电流X ff3=X d1+X T1+X L=++=I f(2)*=2X ff1=×2×=I f(2)=I f(2)*I B=×=-(3)最大运行方式两相短路零序短路电流,如图示图短路等值电路X TL4(0)=(X L4(0) +X T8)×(X L3(0) +X T)/(X L4(0) +X T8+X L3(0) +X T) =+×+/+++=X TL2(0) =(X L2(0)+X TC)×X TB/(X L2(0)+X TC+X TB)=+×++=X BL(0) =X TL4(0)×X TL2(0)/(X TL4(0)+X TL2(0))=×+!=X ff3(0)=X L1(0)+X BL(0)=+=I ff3(0)*=E(0)/X ff3(0)==I ff3(0)=I ff3(0)*I B=×=d4点发生短路时流过断路1(1)最大运行方式正序短路电流X ff4=X dT+X L1=+=I d4·max*=E/X ff4=≈I d4·max=I d4·max*I B=×≈(2)最小运行方式短路正序短路电流:X3 =(X L3+X L2)×X L1/( X L1+X L2+ X L3)=+×++=X ff2=X d1+X3=+=I f(3)*= E/X ff1==I f(3)=I f(3)*I B=×=流过断路器1、4、5的三相短路电流为:I f(3)1= I f(3)×X L1/( X L1+X L2+ X L3)=×++=>流过断路器2、3的三相短路电流为:I f2(3)=I f(2)*-I f1(2)= I f(2)*×X L1/( X L1+X L2+ X L3)=×++=流过断路器1、4、5的短路电流为:I f1(2)=I f(2)*I B=×=流过断路器2、3的短路电流为:I f2(2)=I f(2)*-I f1(2)= 最大运行方式两相短路零序短路电流图短路等值电路%X2(0) =(X L4(0)+X T8)×X TC/(X L4(0)+X T8+X TC)=+×++=X1(0) =(X L1(0)+X T)×X TB/(X L1(0)+X T+X TB)=+×++=X ff4(0) =X1(0)×(X2(0)+X L2(0))/(X1(0)+X L2(0)+X2(0))=×+/++=¥I ff4(0)*=E(0)/X ff4(0)==I ff4(0)=I ff4(0)*I B=×=d4点发生短路时流过断路器2(1)最大运行方式正序短路电流其中:X ff5=X dT+X L3+X L2=++=I d5·max*=E/X ff5=≈I d5·max=I d5·max*I B=×≈(2)最小运行方式短路正序短路电流X3 =(X L3+X L2)×X L1/( X L1+X L2+ X L3)=+×++,=X ff2=X d1+X3=+=I f(3)*= E/X ff1==I f(3)=I f(3)*I B=×=流过断路器1、4、5的三相短路电流为:I f(3)1= I f(3)×X L1/( X L1+X L2+ X L3)=×++=流过断路器2、3的三相短路电流为:I f2(3)=I f(2)*-I f1(2)= I f(2)*×X L1/( X L1+X L2+ X L3)。