数值传热学第五章作业
- 格式:doc
- 大小:157.00 KB
- 文档页数:5
传热学习题_建工5版绪 论0-14 一大平板,高3m ,宽2m ,厚0.2m ,导热系数为45()K m W ⋅, 两侧表面温度分别为C t w ︒=1501及C t w ︒=2852,试求热流密度及热流量。
解:根据付立叶定律热流密度为:i dxdt t grad i q xλλ-=-=21212303752015028545m /W .x x t t dx dt q w w x -=-⨯-=---=-=λλ负号表示传热方向与x 轴的方向相反。
通过整个导热面的热流量为:)W (A q 1822502330375=⨯⨯-==Φ0-15 空气在一根内经50毫米,长2.5米的管子内流动并被加热,已知空气的平均温度为85℃,管壁对空气的对流换热系数()K m /W h ⋅=273,热流密度25110m /W q =, 是确定管壁温度及热流量Φ。
解:热流量)W (....)dl (q qA 72005520501435110=⨯⨯⨯===πΦ根据牛顿冷却公式()qA t t hA )dl (h t hA f w =-===π∆Φ管内壁温度为:C A q t t f w ︒=+=+=15573511085第一章 导热理论基础1-1 按20℃时,铜、碳钢(1.5%C )、铝和黄铜导热系数的大小,排列它们的顺序;隔热保温材料导热系数的数值最大为多少?列举膨胀珍珠岩散料、矿渣棉和软泡沫塑料导热系数的数值。
解:(1)由附录7可知,在温度为20℃的情况下λ铜=398 ()K m W ⋅,λ碳钢=36()K m W ⋅, λ铝=237()K m W ⋅,λ黄铜=109()K m W ⋅.所以,按导热系数大小排列为:λ铜>λ铝>λ黄铜>λ钢(2) 隔热保温材料定义为:温度在350℃以下时,导热系数不超过0.12 ()K m W ⋅的材料。
(3) 由附录8得,当材料的平均温度为20℃时的导热系数:膨胀珍珠岩散料:λ=0.0424+0.t ()K m W ⋅ λ=0.0424+0.×20=0.04514 ()K m W ⋅; 矿渣棉: λ=0.0674+0.t ()K m W ⋅λ=0.0674+0.×20=0.0717 ()K m W ⋅;聚乙烯泡沫塑料在常温下(附录7)3)K m /(W ..⋅-=03800350λ。
《传热学》第五版部分习题解答第五章5-13 解:本题应指出是何种流体外掠平板,设是水外掠平板。
由60=m t ℃,查附录3 饱和水的热物理性质表得:610478.0-⨯=v m 2/s ,99.2=r p561082.210478.015.09.0Re ⨯=⨯⨯=⋅=-∞v x u x 41.11015.0)1082.2(0.5Re 0.5321521=⨯⨯⨯⨯==---x xδ mm98.099.241.13131=⨯==--rt p δδ mm5-18 解:55230802=+=+=wf m t t t ℃ 由附录2 ,查得空气的热物性参数为:210865.2-⨯=λW/(m.K) 61046.18-⨯=v m 2/s , 697.0=r p5561051033.41046.188.010Re ⨯<⨯=⨯⨯=⋅=-∞v l u c 所以,此流动换热为层流换热。
923.0101046.18105Re 65=⨯⨯⨯=⋅=-∞u v x c c m46.6)697.0()105(923.010865.2332.0332.03121523121Re =⨯⨯⨯⨯⨯==-r c x h p c c λW/(m 2.K)94.6)697.0()1033.4(8.010865.2332.0332.03121523121Re=⨯⨯⨯⨯⨯==-r lh p l λW/(m 2.K)88.1364.922=⨯==l h h W/(m 2.K)2.555)3080(18.088.13=-⨯⨯⨯=∆=Φt hA W5-23 解: (注意:本题可不做)参考课本p126页(15)到(5-33)式。
2t a by cy =-+;0,w y t t ==;220wd t dy ⎛⎫= ⎪⎝⎭;,t f y t t δ==得到w f w f tt t yt t θθδ-==-,代入速度场和该温度场于能量积分方程()0tf wd t u t t dy a dx y δ⎛⎫∂-= ⎪∂⎝⎭⎰,并且设t δςδ=,略去ς的高阶项,可以得到ς的表达式,进而得到t δ的表达式。
习题4-2一维稳态导热问题的控制方程:022=+∂∂S xTλ 依据本题给定条件,对节点2节点3采用第三类边界条件具有二阶精度的差分格式,最后得到各节点的离散方程: 节点1: 1001=T节点2: 1505105321-=+-T T T 节点3:75432=+-T T 求解结果:852=T ,403=T对整个控制容积作能量平衡,有:02150)4020(15)(3=⨯--⨯=∆+-=∆+x S T T h x S q f f B即:计算区域总体守恒要求满足习题4-5在4-2习题中,如果25.03)(10f T T h -⨯=,则各节点离散方程如下:节点1: 1001=T节点2: 1505105321-=+-T T T节点3:25.03325.032)20(4015])20(21[-⨯+=-⨯++-T T T T对于节点3中的相关项作局部线性化处理,然后迭代计算; 求解结果:818.822=T ,635.353=T (迭代精度为10-4)迭代计算的Matlab 程序如下: x=30; x1=20;while abs(x1-x)>0.0001a=[1 0 0;5 -10 5;0 -1 1+2*(x-20)^(0.25)]; b=[100;-150; 15+40*(x-20)^(0.25)]; t=a^(-1)*b; x1=x; x=t(3,1);endtcal=t习题4-12的Matlab程序%代数方程形式A i T i=C i T i+1+B i T i-1+D imdim=10;%计算的节点数x=linspace(1,3,mdim);%生成A、C、B、T数据的基数;A=cos(x);%TDMA的主对角元素B=sin(x);%TDMA的下对角线元素C=cos(x)+exp(x); %TDMA的上对角线元素T=exp(x).*cos(x); %温度数据%由A、B、C构成TDMAcoematrix=eye(mdim,mdim);for n=1:mdimcoematrix(n,n)=A(1,n);if n>=2coematrix(n,n-1)=-1*B(1,n);endif n<mdimcoematrix(n,n+1)=-1*C(1,n);endend%计算D矢量D=(coematrix*T')';%由已知的A、B、C、D用TDMA方法求解T%消元P(1,1)=C(1,1)/A(1,1);Q(1,1)=D(1,1)/A(1,1);for n=2:mdimP(1,n)=C(1,n)/(A(1,n)-B(1,n)*P(1,n-1));Q(1,n)=(D(1,n)+B(1,n)*Q(1,n-1))/(A(1,n)-B(1,n)*P(1,n-1));end%回迭Tcal(1,mdim)=Q(1,mdim);for n=(mdim-1):-1:1Tcal(1,n)=P(1,n)*Tcal(1,n+1)+Q(1,n);endTcom=[T;Tcal];%绘图比较给定T值和计算T值plot(Tcal,'r*')hold onplot(T)结果比较如下,由比较可知两者值非常切合(在小数点后8位之后才有区别):习题4-14充分发展区的温度控制方程如下:)(1rTr r r x T uc p ∂∂∂∂=∂∂λρ 对于三种无量纲定义w b w T T T T --=Θ、∞∞--=ΘT T T T w 、ww T T T T --=Θ∞进行分析如下1)由wb wT T T T --=Θ得:w w b T T T T +Θ-=)(由T 可得:x T x T x T T T x T w b w w b ∂∂Θ-+∂∂Θ=∂+Θ-∂=∂∂)1(])[(rT r T T r T T T r T w w b w w b ∂∂Θ-+∂Θ∂-=∂+Θ-∂=∂∂)1()(])[( 由b T 与r 无关、Θ与x 无关以及x T ∂∂、rT∂∂的表达式可知,除了w T 均匀的情况外,该无量纲温度定义在一般情况下是不能用分离变量法的; 2)由∞∞--=ΘT T T T w 得: ∞∞+Θ-=T T T T w )(由T 可得:xT x T T T x T w w ∂∂Θ=∂+Θ-∂=∂∂∞∞])[(rT r T T r T T T r T w w w ∂∂Θ+∂Θ∂-=∂+Θ-∂=∂∂∞∞∞)(])[( 由b T 与r 无关、Θ与x 无关以及x T ∂∂、rT∂∂的表达式可知,在常见的四种边界条件中除了轴向及周向均匀热流const q w =的情况外,有0=∂∂rT w,则该无量纲温度定义是可以用分离变量法的; 3)由wwT T T T --=Θ∞得: w w T T T T +Θ-=∞)(由T 可得:xT x T T T x T w w w ∂∂Θ-=∂+Θ-∂=∂∂∞)1(])[(rT r T T r T T T r T w w w w ∂∂Θ-+∂Θ∂-=∂+Θ-∂=∂∂∞∞)1()(])[( 同2)分析可知,除了轴向及周向均匀热流const q w =的情况外,有0=∂∂rT w,该无量纲温度定义是可以用分离变量法的;习题4-181)采用柱坐标分析,写出统一的稳态柱坐标形式动量方程:r r x x w r v r r r u x ∂∂+∂∂∂∂=∂∂+∂∂+∂∂1)()(1)(1)(φλφρθφρφρx 、r 和θ分别是圆柱坐标的3个坐标轴,u 、v 和w 管内的流动方向;对于管内的层流充分发展有:0=v 、0=w ,0=∂∂xu; 并且x 方向的源项:x pS ∂∂-=r 方向的源项:r pS ∂∂-=θ方向的源项:θ∂∂-=pr S 1由以上分析可得到圆柱坐标下的动量方程: x 方向:0)(1)(1=∂∂-∂∂∂∂+∂∂∂∂x pu r r r u r r r θλθλ r 方向:0=∂∂r pθ方向:0=∂∂θp边界条件: R r =,0=u0=r ,0=∂∂r u ;对称线上,0=∂∂θu不考虑液体的轴向导热,并简化分析可以得到充分发展的能量方程为:)(1)(1θλθλρ∂∂∂∂+∂∂∂∂=∂∂Tr r r T r r r x T uc p 边界条件: R r =,w q r T =∂∂λ;0=r ,0=∂∂rTπθ/0=,0=∂∂-θλT2)定义无量纲流速:dxdp R uU 2-=λ并定义无量纲半径:R r /=η;将无量纲流速和无量纲半径代入x 方向的动量方程得:0))1((1))1((122=∂∂-∂-∂∂∂+∂-∂∂∂xp U dx dp R R R R U dx dp R RR R θληλθηηλληηη 上式化简得:01)1(1)(1=+∂∂∂∂+∂∂∂∂θηθηηηηηU U 边界条件:1=η,0=U0=η,0=∂∂ηU;对称线上,0=∂∂θU 定义无量纲温度:λ/0R q T T b -=Θ其中,0q 是折算到管壁表面上的平均热流密度,即:Rq q wπ=0; 由无量纲温度定义可得:b T Rq T +Θ=λ将T 表达式和无量纲半径η代入能量方程得:)(1)(100θληλθηηλληηηρ∂Θ∂∂∂+∂Θ∂∂∂=∂∂R q R R R R q R R R x T uc b p 化简得:)1(1)(10θηθηηηηηρ∂Θ∂∂∂+∂Θ∂∂∂=∂∂x T u c q R b p (1)由热平衡条件关系可以得:mm m b m p b p p RU U q R u u R q A u u dx dT A u c x T u c x T uc 020221221)(===∂∂=∂∂ππρρρ 将上式代入式(1)可得:)1(1)(12θηθηηηηη∂Θ∂∂∂+∂Θ∂∂∂=m U U 边界条件:0=η,0=∂Θ∂η;1=η,R q q w πη10==∂Θ∂0=θ,0=∂Θ∂θ;πθ=,0=∂Θ∂θ单值条件: 由定义可知:0/0=-=ΘλR q T T b b b 且: ⎰⎰Θ=ΘAAb U d AU d A 即得单值性条件:0=Θ⎰⎰AA UdAUdA3)由阻力系数f 及Re 定义有:228)(2/Re ⎪⎭⎫ ⎝⎛=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=D D U D u u dx dp D f e m e m me νρ 且:m W b m W b m W R q T T D T T q Nu ,0,,0~2)/(2Θ=-=-=λλ5-21.一维稳态无源项的对流-扩散方程如下所示:xx u 22∂∂Γ=∂∂φφρ (取常物性)边界条件如下:L L x x φφφφ====,;,00上述方程的精确解如下:11)/(00--=--⋅PeL x Pe L e e φφφφ Γ=/uL Pe ρ 2.将L 分成20等份,所以有:∆=P Pe 201 2 3 4 5 6 ………… …………… 17 18 19 20 21 对于中心差分、一阶迎风、混合格式和QUICK 格式分别分析如下: 1) 中心差分中间节点: 2)5.01()5.01(11-∆+∆++-=i i i P P φφφ 20,2 =i2) 一阶迎风中间节点: ∆-∆++++=P P i i i 2)1(11φφφ 20,2 =i3) 混合格式当1=∆P 时,中间节点:2)5.01()5.01(11-∆+∆++-=i i i P P φφφ20,2 =i当10,5=∆P 时,中间节点: 1-=i i φφ 20,2 =i 4) QUICK 格式*12111)35(8122121⎥⎦⎤⎢⎣⎡---++++++=+--∆∆-∆∆+∆i i i i i i i P P P P P φφφφφφφ 2≠i *1111)336(8122121⎥⎦⎤⎢⎣⎡--++++++=+-∆∆-∆∆+∆i i i i i i P P P P P φφφφφφ 2=i数值计算结果与精确解的计算程序如下:%except for HS, any other scheme doesnt take Pe<0 into consideration %expression of exact solutiony=dsolve('a*b*Dy=c*D2y','y(0)=y0,y(L)=yL','x')y=subs(y,'L*a*b/c','t')y=simple(subs(y,'a*b/c*x','t*X'));ysim=simple(sym(strcat('(',char(y),'-y0)','/(yL-y0)')))y=sym(strcat('(',char(ysim),')*(yL-y0)','+y0'))% in the case of Pe=0y1=dsolve('D2y=0','y(0)=y0,y(L)=yL','x')y1=subs(y1,'-(y0-yL)/L*x','(-y0+yL)*X')%grid Pe numbertt=[1 5 10];%dimensionless lengthm=20;%mdim is the number of inner nodemdim=m-1;X=linspace(0,1,m+1);%initial value of variable during calculationy0=1;yL=2;%cal exact solutionfor n=1:size(tt,2)t=m*tt(1,n);if t==0yval1(n,:)=eval(y1);elseyval1(n,:)=eval(y);endend%extra treatment because max number in MATLAB is 10^308if max(isnan(yval1(:)))yval1=yval1';yval1=yval1(:);indexf=find(isnan(yval1));for n=1:size(indexf,1)if rem(indexf(n,1),size(X,2))==0yval1(indexf(n),1)=yL;elseyval1(indexf(n),1)=y0;endendyval1=reshape(yval1,size(X,2),size(yval1,1)/size(X,2));yval1=yval1';end%CD solutiond=zeros(size(tt,2),mdim);a=repmat([1],size(tt,2),mdim);for n=1:size(tt,2)t=tt(1,n);b(n,:)=repmat([0.5*(1-0.5*t)],1,mdim);c(n,:)=repmat([0.5*(1+0.5*t)],1,mdim);d(n,1)=0.5*(1+0.5*tt(1,n))*y0;d(n,mdim)=0.5*(1-0.5*tt(1,n))*yL;endc(:,1)=0;b(:,mdim)=0;%numerical cal by using TDMA subfuctionyval2=TDMA(a,b,c,d,mdim);yval2=[repmat([1],size(tt,2),1),yval2,repmat([2],size(tt,2),1)]; Fig(1,X,yval1,yval2,tt);title('CD Vs. Exact Solution')% FUS solutiond=zeros(size(tt,2),mdim);a=repmat([1],size(tt,2),mdim);for n=1:size(tt,2)t=tt(1,n);b(n,:)=repmat([1/(2+t)],1,mdim);c(n,:)=repmat([(1+t)/(2+t)],1,mdim);d(n,1)=(1+tt(1,n))/(2+tt(1,n))*y0;d(n,mdim)=1/(2+tt(1,n))*yL;endc(:,1)=0;b(:,mdim)=0;%numerical cal by using TDMA subfuctionyval3=TDMA(a,b,c,d,mdim);yval3=[repmat([1],size(tt,2),1),yval3,repmat([2],size(tt,2),1)]; Fig(2,X,yval1,yval3,tt);title('FUS Vs. Exact Solution')% HS solutiond=zeros(size(tt,2),mdim);a=repmat([1],size(tt,2),mdim);for n=1:size(tt,2)t=tt(1,n);if t>2b(n,:)=repmat([0],1,mdim);c(n,:)=repmat([1],1,mdim);d(n,1)=y0;elseif t<-2b(n,:)=repmat([1],1,mdim);c(n,:)=repmat([0],1,mdim);d(n,mdim)=yL;elseb(n,:)=repmat([0.5*(1-0.5*t)],1,mdim);c(n,:)=repmat([0.5*(1+0.5*t)],1,mdim);d(n,1)=0.5*(1+0.5*t)*y0;d(n,mdim)=0.5*(1-0.5*t)*yL;endendc(:,1)=0;b(:,mdim)=0;% numerical cal by using TDMA subfuctionyval4=TDMA(a,b,c,d,mdim);yval4=[repmat([1],size(tt,2),1),yval4,repmat([2],size(tt,2),1)]; Fig(3,X,yval1,yval4,tt);title('HS Vs. Exact Solution')%QUICK Solutiond=zeros(size(tt,2),mdim);a=repmat([1],size(tt,2),mdim);for n=1:size(tt,2)t=tt(1,n);b(n,:)=repmat([1/(2+t)],1,mdim);c(n,:)=repmat([(1+t)/(2+t)],1,mdim);d(n,1)=(1+tt(1,n))/(2+tt(1,n))*y0;d(n,mdim)=1/(2+tt(1,n))*yL;endc(:,1)=0;b(:,mdim)=0;%numerical cal by using TDMA subfuctionyval5=zeros(size(tt,2),mdim);yval5com=yval5+1;counter=1;%iterativewhile max(max(abs(yval5-yval5com)))>10^-10if counter==1yval5com=TDMA(a,b,c,d,mdim);endfor nn=1:size(tt,2)for nnn=1:mdimif nnn==1d(nn,nnn)=((6*yval5com(nn,nnn)-3*y0-3*yval5com(nn,nnn+1))*tt(1,nn))/(8*(2+tt(1, nn)))+((1+tt(1,nn))/(2+tt(1,nn))*y0);elseif nnn==2d(nn,nnn)=((5*yval5com(nn,nnn)-3*yval5com(nn,nnn+1)-yval5com(nn,nnn-1)-y0)*tt (1,nn))/(8*(2+tt(1,nn)));elseif nnn==mdimd(nn,nnn)=((5*yval5com(nn,nnn)-3*yL-yval5com(nn,nnn-1)-yval5com(nn,nnn-2))*tt (1,nn))/(8*(2+tt(1,nn)))+(1/(2+tt(1,nn))*yL);elsed(nn,nnn)=((5*yval5com(nn,nnn)-3*yval5com(nn,nnn+1)-yval5com(nn,nnn-1)-yval5 com(nn,nnn-2))*tt(1,nn))/(8*(2+tt(1,nn)));endendendyval5=TDMA(a,b,c,d,mdim);temp=yval5;yval5=yval5com;yval5com=temp;counter=counter+1;endyval5=yval5com;yval5=[repmat([1],size(tt,2),1),yval5,repmat([2],size(tt,2),1)];Fig(4,X,yval1,yval5,tt);title('QUICK Vs. Exact Solution')%-------------TDMA SubFunction------------------function y=TDMA(a,b,c,d,mdim)%form a b c d resolve yval2 by using TDMA%eliminationp(:,1)=b(:,1)./a(:,1);q(:,1)=d(:,1)./a(:,1);for n=2:mdimp(:,n)=b(:,n)./(a(:,n)-c(:,n).*p(:,n-1));q(:,n)=(d(:,n)+c(:,n).*q(:,n-1))./(a(:,n)-c(:,n).*p(:,n-1));end%iterativey(:,mdim)=q(:,mdim);for n=(mdim-1):-1:1y(:,n)=p(:,n).*y(:,n+1)+q(:,n);end%-------------ResultCom SubFunction------------------ function y=ResultCom (a,b,c)for n=1:max(size(c,2))y(2*n-1,:)=a(n,:);y(2*n,:)=b(n,:);end%-------------Fig SubFunction------------------ function y=Fig(n,a,b,c,d)figure(n);plot(a,b);hold onplot(a,c,'*');str='''legend(';for n=1:size(d,2)if n==size(d,2)str=strcat(str,'''''Pe=',num2str(d(1,n)),''''')''');elsestr=strcat(str,'''''Pe=',num2str(d(1,n)),''''',');endendeval(eval(str));精确解与数值解的对比图,其中边界条件给定10=φ,2=L φ。
5-2解:根据课本p158式(5—1a )得一维稳态无源项的对流-扩散方程如下所示: (取常物性)22x x u ∂∂Γ=∂∂φφρ边界条件如下:L L x x φφφφ====,;,00由(5—2)得方程的精确解为: 11)/(00--=--⋅Pe L x Pe L e e φφφφΓ=/uL Pe ρ将分成15等份,有:L ∆=P Pe 15对于中心差分、一阶迎风、混合格式和QUICK 格式分别分析如下:1)(CD)中心差分节点离散方程: 2)5.01()5.01(11-∆+∆++-=i i i P P φφφ10,2 =i 2)一阶迎风节点离散方程: ∆-∆++++=P P i i i 2)1(11φφφ10,2 =i 3)混合格式当时,节点离散方程:,1=∆P 2)5.01()5.01(11-∆+∆++-=i i i P P φφφ10,2 =i 当时,节点离散方程: , 10,5=∆P 1-=i i φφ10,2 =i 4)QUICK 格式,节点离散方程: , ⎥⎦⎤⎢⎣⎡--++++++=+-∆∆-∆∆+∆)336(81221211111i i i i i i P P P P P φφφφφφ2=i , ⎥⎦⎤⎢⎣⎡---++++++=+--∆∆-∆∆+∆)35(812212112111i i i i i i i P P P P P φφφφφφφ2≠i用matlab 编程如下:(本程序在x/L=0-1范围内取16个节点进行离散计算,假设y(1)= =0,y(16)==1,程序中Pa 为,x 为题中所提的x/L 。
由于本程序假设y(1)=0φL φ∆P =0,y(16)==1,所以)0φL φy y y y y y L =--=--=--010)1()16()1(00φφφφPa=input('请输入Pa=')x=0:1/15:1Pe=15*Pa;y=(exp(Pe*x)-1)/(exp(Pe)-1)plot(x,y,'-*k') %精确解hold ony(1)=0,y(16)=1;for i=2:15y(i)=((1+0.5*Pa)*y(i-1)+(1-0.5*Pa)*y(i+1))/2;endplot(x,y(1:16),'-or') %中心差分hold onfor i=2:15y(i)=((1+Pa)*y(i-1)+y(i+1))/(2+Pa);endplot(x,y(1:16),'-.>g') %一阶迎风hold onfor i=2:15if Pa==1y(i)=((1+0.5*Pa)*y(i-1)+(1-0.5*Pa)*y(i+1))/2;elsey(i)=y(i-1)endendplot(x,y(1:16),'-+y') %混合格式hold onfor i=2:15if i==2y(i)=y(i+1)/(2+Pa)+(1+Pa)*y(i-1)/(2+Pa)+(Pa/(2+Pa))*(6*y(i)-3*y(i-1)-3*y(i+1))/8 elsey(i)=y(i+1)/(2+Pa)+(1+Pa)*y(i-1)/(2+Pa)+(Pa/(2+Pa))*(5*y(i)-y(i-1)-y(i-2)-3*y(i+1))/8 endendplot(x, y(1:16),'-<b') %QUICK 格式hold onlegend('精确解','中心差分','一阶迎风','混合格式','QUICK 格式')运行结果如下图所示:当 :1=∆P当:5=∆P当:10=∆P5-3 解:根据课本式(5-19)得:乘方格式:⎪⎪⎩⎪⎪⎨⎧<-≤≤--+≤≤->=∆∆∆∆∆∆∆∆10,010,)1.01(100,)1.01(10,055P P P P P P P P D a e E 当时有:1.0=∆P 951.0)1.01.01()1.01(55=⨯-=-=∆P D a e E 301.0/3)()()()()()(===Γ=Γ=∆ee e e e e e e e P u x u u x D ρδρρδ5297.2830951.0951.0=⨯==e E D a 由系数关系可得:∆=-P D a D a e E w W 53.3130)951.01.0((=⨯+=⨯+=∆w e E W D D a P a根据式(5-51g )得: 205.01.010=⨯=∆∆=tx a P p ρ根据式(4-12)得: (本题方程中无源项)0P W E P a fa fa a ++=当采用隐式时,则得到:1=f 0597.62253.315297.280=++=++=P W E P a fa fa a 即:时,,,,1.0=∆P 5297.28=E a 53.31=W a 20=p a 0597.62=P a 当时,按照以上算法得出:10=∆P ,, , 0=E a 3=W a 20=p a 5=P a。
第5章作业答案5-2对于5种三点格式来说,一维对流扩散方程都是可以写成下列通用离散形式:P P E E W Wa a a φφφ=+ 其中: [](){}()[]{}()w e W E P w w w W e e e E F F a a a P P A D a P P A D a -++=+=-+=∆∆∆∆0,0,5种三点格式的()∆P A格式()∆P A迎风差分 1混合格式 []|5.01,0|∆-P 指数格式 ()()1exp -∆∆P P对网格Peclet 数为5,10的情形,应该得出如下图的结果,FUD 与混合格式没有振荡,而CD 和QUICK 均有,而且CD 比QUICK 更为严重。
5-3不同网格∆P 数下各系数计算结果如下∆P E aW a 0P a P a 0.1 28.53 31.53 2 62.05910 0 3255-5 四个节点之值如下一阶迎风 混合格式 乘方格式 二阶迎风(边界一阶) 二阶迎风(边界二阶)1φ 94.26 73.96 79.01 58.57 91.122φ 147.61 91.10 115.13 76.65 144.19 3φ 82.14 72.40 74.19 69.33 81.34 4φ 126.99 85.31 102.70 87.38 124.505-7不计扩散项,采用QUICK 离散i 控制容积的非稳态与对流项得:12117338n nn n n ni i i i i i x utφφφφφφ+--+--++∆=-∆ ((0)u >采用离散扰动分析法,对i+1得到扰动为78n i u t ρε∆,对i-1 得到扰动为38ni u t xε∆-∆,符号不变原则要求:0832≥∆Γ∆+∆∆-ninin i x t x t u εερερ,由此得:38≤=Γ∆∆P xu ρ5-9根据三阶迎风格式的定义:⎪⎩⎪⎨⎧<∆--+->∆+-+=∂∂-++--+0,62360,6632112211u x u xx i i i i i i i i φφφφφφφφφ仿照QUICK 格式,令三阶迎风格式的控制容积右界面上的值的形式为:⎪⎩⎪⎨⎧<+--+>+--+=0,220,22u a u a EEE P E P WP E E P e φφφφφφφφφφφ同理可以写出w φ的计算式。
数值传热学习题答案数值传热学习题答案数值传热学是热力学的一个重要分支,主要研究热量在物质中传递的机理和规律。
在实际工程中,我们经常会遇到各种与传热有关的问题,通过数值计算可以得到准确的答案。
下面我将为大家提供一些数值传热学习题的答案,希望能够帮助大家更好地理解和应用这门学科。
1. 一个铝制热交换器的表面积为10平方米,其表面温度为100摄氏度,环境温度为20摄氏度。
已知铝的导热系数为200 W/(m·K),求热交换器的传热速率。
答:根据传热定律,传热速率与传热面积、传热系数和温度差之间成正比。
传热速率 = 传热系数× 传热面积× 温度差。
将已知数据代入公式中,可得传热速率= 200 × 10 × (100 - 20) = 160,000 W。
2. 一个房间的尺寸为5米× 5米× 3米,墙壁和天花板的厚度为0.2米,墙壁和天花板的导热系数为0.5 W/(m·K),室内温度为25摄氏度,室外温度为10摄氏度。
求房间的传热损失。
答:房间的传热损失可以通过计算墙壁和天花板的传热速率来得到。
墙壁和天花板的传热速率 = 传热系数× 传热面积× 温度差。
墙壁和天花板的传热面积 = 2 × (5 × 5) + 2 × (5 × 3) = 70平方米。
将已知数据代入公式中,可得墙壁和天花板的传热速率= 0.5 × 70 × (25 - 10) = 525 W。
因此,房间的传热损失为525瓦特。
3. 一个水箱的体积为1立方米,初始温度为20摄氏度,水的密度为1000千克/立方米,比热容为4186 J/(千克·摄氏度),水箱的表面积为2平方米,表面温度为100摄氏度。
已知水的传热系数为0.6 W/(m^2·K),求水箱内水的温度随时间的变化。
########学院计算流体力学与传热学学号:专业:学生姓名:任课教师:教授2013年12月目录第一章验证显式格式的稳定性 (4)1.1 概述 (4)1.2 数学推导 (4)1.3 问题描述 (4)1.4 数值模拟 (4)1.5 结果及分析 (5)第二章判断肋片可以按一维问题处理的主要依据 (6)2.1 概述 (6)2.2 问题描述及算法 (6)2.3 数值模拟 (7)2.4 结果及分析 (8)第三章三层墙导热 (9)3.1 概述 (9)3.2 问题描述 (9)3.3 TDMA算法 (9)3.4 结果 (10)第四章一维无源稳态对流扩散问题 (11)4.1 公式及初值 (11)4.2 情况一 (11)4.3 情况二 (12)4.4 情况三 (13)第五章用ADI算法计算长方肋内的温度分布 (14)5.1 问题描述 (14)5.2 初始参数 (14)5.3 情况一,一列列扫 (14)5.4 情况二,一行行扫 (14)5.5 情况三,采用ADI算法 (15)5.6 结果分析 (15)参考文献 (16)第一章 验证显式格式的稳定性1.1 概述将一维非稳态热传导方程用显式格式差分化为代数方程,在求解的迭代过程中必须满足一定的条件,才能使方程收敛且结果正确。
此处即验证β≤½。
1.2 数学推导方程: 22T t T x α∂∂=∂∂(1)显式离散格式: 此处时间向前差分,空间中心差分11122n n n n ni i i i i T T T T T t x α+-+--+=∆∆1112(2)n n n n ni i i i i t T T T T T xα+-+∆-=-+∆ 令β=2tx α∆∆则: 111(2)n n n n ni i i i i T T T T T β+-+-=-+ (2)误差也应该满足上式,故:()()1()()()2()()iiiiiIkx Ikx Ik x x Ikx Ik x x n n n n nT e T e T e T e T e ψψβψψψ----∆--+∆+⎡⎤-=-+⎣⎦()()()1()12()()()iiiiIkx Ikx Ik x x Ik x x n n n nT e T e T e T e ψβψβψψ----∆-+∆+⎡⎤=-++⎣⎦()()1()12()()iiiIkx Ikx Ikxn n Ik x Ik x n T e T e e e T e ψβψβψ---+-∆∆=-++()()1()121()n Ik x Ik x nT e e T ψββψ+-∆∆=-++≤ 因此 β≤½。
5-2
解:根据课本p158式(5—1a )得一维稳态无源项的对流-扩散方程如下所示:
22x x u ∂∂Γ=∂∂φφρ (取常物性)
边界条件如下:
L L x x φφφφ====,;,00
由(5—2)得方程的精确解为:
1
1)/(00--=--⋅Pe L x Pe L e e φφφφ Γ=/uL Pe ρ 将L 分成15等份,有:∆=P Pe 15
对于中心差分、一阶迎风、混合格式和QUICK 格式分别分析如下:
1) (CD)中心差分
节点离散方程: 2
)5.01()5.01(11-∆+∆++-=
i i i P P φφφ 10,2 =i 2) 一阶迎风 节点离散方程: ∆-∆++++=
P P i i i 2)1(11φφφ 10,2 =i
3) 混合格式 当1=∆P 时,节点离散方程:2
)5.01()5.01(11-∆+∆++-=i i i P P φφφ ,10,2 =i 当10,5=∆P 时,节点离散方程: 1-=i i φφ , 10,2 =i
4) QUICK 格式,节点离散方程:
⎥⎦⎤⎢⎣⎡--++++++=+-∆
∆
-∆∆+∆)336(81221211111i i i i i i P P P P P φφφφφφ, 2=i ⎥⎦⎤⎢⎣⎡---++++++=
+--∆∆
-∆∆+∆)35(812212112111i i i i i i i P P P P P φφφφφφφ, 2≠i
用matlab 编程如下:(本程序在x/L=0-1范围内取16个节点进行离散计算,假设y(1)= 0φ=0,y(16)=L φ=1,程序中Pa 为∆P ,x 为题中所提的x/L 。
由于本程序假设y(1)=0φ=0,y(16)=L φ=1,所以y y y y y y L =--=--=--0
10)1()16()1(00φφφφ) Pa=input('请输入Pa=')
x=0:1/15:1
Pe=15*Pa;
y=(exp(Pe*x)-1)/(exp(Pe)-1)
plot(x,y,'-*k') %精确解
hold on
y(1)=0,y(16)=1;
for i=2:15
y(i)=((1+0.5*Pa)*y(i-1)+(1-0.5*Pa)*y(i+1))/2;
end
plot(x,y(1:16),'-or') %中心差分
hold on
for i=2:15
y(i)=((1+Pa)*y(i-1)+y(i+1))/(2+Pa);
end
plot(x,y(1:16),'-.>g') %一阶迎风
hold on
for i=2:15
if Pa==1
y(i)=((1+0.5*Pa)*y(i-1)+(1-0.5*Pa)*y(i+1))/2;
else
y(i)=y(i-1)
end
end
plot(x,y(1:16),'-+y') %混合格式
hold on
for i=2:15
if i==2
y(i)=y(i+1)/(2+Pa)+(1+Pa)*y(i-1)/(2+Pa)+(Pa/(2+Pa))*(6*y(i)-3*y(i-1)-3*y(i+1))/8 else
y(i)=y(i+1)/(2+Pa)+(1+Pa)*y(i-1)/(2+Pa)+(Pa/(2+Pa))*(5*y(i)-y(i-1)-y(i-2)-3*y(i+1))/8 end
end
plot(x, y(1:16),'-<b') %QUICK 格式
hold on
legend('精确解','中心差分','一阶迎风','混合格式','QUICK 格式')
运行结果如下图所示:当 1=∆P :
当5=∆P :
当10=∆P :
5-3 解:根据课本式(5-19)得: 乘方格式:⎪⎪⎩⎪⎪⎨⎧<-≤≤--+≤≤->=∆∆
∆∆∆∆∆∆10,010,
)1.01(100,)1.01(10,055P P P P P P P P D a e E
当1.0=∆P 时有:
951.0)1.01.01()1.01(55=⨯-=-=∆P D a e
E 301.0/3)()()()()()(===Γ=Γ=∆e
e e e e e e e e P u x u u x D ρδρρδ 5297.2830951.0951.0=⨯==e E D a 由系数关系∆=-P D a D a e
E w W 可得: 53.3130)951.01.0()(=⨯+=⨯+=∆w e
E W D D a P a
根据式(5-51g )得: 205
.01.010
=⨯=∆∆=t x
a P p ρ 根据式(4-12)得: 0P W E P a fa fa a ++= (本题方程中无源项)
当采用隐式时1=f ,则得到:
0597.62253.315297.280=++=++=P W E P a fa fa a
即:1.0=∆P 时,5297.28=E a ,53.31=W a ,20=p a ,0597.62=P a 当10=∆P 时,按照以上算法得出: 0=E a ,3=W a ,20
=p a , 5=P a。