数值传热_数值传热学大作业3gg
- 格式:pdf
- 大小:403.52 KB
- 文档页数:13
放置竖直孤立平板的二维围场内的空气流动与换热的数值分析(西安交通大学能源与动力工程学院,710049,西安)摘要:针对内部放置孤立平板的二维围场内的空气流动与换热问题,在稳态、常物性和壁面温度以及孤立平板温度恒定的条件下,采用SIMPLER算法,对围场内部的空气进行了流动与换热的数值模拟计算。
在瑞利数Ra=10000时,计算得到了二维围场内的流线、等温线以及热线。
关键词:SIMPLER算法、孤立平板、流线、等温线、热线Abstract:Inorder to investigate the fluxion and heat transfer of air in a 2D square enclosure with an isolated plate. SIMPLER algorithm was adopted based on the Reylonds conservation equations of the steady-state constant property laminar flow and a constant temperature of the isolated plate and the inner walls of the enclosure condition. Slove fluid velocity and temperature fields inthe enclosure for Ra=10000,and draw the diagrams of stream lines ,isotherms and heat lines.Key words:SIMPLER algorithm; isolated plate; stream lines; isotherms; heat lines主要符号表R瑞利数aP普朗特数rν空气运动粘度m2/sg重力加速度kg.m/s2 k空气导热系数W/(m℃) β空气体膨胀系数1/℃c空气比热容J/kg.℃pρ空气密度kg/(m3s)T金属板温度℃hT围场壁面温度℃c∆温差℃T一、引言封闭空腔内孤立物体自然对流换热是一个重要的研究课题,从某种角度讲,大空间自然对流是封闭腔内孤立物体自然对流的一个特例。
大作业一、假设0,1x y≤≤的方腔内充满不可压缩流体,左、右、下壁面固定,上壁面以()22161u x x=--运动。
试求腔内的定常解。
(流体的物性取20℃的水。
同时,可以使用20℃的甘油作为对比)二、求解二维圆柱坐标中的Poisson-Nernst-Plack(PNP)方程,PNP方程来描述纳米孔内带电离子在浓度梯度及电场作用下的迁移行为和离子浓度分布。
具体方程如下所示:其中i=+/-,分别代表阴阳离子。
以及连续性方程:其中Φ是局域的电动势,c i表示i种离子的浓度,左侧边界上c+=10,c-=10,右侧边界上c+=1,c-=1。
j i表示离子流,D i为离子的扩散系数2×10-9,z i为离子的带电量,z i=1,T为溶液的温度,T=300。
e是电子电量1.602×10-19,ε0×εr=80,k B为波尔兹曼常数,k B=1.38×10-23。
边界上的电势Φ由高斯定律决定:对于带电的纳米孔壁(图中红色实线所示),有σs=σ(σ为纳米孔的表面电荷密度,数值为0.05);对于其余区域有σs=0。
离子流j i在边界上的法向分量为零,即,求解φ、浓度c i以及ij的场。
(备注:求解区域为一圆柱形区域,长度为1200,直径为d=10。
建议步骤:可首先猜想浓度场c+和c-,并求解电动势场φ,通过连续性方程修正离子流场ij)大作业要求:1-3人为一组,完成以上任选一题目。
最终截止时间为12月26日。
在最终截止时间之前可以提交1次,若不满意得分可以继续修改。
大作业以报告形式提交,内容至少包括计算域的网格划分、方程的离散化、边界条件的处理、计算收敛的判据、计算的结果、结果的图形化显式、结果分析等。
源代码作为附录附在报告的最后。
数值传热学大作业—淬火过程的瞬态热分析专业:材料工程班级:研1303班学号:S2*******指导教师:孙斌煜姓名:李康一、问题描述某零件材料为45钢,按照国标GB/T6912-1999规定的45钢推荐热处理制度为840C 。
淬火.600C 。
回火,淬火介质为水,试计算零件温度随时间的我变化曲线和最后时刻的温度场云图 (1)45钢弹性模量:200GPa 泊松比:0.3质量密度:78503/m kg膨胀系数:15.5e-6m/C 。
比热:448C J kg / 导热系数:70()C m W .*/ (2)水 密度:9963/m kg 比热:4185C J kg / 导热系数:2()C m W .*/水沸腾对流换热系数:1200()C m W .*2/初始45钢温度840,水的初始温度为20C 。
,水槽宽1m,中间位零件最大截面60mm ,下图为淬火过程的零件截面。
图-1二、创建模型1.建立分析项目(1)在Windows系统下执行“开始”—“所有程序”—“ANSYS14.0”—“Mechanical APDL(ANSYS)14.0”命令,启动Mechanical APDL(ANSYS)14.0,进入主界面。
(2)选择热分析过滤菜单GUI:选择菜单Main Menu —Preprocessor,弹出分析项目对话框,选择Thermal 热分析,如图2 所示,完成后单击OK按钮结束。
2.更改分析名称和标题(1)改变工作项目标题GUI:File→Change Title,弹出对话框,输入“Thermal01”如下图,单击OK结束。
(2)更改项目名称GUI:File→Change Title,弹出对话框,输入“Thermal01”下方的复选框,如下图所示,完成单击OK完成。
3.创建材料模型要点:创建模型顺序依次为工件,水(1)添加导热系数GUI:Main Menu →Preprocessor→Material Prop→Material Models→Thermal→Conductivity→Isotropic,弹出对话框,输入导热系数70,如下图完成后单击OK 结束输入(2)添加比热容GUI:Main Menu →Preprocessor→Material Prop→Material Models→Thermal→Specific Heat.弹出比热容输入对话框,在文本框中输入工件比热容448,如下图,成后单击OK结束输入(3)添加密度GUI:Main Menu →Preprocessor→Material Prop→Material Models→Thermal→Density,弹出密度输入对话框,在文本框中输入工件比热容7785,如下图,成后单击OK结束输入(4)创建材料2依照上述步骤添加水的比热容4185,密度996,导热系数25.选择单元GUI:Main Menu →Preprocessor→Element type→add/Edit/Delete→add,弹出下图所示单元对话框,选择Thermal Solide的Quad 8node77单元,按OK键结束设置单元选项GUI:Main Menu →Preprocessor→Element type→add/Edit/Delete→add,弹出Element type对话框,单击对话框中的Option,弹出设置单元对话框,在单元形状K3文本框选择Plane Thickness,如下图,单击OK结束关闭对话框。
一维非稳态导热的数值解法一、导热问题数值解法的认识(一)背景所谓求解导热问题,就是对导热微分方程在规定的定解条件下的积分求解。
这样获得的解称为分析解。
近100年来,对大量几何形状及边界条件比较简单的问题获得了分析解。
但是,对于工程技术中遇到的许多几何形状或边界条件复杂的导热问题,由于数学上的困难目前还无法得出其分析解。
另一方面,在近几十年中,随着计算机技术的迅速发展,对物理问题进行离散求解的数值方法发展十分迅速,并得到日益广泛的应用。
这些数值方法包括有限差分法、有限元法及边界元法等。
其中,有限差分法物理概念明确,实施方法简便,本次大作业即采用有限差分法。
(二)基本思想把原来在时间、空间坐标系中连续的物理量的场,如导热物体的温度场,用有限个离散点上的值的集合来代替,将连续物理量场的求解问题转化为各离散点物理量的求解问题,将微分方程的求解问题转化为离散点被求物理量的代数方程的求解问题。
(三)基本步骤(1)建立控制方程及定解条件。
根据具体的物理模型,建立符合条件的导热微分方程和边界条件。
(2)区域离散化。
用一系列与坐标轴平行的网格线把求解区域划分成许多子区域,以网格线的交点作为需要确定温度值的空间位置,称为节点。
每一个节点都可以看成是以它为中心的一个小区域的代表,将小区域称之为元体。
(3)建立节点物理量的代数方程。
建立方法主要包括泰勒级数展开法和热平衡法。
(4)设立迭代初场。
(5)求解代数方程组。
(6)解的分析。
对于数值计算所获得的温度场及所需的一些其他物理量应作仔细分析,以获得定性或定量上的一些结论。
对于不符合实际情况的应作修正。
二、问题及求解(一)题目一厚度为0.1m 的无限大平壁,两侧均为对流换热边界条件,初始时两侧流体温度与壁内温度一致,1205f f t t t ===℃;已知两侧对流换热系数分别为h 1=11 W/m 2K 、h 2=23W/m 2K ,壁的导热系数λ=0.43W/mK ,导温系数a=0.3437×10-6 m 2/s 。
数值传热学习题答案数值传热学习题答案数值传热学是热力学的一个重要分支,主要研究热量在物质中传递的机理和规律。
在实际工程中,我们经常会遇到各种与传热有关的问题,通过数值计算可以得到准确的答案。
下面我将为大家提供一些数值传热学习题的答案,希望能够帮助大家更好地理解和应用这门学科。
1. 一个铝制热交换器的表面积为10平方米,其表面温度为100摄氏度,环境温度为20摄氏度。
已知铝的导热系数为200 W/(m·K),求热交换器的传热速率。
答:根据传热定律,传热速率与传热面积、传热系数和温度差之间成正比。
传热速率 = 传热系数× 传热面积× 温度差。
将已知数据代入公式中,可得传热速率= 200 × 10 × (100 - 20) = 160,000 W。
2. 一个房间的尺寸为5米× 5米× 3米,墙壁和天花板的厚度为0.2米,墙壁和天花板的导热系数为0.5 W/(m·K),室内温度为25摄氏度,室外温度为10摄氏度。
求房间的传热损失。
答:房间的传热损失可以通过计算墙壁和天花板的传热速率来得到。
墙壁和天花板的传热速率 = 传热系数× 传热面积× 温度差。
墙壁和天花板的传热面积 = 2 × (5 × 5) + 2 × (5 × 3) = 70平方米。
将已知数据代入公式中,可得墙壁和天花板的传热速率= 0.5 × 70 × (25 - 10) = 525 W。
因此,房间的传热损失为525瓦特。
3. 一个水箱的体积为1立方米,初始温度为20摄氏度,水的密度为1000千克/立方米,比热容为4186 J/(千克·摄氏度),水箱的表面积为2平方米,表面温度为100摄氏度。
已知水的传热系数为0.6 W/(m^2·K),求水箱内水的温度随时间的变化。
4-1解:采用区域离散方法A 时;内点采用中心差分123278.87769.9T T T ===22d T T=0dx - 有 i+1i 122+T 0i i T T T x---=∆ 将2点,3点带入 321222+T 0T T T x --=∆ 即321209T T -+= 432322+T 0T T T x --=∆4321322+T 0T T T x --=∆ 即4321209T T T -+-= 边界点4(1)一阶截差 由x=1 1dT dx =,得 4313T T -=(2)二阶截差 11B M M q x x xT T S δδλλ-=++V所以 434111. 1.36311T T T =++即 43122293T T -=采用区域离散方法B22d TT=0dx - 由控制容积法 0w edT dT T x dT dT ⎛⎫⎛⎫--∆= ⎪ ⎪⎝⎭⎝⎭ 所以代入2点4点有322121011336T T T T T ----= 即 239028T T -=544431011363T T T T T ----= 即3459902828T T T -+= 对3点采用中心差分有432322+T 013T T T --=⎛⎫⎪⎝⎭即2349901919T T T -+= 对于点5 由x=11dT dx =,得 5416T T -= (1)精确解求左端点的热流密度由 ()21x x eT e e e -=-+所以有 ()2220.64806911x xx x dT e e q e e dxe e λ-====-+=-=++ (2)由A 的一阶截差公式210.247730.743113x T T dT q dxλ=-=-==⨯= (3)由B 的一阶截差公式0.216400.649213x dTq dxλ=-=-== (4)由区域离散方法B 中的一阶截差公式:210.108460.6504()B BT T dT dx x δ-⎛⎫==⨯= ⎪⎝⎭ 通过对上述计算结果进行比较可得:区域离散B 有控制容积平衡法建立的离散方程与区域离散方程A 中具有二阶精度的格式精确度相当!4-3解: 对平板最如下处理:1 2 3 4由左向右点分别表述为1、2、3、4点,x 的正方向为由左向右; 控制方程为λd 2tdx +S =0 (1)边界条件为X=0,T=75℃;X=0.1,λdTdx +ℎ(T −T f )=0;则2、3点采用二阶截差格式,有 则有以下两式:λT3−2T2+T1∆x+S=0(2)λT4−2T3+T2∆x2+S=0(3)一阶截差公式可由λdTdx+ℎ(T−T f)=0变形得到λ(T4−T3∆x)=h(T4−T f)再变形得到T4=[T3+h×∆xλT f]/(1+h×∆xλ)(4)二阶截差公式可以联立λT5−2T4+T3∆x2+S=0和λ(T5−T32∆x)=h(T4−T f),可得以下公式T4=[T3+∆x2S2λ+h×∆xλ]/(1+h×∆xλ)(5)分别联立2、3、4式与2、3、5式,把S=50×103W/m3,λ=10W/m∙℃,h=50 W/m∙℃,T f=25℃,T1=75℃,∆x= 1/30带入到式子中,则有联立2、3、4式的解为:T2=78.58℃,T3=76.59℃,T4=69.03℃联立3、4、5式的解为:T2=80.42℃,T3=80.28℃,T4=74.58℃对控制方程进行积分,并将边界条件带入,则有关于T的方程T=−2500x2+250x+75(6)把x2=130,x3=230,x3=0.1代入上述6式则有:T2=80.56℃,T3=80.56℃,T4=75.1℃相比之下,对右端点采用二阶截差的离散更接近真实值4-4解:对平板作如下分析:1 2 3 4 5 由左向右分别对点编号为1、2、3、4、5 控制方程与4-3相同,为λd 2tdx +S =0 (1)边界条件为X=0,T=75℃;X=0.1,λdTdx +ℎ(T −T f )=0;设1点和2点的距离为∆x ,另1点对2点进行泰勒展开,有d 2t dx =(T 1−T 2+dT dx ∆x )2∆x其中dT dx=T 3−T 22∆x,则有λ2T 1−3T 2+T 3∆x 2+S =0 (2)对3点进行离散有λT 4−2T 3+T 2∆x 2+S =0 (3)对右端点有: [a p +A 1ℎ+(δx )5λ]T 4=a w T 3+[S/∆x +AT f 1ℎ+(δx )5λ]代入数据有T 3−3T 2+155.56=0 T 4−2T 3+T 2=−5.56342.85T4-300T3=1681解得:T2=78.1℃,T3=78.7℃,T4=73.8℃由导热定律有T4−T3∆x =2T5−T4∆x则有T5=71.35℃4—12编写程序:M=rand(10,3)A=M(:,1);B=M(:,2);C=M(:,3);B(10)=0;C(1)=0;T=12:21;D(1)=A(1)*T(1)-B(1)*T(2)for i=2:9;D(i)= A(i)*T(i)-B(i)*T(i+1)-C(i)*T(i-1)endD(10)= A(10)*T(10)-C(10)*T(9);P(1)=B(1)/A(1);Q(1)= D(1)/A(1);for i=2:10;P(i)=B(i)/(A(i)-C(i)*P(i-1));Q(i)=(D(i)+C(i)*Q(i-1))/(A(i)-C(i)*P(i-1)); endfor i=10:-1:2;t(10)=Q(10);t(i-1)=P(i-1)*t(i)+Q(i-1);enddisp(D(1:10))disp(T(1:10))disp(t(1:10))运行结果:由运行结果可知:无论系数怎样变化,T与t都是一致的。