2022年高考数学新题好题汇编 第3讲 函数与导数小题(原卷版=解析版)
- 格式:docx
- 大小:1.25 MB
- 文档页数:25
第3讲三角函数与解三角形一、单选题1.(2022·全国·高考真题(理))双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 的两支交于M ,N 两点,且123cos 5F NF ,则C 的离心率为()AB .32C .132D .172【答案】C 【解析】【分析】依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G ,可判断N 在双曲线的右支,设12F NF ,21F F N ,即可求出sin ,sin ,cos ,在21F F N 中由12sin sin F F N 求出12sin F F N ,再由正弦定理求出1NF ,2NF ,最后根据双曲线的定义得到23b a ,即可得解;【详解】解:依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G ,所以1OG NF ,因为123cos 05F NF,所以N 在双曲线的右支,所以OG a ,1OF c ,1GF b ,设12F NF ,21F F N ,由123cos 5F NF,即3cos 5 ,则4sin 5=,sin a c ,cos b c ,在21F F N 中,12sin sin sin F F N 4334sin cos cos sin 555b a a bc c c,由正弦定理得211225sin sin sin 2NF NF c c F F N ,所以112553434sin 2252c c a b a b NF F F N c,2555sin 222c c a a NF c 又12345422222a b a b aNF NF a,所以23b a ,即32b a ,所以双曲线的离心率132c e a故选:C2.(2022·全国·高考真题)若sin()cos()sin 4,则()A . tan 1B . tan 1C . tan 1D . tan 1【答案】C 【解析】【分析】由两角和差的正余弦公式化简,结合同角三角函数的商数关系即可得解.【详解】由已知得:sin cos cos sin cos cos sin sin 2cos sin sin ,即:sin cos cos sin cos cos sin sin 0 ,即: sin cos 0 ,所以 tan 1 ,故选:C3.(2022·全国·高考真题)记函数()sin (0)4f x x b的最小正周期为T .若23T ,且()y f x 的图象关于点3,22中心对称,则2f()A .1B .32C .52D .3【答案】A【解析】【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解.【详解】由函数的最小正周期T 满足23T ,得223,解得23 ,又因为函数图象关于点3,22对称,所以3,24k k Z ,且2b ,所以12,63k k Z ,所以52 ,5()sin 224f x x ,所以5sin 21244f .故选:A4.(2022·全国·高考真题(理))设函数π()sin 3f x x在区间(0,π)恰有三个极值点、两个零点,则 的取值范围是()A .513,36B .519,36C .138,63D .1319,66【答案】C 【解析】【分析】由x 的取值范围得到3x的取值范围,再结合正弦函数的性质得到不等式组,解得即可.【详解】解:依题意可得0 ,因为 0,x ,所以,333x,要使函数在区间 0, 恰有三个极值点、两个零点,又sin y x ,,33x的图象如下所示:则5323 ,解得13863 ,即138,63.故选:C .5.(2022·全国·高考真题(理))沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图, AB 是以O 为圆心,OA 为半径的圆弧,C 是的AB 中点,D 在 AB 上,CD AB .“会圆术”给出 AB 的弧长的近似值s 的计算公式:2CD s AB OA.当2,60OA AOB 时,s ()A .112B .112C D .92【答案】B 【解析】【分析】连接OC ,分别求出,,AB OC CD ,再根据题中公式即可得出答案.【详解】解:如图,连接OC ,因为C 是AB 的中点,所以OC AB ,又CD AB ,所以,,O C D 三点共线,即2OD OA OB ,又60AOB ,所以2AB OA OB ,则OC 2CD所以22211222CD s AB OA.故选:B.6.(2022·全国·高考真题(理))函数 33cos x xy x 在区间ππ,22的图象大致为()A .B .C .D .【答案】A 【解析】【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.【详解】令33cos ,,22x xf x x x,则 33cos 33cos x x x xf x x x f x ,所以 f x 为奇函数,排除BD ;又当0,2x时,330,cos 0x x x ,所以 0f x ,排除C.故选:A.7.(2022·全国·高考真题(文))将函数π()sin (0)3f x x的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则 的最小值是()A .16B .14C .13D .12【答案】C 【解析】【分析】先由平移求出曲线C 的解析式,再结合对称性得,232k kZ ,即可求出 的最小值.【详解】由题意知:曲线C 为sin sin()2323y x x,又C 关于y 轴对称,则,232k kZ ,解得12,3k kZ ,又0 ,故当0k 时, 的最小值为13.故选:C.二、填空题8.(2022·全国·高考真题(理))记函数 cos (0,0π)f x x 的最小正周期为T ,若3()2f T ,9x 为()f x 的零点,则 的最小值为____________.【答案】3【解析】【分析】首先表示出T ,根据f T ,再根据π9x 为函数的零点,即可求出 的取值,从而得解;【详解】解:因为 cos f x x ,(0 ,0π )所以最小正周期2πT,因为 2π3cos cos 2πcos 2f T,又0π ,所以π6 ,即 πcos 6f x x,又π9x为 f x 的零点,所以ππππ,Z 962k k ,解得39,Z k k ,因为0 ,所以当0k 时min 3 ;故答案为:39.(2022·全国·高考真题(理))已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD .当ACAB取得最小值时,BD ________.1## 【解析】【分析】设220CD BD m ,利用余弦定理表示出22AC AB 后,结合基本不等式即可得解.【详解】设220CD BD m ,则在ABD △中,22222cos 42AB BD AD BD AD ADB m m ,在ACD △中,22222cos 444AC CD AD CD AD ADC m m ,所以 2222224421214441243424211m m m AC m m AB m m m mm m44 当且仅当311mm 即1m 时,等号成立,所以当ACAB取最小值时,1m .1.三、解答题10.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知1233123S S S B .(1)求ABC 的面积;(2)若2sin sin 3A C ,求b .【答案】(2)12【解析】【分析】(1)先表示出123,,S S S ,再由123S S S 2222a c b ,结合余弦定理及平方关系求得ac ,再由面积公式求解即可;(2)由正弦定理得22sin sin sin b acB A C,即可求解.(1)由题意得22221231,,2S a a S b S c ,则2221234442S S S a b c,即2222a c b ,由余弦定理得222cos 2a c b B ac ,整理得cos 1ac B ,则cos 0B ,又1sin 3B ,则cos B ,1cos ac B 1sin 2ABC S ac B (2)由正弦定理得:sin sin sin b a cB AC ,则223294sin sin sin sin sin 423b ac ac B A C A C,则3sin 2b B ,31sin 22b B .11.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B.(1)若23C,求B ;(2)求222a b c的最小值.【答案】(1)π6;(2)5.【解析】【分析】(1)根据二倍角公式以及两角差的余弦公式可将cos sin 21sin 1cos2A BA B化成cos sin A B B ,再结合π02B,即可求出;(2)由(1)知,π2C B ,π22A B ,再利用正弦定理以及二倍角公式将222a b c 化成2224cos 5cos B B,然后利用基本不等式即可解出.(1)因为2cos sin 22sin cos sin 1sin 1cos 22cos cos A B B B BA B B B,即1sin cos cos sin sin cos cos 2B A B A B A B C,而π02B ,所以π6B ;(2)由(1)知,sin cos 0B C ,所以πππ,022C B ,而πsin cos sin 2B C C,所以π2C B,即有π22A B .所以222222222sin sin cos 21cos sin cos a b A B B B c C B2222222cos 11cos 24cos 555cos cos B BB BB.当且仅当2cos 2B 时取等号,所以222a b c的最小值为5.12.(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知 sin sin sin sin C A B B C A .(1)若2A B ,求C ;(2)证明:2222a b c 【答案】(1)5π8;(2)证明见解析.【解析】【分析】(1)根据题意可得, sin sin C C A ,再结合三角形内角和定理即可解出;(2)由题意利用两角差的正弦公式展开得sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A ,再根据正弦定理,余弦定理化简即可证出.(1)由2A B , sin sin sin sin C A B B C A 可得, sin sin sin sin C B B C A ,而π02B,所以 sin 0,1B ,即有 sin sin 0C C A ,而0π,0πC C A ,显然C C A ,所以,πC C A ,而2A B ,πA B C ,所以5π8C .(2)由 sin sin sin sin C A B B C A 可得,sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A ,再由正弦定理可得,cos cos cos cos ac B bc A bc A ab C ,然后根据余弦定理可知,22222222222211112222a c b b c a b c a a b c ,化简得:2222a b c ,故原等式成立.27.(2022·全国·高考真题(理))记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A .(1)证明:2222a b c ;(2)若255,cos 31a A ,求ABC 的周长.【答案】(1)见解析(2)14【解析】【分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证;(2)根据(1)的结论结合余弦定理求出bc ,从而可求得b c ,即可得解.(1)证明:因为 sin sin sin sin C A B B C A ,所以sin sin cos sin sin cos sin sin cos sin sin cos C A B C B A B C A B A C ,所以2222222222222a c b b c a a b c ac bc ab ac bc ab,即22222222222a c b a b c b c a ,所以2222a b c ;(2)解:因为255,cos 31a A ,由(1)得2250bc ,由余弦定理可得2222cos a b c bc A ,则50502531bc ,所以312bc,故 2222503181b c b c bc ,所以9b c ,所以ABC 的周长为14a b c .。
2022年全国高考数学真题及模拟题汇编:函数一.选择题(共7小题)1.函数()3f x lgx x =+-的定义域为( )A .[0,3]B .(0,3]C .[0,)+∞D .(-∞,3]2.函数||22()x y x x R =-∈的大致图象是( )A .B .C .D .3.已知函数()3f x x x =--0.2(3)a f =,3(0.2)b f =,0.2(log 3)c f =,则a ,b ,c 的大小关系是( )A .a b c >>B .b a c >>C .c a b >>D .c b a >> 4.已知函数212()(5)f x log x ax =-+,在(4,)x ∈+∞单调递减,则a 的取值范围是( )A .(-∞,8]B .21(,)4-∞C .(,8)-∞D .21(,]4-∞5.已知3log 2a =,0.1b e =,0.5ln c e =,则三者大小关系为( )A .a c b <<B .c a b <<C .c b a <<D .a b c << 6.已知12a e =,3log 5b =,6log 8c =(其中e 为自然对数的底数, 2.718)e ≈,下列关系正确的是( )A .a b c >>B .a c b >>C .b a c >>D .c a b >>7.若1a >,则1()x y a=与log a y x =在同一坐标系中的图象大致是( ) A . B .C .D .二.多选题(共3小题) 8.下列函数中,属于奇函数并且值域为R 的有( )A .3y x =B .1y x x =+C .1y x x =-D .22x x y -=+9.下列函数中,值域是(0,)+∞的是( )A .12x y -=B .21y x =C .(1)y ln x =+D .||y x =10.下列函数中,是奇函数且在(,)-∞+∞上是单调递增函数的是( )A .()f x x =B .()||f x x x =C .()22x x f x -=-D .2()f x x =三.填空题(共5小题)11.函数22(1)3(0)f x x x x -=-+>,则f (3)= .12.函数()log (2)2(0a f x x a =+->,且1)a ≠的图象必过定点 .13.已知212x =,21log 3y =,则x y +的值为 . 14.已知函数23(0x y a a -=+>且1)a ≠的图象恒过定点P ,点P 在幂函数()y f x =的图象上,则3log f (3)= .15.若幂函数()f x 的图象经过点1(,4)4,则(2)f -= . 四.解答题(共7小题)16.已知函数()f x 是定义在R 上的奇函数,且当0x <时,2()2f x x x =-+.(1)当0x 时,求函数()f x 的解析式;(2)解关于m 的不等式:(2)(2)23f m f m m +--.17.设函数4()221xx f x =--,0x >. (1)求函数()f x 的值域;(2)设函数2()1g x x ax =-+,若对1[1x ∀∈,2],2[1x ∃∈,2],12()()f x g x =,求正实数a 的取值范围.18.设函数21y mx mx =--.(1)若函数21y mx mx =--有两个零点,求m 的取值范围;(2)若命题:x R ∃∈,0y ,是假命题,求m 的取值范围;(3)若对于[1x ∈,3],2(1)3y m x ++恒成立,求m 的取值范围.19.已知函数()log (2)log (2)a a f x x x =+--,其中0a >,1a ≠.(1)求函数()f x 的定义域;(2)判断函数()f x 的奇偶性并给出证明;(3)若(1)1f -<,求a 的取值范围.20.已知函数1()21x f x a =-+为奇函数. (1)求a 的值,并判断函数()f x 的单调性;(2)若x R ∀∈,2(1)()0f x f kx ++<,求实数k 的取值范围.21.计算下列各式.(1)1206310.064()(2021)3π--+-+;(2)2731329log 5log 42log 5log -++. 22.计算:(100.539()()54--++ (2)22log 62222523lg lg -+--2022年全国高考数学真题及模拟题汇编:函数参考答案与试题解析一.选择题(共7小题)1.函数()3f x lgx x =+-的定义域为( )A .[0,3]B .(0,3]C .[0,)+∞D .(-∞,3]【考点】函数的定义域及其求法【分析】由对数式的真数大于0,根式内部的代数式大于等于0联立不等式组求解.【解答】解:要使原函数有意义,则030x x >⎧⎨-⎩,解得03x <. ∴函数()3f x lgx x =+-的定义域为(0,3].故选:B .【点评】本题考查函数的定义域及其求法,是基础题.2.函数||22()x y x x R =-∈的大致图象是( )A .B .C .D .【考点】函数的图象与图象的变换【分析】根据题意分析可得()f x 为偶函数,通过0x =函数的值,排除函数的图象即可.【解答】解:根据题意有||2||2()2()2()x x f x x x f x --=--=-=,所以函数是偶函数,又函数||22x y x =-,当0x =时,1y =,排除C ,故选:A .【点评】本题考查函数的图象分析,注意分析函数的奇偶性,属于基础题.3.已知函数()3f x x x =--0.2(3)a f =,3(0.2)b f =,0.2(log 3)c f =,则a ,b ,c 的大小关系是( )A .a b c >>B .b a c >>C .c a b >>D .c b a >>【考点】函数单调性的性质与判断【分析】首先求出函数()f x 的单调性,再判断0.2log 3,30.2,0.23的大小关系,从而得出a ,b ,c 的大小关系. 【解答】解:因为函数()3f x x x =-所以30x -,可得3x ,即()f x 的定义域为(-∞,3], 所以()3f x x x =-(-∞,3]单调递增,因为0.20331>=,3000.20.21<<=,0.2log 30<,所以30.20.2log 30.23<<,所以30.20.2(log 3)(0.2)(3)f f f <<,所以c b a <<.故选:A .【点评】本题主要考查函数单调性的性质与判断,考查函数值大小的比较,考查逻辑推理能力,属于基础题.4.已知函数212()(5)f x log x ax =-+,在(4,)x ∈+∞单调递减,则a 的取值范围是( )A .(-∞,8]B .21(,)4-∞C .(,8)-∞D .21(,]4-∞ 【考点】复合函数的单调性【分析】令25t x ax =-+,12log y t =,分析内层函数与外层函数的单调性以及对数真数在所给区间恒为正数,可得出关于a 的不等式组,进而求得实数a 的取值范围.【解答】解:令25t x ax =-+,易知12log y t =在其定义域上单调递减,要使()f x 在(4,)+∞上单调递减,则25t x ax =-+在(4,)+∞单调递增,且250t x ax =-+>,即2424450a a ⎧⎪⎨⎪-+⎩, 所以8214a a ⎧⎪⎨⎪⎩,即214a 因此实数a 的取值范围是(-∞,21]4. 故选:D. 【点评】本题考查复合函数的单调性,考查学生的运算能力,属于中档题.5.已知3log a =0.1b e =,0.5ln c e =,则三者大小关系为( )A .a c b <<B .c a b <<C .c b a <<D .a b c <<【考点】对数值大小的比较【分析】直接利用对数的运算性质化简得答案.【解答】解:33log log 0.5a =<=,0.101b e e =>=,0.50.5ln c e ==,a cb ∴<<.故选:A .【点评】本题考查对数值的大小比较,考查对数的运算性质,是基础题.6.已知12a e =,3log 5b =,6log 8c =(其中e 为自然对数的底数, 2.718)e ≈,下列关系正确的是( )A .a b c >>B .a c b >>C .b a c >>D .c a b >> 【考点】对数值大小的比较【分析】利用对数函数的单调性得到a b >,a c >,再利用对数的运算法则,换底公式,基本不等式得到b c >,求解即可.【解答】解:1232a e =>,33log 5log 3b =<332=, 6443log 8log 81log 22c =<=+=, a b ∴>,a c >,25858583363535lg lg lg lg lg lg lg b c lg lg lg lg lg lg -⋅∴-=->-=⋅ 222222(83)2425555444353535lg lg lg lg lg lg lg lg lg lg lg lg lg +--->=>⋅⋅⋅ 2255035lg lg lg lg -==⋅, b c ∴>,a b c ∴>>,故选:A .【点评】本题考查了对数的运算法则,换底公式,对数函数的单调性,基本不等式的应用,考查了计算能力,属于中档题.7.若1a >,则1()x y a=与log a y x =在同一坐标系中的图象大致是( ) A . B .C .D .【考点】对数函数的图象与性质;指数函数的图象与性质【分析】由指数函数与对数函数的性质依次判断即可. 【解答】解:1()x y a=与log a y x =分别过(0,1),(1,0)点, 又1a >, ∴1()x y a=与log a y x =分别为定义域内的减函数,增函数, 故选:D .【点评】本题考查了指数函数与对数函数的性质应用,属于基础题.二.多选题(共3小题)8.下列函数中,属于奇函数并且值域为R 的有( )A .3y x =B .1y x x =+C .1y x x =-D .22x x y -=+【考点】函数的值域;函数奇偶性的性质与判断【分析】根据题意,依次分析选项是否正确,综合可得答案.【解答】解:根据题意,依次分析选项:对于A ,3()f x x =是奇函数,且值域为R ,符合题意;对于B ,1()f x x x =+,当0x >时,1()2f x x x=+,当0x <时,()2f x -,即()f x 的值域为(-∞,2][2-,)+∞,不符合题意;对于C ,1()f x x x=-,是奇函数,且在(0,)+∞上单调递增,当0x +→时,()f x →-∞,x →+∞时,()f x →+∞,其值域为R ,符合题意;对于D ,()22x x f x -=+,是奇函数,且()2f x (当且仅当0x =时取“= “),其值域不为R ,不符合题意;故选:AC .【点评】本题考查函数奇偶性的判断以及值域的计算,考查逻辑推理能力与运算求解能力,属于中档题.9.下列函数中,值域是(0,)+∞的是( )A .12x y -=B .21y x =C .(1)y ln x =+D .||y x =【考点】函数的值域【分析】利用函数的性质求出值域即可判断.【解答】解:对于:1A x R -∈,120x y -∴=>,故A 正确,对于:0B x ≠,20x ∴>,210y x ∴=>,故B 正确, 对于:10C x +>,(1)(y ln x ∴=+∈-∞,)+∞,故C 错误,对于:D x R ∈,||[0y x ∴=∈,)+∞,故D 错误.故选:AB .【点评】本题主要考查函数值域的求解和判断,结合函数的性质求出函数的值域是解决本题的关键,是基础题.10.下列函数中,是奇函数且在(,)-∞+∞上是单调递增函数的是( )A .()f x x =B .()||f x x x =C .()22x x f x -=-D .2()f x x =【考点】奇偶性与单调性的综合【分析】由常见函数的奇偶性和单调性可得结论.【解答】解:()f x x =为奇函数,且在(,)-∞+∞上是单调递增,故A 符合题意;()||f x x x =满足()()f x f x -=-,()f x 为奇函数,且在[0,)+∞递增,在(-∞,0]也递增,则()f x 在(,)-∞+∞上是单调递增,故B 符合题意;()22x x f x -=-的定义域为R ,满足()()f x f x -=-,()f x 为奇函数,且2x y =和2x y -=-在R 上递增,则()f x 在R 上递增,故C 符合题意;2()f x x =为偶函数,故D 不符题意.故选:ABC .【点评】本题考查函数的奇偶性和单调性的判断,考查运算能力和推理能力,属于基础题.三.填空题(共5小题)11.函数22(1)3(0)f x x x x -=-+>,则f (3)= 5 .【考点】函数的值【分析】令213x -=得2x =,再代入即可.【解答】解:令213x -=得,2x =或2x =-(舍去),故f (3)2(21)f =-22235=-+=,故答案为:5.【点评】本题考查了复合函数函数值的求法,属于基础题.12.函数()log (2)2(0a f x x a =+->,且1)a ≠的图象必过定点 (1,2)-- .【考点】对数函数的图象与性质【分析】令21x +=,解得1x =-,当1x =-时,022y =-=-,即可求解.【解答】解:令21x +=,解得1x =-,当1x =-时,022y =-=-,故函数()log (2)2(0a f x x a =+->,且1)a ≠的图象必过定点(1,2)--.故答案为:(1,2)--.【点评】本题主要考查对数函数的性质,考查定点问题,属于基础题.13.已知212x =,21log 3y =,则x y +的值为 2 . 【考点】对数的运算性质【分析】先把指数式化为对数式,再利用对数的运算性质求解.【解答】解:212x =,2log 12x ∴=,222112log 423x y log log ∴+=+==, 故答案为:2.【点评】本题主要考查了指数式与对数式的互化,考查了对数的运算性质,是基础题.14.已知函数23(0x y a a -=+>且1)a ≠的图象恒过定点P ,点P 在幂函数()y f x =的图象上,则3log f (3)= 2 .【考点】幂函数的概念、解析式、定义域、值域;指数函数的单调性与特殊点【分析】求出(2,4)P ,由幂函数()a y f x x ==过(2,4)P ,求出a ,得到()f x 的解析式,再计算3log f (3)即可.【解答】解:函数23(0x y a a -=+>且1)a ≠的图象恒过定点P ,则(2,4)P ,∴幂函数()a y f x x ==过(2,4)P ,24a ∴=,解得2a =,2()f x x ∴=,3log f ∴(3)3log 92==.故答案为:2.【点评】本题考查函数值的求法,考查函数的性质等基础知识,考查运算求解能力,是基础题.15.若幂函数()f x 的图象经过点1(,4)4,则(2)f -= 12- . 【考点】幂函数的概念、解析式、定义域、值域【分析】设出幂函数的解析式,代入点的坐标,求出函数的解析式,求出(2)f -的值即可.【解答】解:设幂函数的解析式为()f x x α=, 则1()44α=,解得:1α=-, 故1()f x x =,故1(2)2f -=-, 故答案为:12-. 【点评】本题考查了求幂函数的定义,考查函数求值问题,是基础题.四.解答题(共7小题)16.已知函数()f x 是定义在R 上的奇函数,且当0x <时,2()2f x x x =-+.(1)当0x 时,求函数()f x 的解析式;(2)解关于m 的不等式:(2)(2)23f m f m m +--.【考点】函数奇偶性的性质与判断【分析】(1)根据奇函数的性质进行转化求解即可.(2)将不等式进行转化,利用函数奇偶性和单调性的性质进行转化求解即可.【解答】解:(1)函数()f x 是定义在R 上的奇函数,且当0x <时,2()2f x x x =-+. (0)0f ∴=,当0x >,则0x -<,则2()2()f x x x f x -=--=-,即2()2(0)f x x x x =+<,综上2()2(0)f x x x x =+.(2)由(2)(2)23f m f m m +--.得(2)2(2)2(2)2f m m f m m f m m +--+-=-+-. 设()()g x f x x =+,则不等式等价为(2)(2)g m g m -,作出函数()f x 的图象如图:则()f x 在R 上是增函数,则()()g x f x x =+也是增函数, 则由(2)(2)g m g m -,得22m m -,得23m, 即实数m 的取值范围是(-∞,2]3.【点评】本题主要考查函数解析式的求解,根据函数奇偶性和单调性的定义将不等式进行转化是解决本题的关键,是中档题.17.设函数4()221xx f x =--,0x >. (1)求函数()f x 的值域;(2)设函数2()1g x x ax =-+,若对1[1x ∀∈,2],2[1x ∃∈,2],12()()f x g x =,求正实数a 的取值范围.【考点】函数的值域【分析】(1)由已知41()2212121x x x x f x =-=-+--,,利用基本不等式可求函数()f x 的值域;(2)由对1[1x ∀∈,2],2[1x ∃∈,2],12()()f x g x =,可得函数函数()f x 在[1,2]上的值域包含于函数()g x 在[1,2]上的值域,由此可求正实数a 的取值范围.【解答】解:(1)24(2)111()2221212121x x x x x x f x -+=-=-=-+---,0x >,210x ->, 则11()212(21)22121x x x x f x =-+-⋅=--,,当且仅当1x =时取“=”, 所以()[2f x ∈,)+∞,即函数()f x 的值域为[2,)+∞;(2)设21x t =-,[1x ∈,2],[1t ∴∈,3], 函数1y t t=+在[1,3]上单调递增, 则函数()f x 在[1,2]上单调递增,()[2f x ∴∈,10]3, 设[1x ∈,2]时,函数()g x 的值域为A ,由题意知[2,10]3A ⊆, 又因为函数()g x 图象的对称轴为02a x =>, 当12a ,即02a <时,函数()g x 在[1,2]上递增,则(1)210(2)3g g ⎧⎪⎨⎪⎩,解得506a <, 当122a <<时,即24a <<时,函数()g x 在[1,2]上的最大值为g (1),g (2)中的较大者,而g (1)20a =-<且g (2)521a =-<,不合题意,当22a >,即4>时,函数()g x 在[1,2]上递减,则10(1)3(2)2g g ⎧⎪⎨⎪⎩,满足条件的a 不存在. 综上,5(0,]6a ∈. 【点评】本题考查了求函数的值域及分类讨论思想,采用了换元法求值域,换元后对参数t 的范围要进行确认,这是易错点,属于中档题.18.设函数21y mx mx =--.(1)若函数21y mx mx =--有两个零点,求m 的取值范围;(2)若命题:x R ∃∈,0y ,是假命题,求m 的取值范围;(3)若对于[1x ∈,3],2(1)3y m x ++恒成立,求m 的取值范围.【考点】函数恒成立问题;二次函数的性质与图象【分析】(1)利用零点的定义,结合二次方程根的个数问题,求解即可;(2)将问题转化为210mx mx --<对于x R ∀∈恒成立,分0m =和0m ≠两种情况,结合二次函数的图象与性质,列式求解即可;(3)将问题转化为4()m x x-+在[1x ∈,3]恒成立,利用基本不等式求解最值,即可得到答案.【解答】解:(1)因为函数21y mx mx =--有两个零点,所以方程210mx mx --=有两个不同的实数根,则2040m m m ≠⎧⎨=+>⎩,解得4m <-或0m >, 故实数m 的取值范围为(-∞,4)(0-⋃,)+∞;(2)命题:x R ∃∈,0y ,是假命题,则命题:x R ∀∈,0y <,是真命题,则210mx mx --<对于x R ∀∈恒成立,当0m =时,不等式为10-<恒成立,符合题意;当0m ≠时,则2040m m m <⎧⎨=+<⎩,解得40m -<<. 综上所述,实数m 的取值范围为(4-,0];(3)因为对于[1x ∈,3],2(1)3y m x ++恒成立, 即240x mx ++对于[1x ∈,3]恒成立,即4()m x x-+在[1x ∈,3]恒成立, 则4[()]max m x x-+, 因为4424x x x x+⋅=, 当且仅当4x x=,即2x =时取等号, 所以4[()]4max x x -+=-, 则4m -,所以实数m 的取值范围为[4-,)+∞.【点评】本题考查了函数零点的理解与应用,函数与方程的应用,函数与不等式的综合应用,命题真假的应用以及不等式恒成立问题,要掌握不等式恒成立问题的一般求解方法:参变量分离法、数形结合法、最值法等,属于中档题.19.已知函数()log (2)log (2)a a f x x x =+--,其中0a >,1a ≠.(1)求函数()f x 的定义域;(2)判断函数()f x 的奇偶性并给出证明;(3)若(1)1f -<,求a 的取值范围.【考点】函数奇偶性的性质与判断【分析】(1)依题意,得2020x x +>⎧⎨->⎩,解之可得函数()f x 的定义域; (2)()f x 为奇函数;利用奇函数的定义证明即可;(3)1(1)13aa f log log a -<⇔<,通过对a 的范围的分类讨论,可求得答案. 【解答】解:(1)()log (2)log (2)a a f x x x =+--,其中0a >,1a ≠,∴202202x x x x +>>-⎧⎧⇒⎨⎨-><⎩⎩, ∴函数()f x 的定义域为(2,2)-;(2)()f x 为奇函数. 证明:22()()022a a x x f x f x log log x x-+-+=+=+-, ()()f x f x ∴-=-,(2,2)x ∈-,()f x ∴为奇函数;(3)(1)1f -<,∴1(1)3a a f log log a -=<, ①01a <<,()f x 单调递减,∴103a <<; ②1a >,()f x 单调递增,∴13a >,1a ∴>; 综上:103a <<或1a >,即(0a ∈,1)(13⋃,)+∞. 【点评】本题考查函数奇偶性的性质与判断,考查分析推理能力与运算求解能力,属于中档题.20.已知函数1()21x f x a =-+为奇函数. (1)求a 的值,并判断函数()f x 的单调性;(2)若x R ∀∈,2(1)()0f x f kx ++<,求实数k 的取值范围.【考点】奇偶性与单调性的综合【分析】(1)由奇函数在R 上有定义,可得(0)0f =,求得a 的值,再由指数函数的单调性可得()f x 的单调性;(2)由奇函数()f x 的单调性可将不等式的两边的“f ”去掉,结合二次不等式恒成立,运用判别式法,解不等式可得所求范围.【解答】解:(1)函数1()21x f x a =-+为奇函数,定义域为R , 可得(0)0f =,即102a -=,解得12a =, 则1112()12212xx xf x -=-=++,满足()()0f x f x -+=, 所以12a =成立; 由2x y =在R 上递增,可得112xy =+在R 上递减, 所以()f x 在R 上为递减函数;(2)x R ∀∈,2(1)()0f x f kx ++<,即为2(1)()()f x f kx f kx +<-=-,因为()f x 在R 上为递减函数,所以21x kx +>-,即210x kx ++>恒成立,则△0<,即240k -<,解得22k -<<,则k 的取值范围是(2,2)-.【点评】本题考查函数的奇偶性和单调性的判断和运用:解不等式,考查转化思想和运算能力、推理能力,属于基础题.21.计算下列各式.(1)1206310.064()(2021)3π--+-+; (2)2731329log 5log 42log 5log -++. 【考点】对数的运算性质;有理数指数幂及根式【分析】(1)利用有理数指数幂的运算性质求解.(2)利用对数的运算性质求解.【解答】解:(1)原式1113662332043132⨯⨯⨯=⋅-++⨯ 23220.49198917255=-++⨯=-++=. (2)原式333log 527log 9log 527211=+++-=++=.【点评】本题主要考查了有理数指数幂的运算性质和对数的运算性质,是基础题.22.计算:(100.539()()54--++(2)22log 62222523lg lg -+-- 【考点】有理数指数幂及根式;对数的运算性质【分析】利用有理指数幂及对数的运算性质依次化简即可.【解答】解:(100.539()()54--++221133e e =-+++;(2)22log 62222523lg lg -+--421100632lg =--⨯ 211=-=.【点评】本题考查了有理指数幂及对数的运算,属于基础题.。
专题03 导数及其应用1.【2022年全国甲卷】当x =1时,函数f(x)=alnx +bx 取得最大值−2,则f ′(2)=( ) A .−1 B .−12C .12D .1【答案】B 【解析】 【分析】根据题意可知f (1)=−2,f ′(1)=0即可解得a,b ,再根据f ′(x )即可解出. 【详解】因为函数f (x )定义域为(0,+∞),所以依题可知,f (1)=−2,f ′(1)=0,而f ′(x )=ax −bx 2,所以b =−2,a −b =0,即a =−2,b =−2,所以f ′(x )=−2x +2x 2,因此函数f (x )在(0,1)上递增,在(1,+∞)上递减,x =1时取最大值,满足题意,即有f ′(2)=−1+12=−12. 故选:B.2.【2022年全国甲卷】已知a =3132,b =cos 14,c =4sin 14,则( ) A .c >b >a B .b >a >c C .a >b >c D .a >c >b【答案】A 【解析】 【分析】由cb =4tan 14结合三角函数的性质可得c >b ;构造函数f(x)=cosx +12x 2−1,x ∈(0,+∞),利用导数可得b >a ,即可得解. 【详解】因为cb =4tan 14,因为当x ∈(0,π2),sinx <x <tanx 所以tan 14>14,即cb >1,所以c >b ; 设f(x)=cosx +12x 2−1,x ∈(0,+∞),f ′(x)=−sinx +x >0,所以f(x)在(0,+∞)单调递增, 则f (14)>f(0)=0,所以cos 14−3132>0,所以b >a ,所以c >b >a , 故选:A3.【2022年新高考1卷】设a =0.1e 0.1,b =19,c =−ln0.9,则( ) A .a <b <c B .c <b <a C .c <a <b D .a <c <b【答案】C 【解析】 【分析】构造函数f(x)=ln(1+x)−x , 导数判断其单调性,由此确定a,b,c 的大小. 【详解】设f(x)=ln(1+x)−x(x >−1),因为f ′(x)=11+x −1=−x1+x , 当x ∈(−1,0)时,f ′(x)>0,当x ∈(0,+∞)时f ′(x)<0,所以函数f(x)=ln(1+x)−x 在(0,+∞)单调递减,在(−1,0)上单调递增, 所以f(19)<f(0)=0,所以ln109−19<0,故19>ln109=−ln0.9,即b >c ,所以f(−110)<f(0)=0,所以ln 910+110<0,故910<e −110,所以110e 110<19,故a <b ,设g(x)=xe x +ln(1−x)(0<x <1),则g ′(x)=(x +1)e x +1x−1=(x 2−1)e x +1x−1,令ℎ(x)=e x (x 2−1)+1,ℎ′(x)=e x (x 2+2x −1),当0<x <√2−1时,ℎ′(x)<0,函数ℎ(x)=e x (x 2−1)+1单调递减, 当√2−1<x <1时,ℎ′(x)>0,函数ℎ(x)=e x (x 2−1)+1单调递增, 又ℎ(0)=0,所以当0<x <√2−1时,ℎ(x)<0,所以当0<x <√2−1时,g ′(x)>0,函数g(x)=xe x +ln(1−x)单调递增, 所以g(0.1)>g(0)=0,即0.1e 0.1>−ln0.9,所以a >c 故选:C.4.【2022年新高考1卷】(多选)已知函数f(x)=x 3−x +1,则( ) A .f(x)有两个极值点B .f(x)有三个零点C .点(0,1)是曲线y =f(x)的对称中心D .直线y =2x 是曲线y =f(x)的切线【答案】AC【解析】 【分析】利用极值点的定义可判断A ,结合f(x)的单调性、极值可判断B ,利用平移可判断C ;利用导数的几何意义判断D. 【详解】由题,f ′(x )=3x 2−1,令f ′(x )>0得x >√33或x <−√33,令f ′(x)<0得−√33<x <√33,所以f(x)在(−√33,√33)上单调递减,在(−∞,−√33),(√33,+∞)上单调递增, 所以x =±√33是极值点,故A 正确;因f(−√33)=1+2√39>0,f(√33)=1−2√39>0,f (−2)=−5<0,所以,函数f (x )在(−∞,−√33)上有一个零点,当x ≥√33时,f (x )≥f (√33)>0,即函数f (x )在(√33,+∞)上无零点,综上所述,函数f(x)有一个零点,故B 错误;令ℎ(x)=x 3−x ,该函数的定义域为R ,ℎ(−x )=(−x )3−(−x )=−x 3+x =−ℎ(x ), 则ℎ(x)是奇函数,(0,0)是ℎ(x)的对称中心, 将ℎ(x)的图象向上移动一个单位得到f(x)的图象, 所以点(0,1)是曲线y =f(x)的对称中心,故C 正确; 令f ′(x )=3x 2−1=2,可得x =±1,又f(1)=f (−1)=1,当切点为(1,1)时,切线方程为y =2x −1,当切点为(−1,1)时,切线方程为y =2x +3, 故D 错误. 故选:AC.5.【2022年全国乙卷】已知x =x 1和x =x 2分别是函数f(x)=2a x −ex 2(a >0且a ≠1)的极小值点和极大值点.若x 1<x 2,则a 的取值范围是____________. 【答案】(1e ,1) 【解析】 【分析】由x 1,x 2分别是函数f (x )=2a x −ex 2的极小值点和极大值点,可得x ∈(−∞,x 1)∪(x 2,+∞)时,f′(x)<0,x∈(x1,x2)时,f′(x)>0,再分a>1和0<a<1两种情况讨论,方程2lna ⋅a x−2ex=0的两个根为x1,x2,即函数y=lna⋅a x与函数y=ex的图象有两个不同的交点,构造函数g(x)=lna⋅a x,利用指数函数的图象和图象变换得到g(x)的图象,利用导数的几何意义求得过原点的切线的斜率,根据几何意义可得出答案.【详解】解:f′(x)=2lna⋅a x−2ex,因为x1,x2分别是函数f(x)=2a x−ex2的极小值点和极大值点,所以函数f(x)在(−∞,x1)和(x2,+∞)上递减,在(x1,x2)上递增,所以当x∈(−∞,x1)∪(x2,+∞)时,f′(x)<0,当x∈(x1,x2)时,f′(x)>0,若a>1时,当x<0时,2lna⋅a x>0,2ex<0,则此时f′(x)>0,与前面矛盾,故a>1不符合题意,若0<a<1时,则方程2lna⋅a x−2ex=0的两个根为x1,x2,即方程lna⋅a x=ex的两个根为x1,x2,即函数y=lna⋅a x与函数y=ex的图象有两个不同的交点,∵0<a<1,∴函数y=a x的图象是单调递减的指数函数,又∵ln a<0,∴y=lna⋅a x的图象由指数函数y=a x向下关于x轴作对称变换,然后将图象上的每个点的横坐标保持不变,纵坐标伸长或缩短为原来的|ln a|倍得到,如图所示:设过原点且与函数y=g(x)的图象相切的直线的切点为(x0,lna⋅a x0),则切线的斜率为g′(x0)=ln2a⋅a x0,故切线方程为y−lna⋅a x0=ln2a⋅a x0(x−x0),则有−lna⋅a x0=−x0ln2a⋅a x0,解得x0=1lna,则切线的斜率为ln2a⋅a1lna=eln2a,因为函数y=lna⋅a x与函数y=ex的图象有两个不同的交点,所以eln2a<e,解得1e<a<e,又0<a<1,所以1e<a<1,综上所述,a的范围为(1e,1).【点睛】本题考查了函数的极值点问题,考查了导数的几何意义,考查了转化思想及分类讨论思想,有一定的难度.6.【2022年新高考1卷】若曲线y=(x+a)e x有两条过坐标原点的切线,则a的取值范围是________________.【答案】(−∞,−4)∪(0,+∞)【解析】【分析】设出切点横坐标x0,利用导数的几何意义求得切线方程,根据切线经过原点得到关于x0的方程,根据此方程应有两个不同的实数根,求得a的取值范围.【详解】∵y=(x+a)e x,∴y′=(x+1+a)e x,设切点为(x0,y0),则y0=(x0+a)e x0,切线斜率k=(x0+1+a)e x0,切线方程为:y−(x0+a)e x0=(x0+1+a)e x0(x−x0),∵切线过原点,∴−(x0+a)e x0=(x0+1+a)e x0(−x0),整理得:x02+ax0−a=0,∵切线有两条,∴∆=a2+4a>0,解得a<−4或a>0,∴a的取值范围是(−∞,−4)∪(0,+∞),故答案为:(−∞,−4)∪(0,+∞)7.【2022年新高考2卷】曲线y=ln|x|过坐标原点的两条切线的方程为____________,___ _________.【答案】y=1e x y=−1ex【解析】【分析】分x>0和x<0两种情况,当x>0时设切点为(x0,lnx0),求出函数的导函数,即可求出切线的斜率,从而表示出切线方程,再根据切线过坐标原点求出x0,即可求出切线方程,当x <0时同理可得;【详解】解:因为y=ln|x|,当x>0时y=lnx,设切点为(x0,lnx0),由y′=1x ,所以y′|x=x0=1x,所以切线方程为y−lnx0=1x0(x−x0),又切线过坐标原点,所以−lnx0=1x0(−x0),解得x=e,所以切线方程为y−1=1e(x−e),即y=1ex;当x<0时y=ln(−x),设切点为(x1,ln(−x1)),由y′=1x ,所以y′|x=x1=1x1,所以切线方程为y−ln(−x1)=1x1(x−x1),又切线过坐标原点,所以−ln(−x1)=1x1(−x1),解得x1=−e,所以切线方程为y−1=1−e(x+e),即y=−1ex;故答案为:y=1e x;y=−1ex8.【2022年全国甲卷】已知函数f(x)=x3−x,g(x)=x2+a,曲线y=f(x)在点(x1,f(x1))处的切线也是曲线y=g(x)的切线.(1)若x1=−1,求a;(2)求a的取值范围.【答案】(1)3(2)[−1,+∞)【解析】【分析】(1)先由f(x)上的切点求出切线方程,设出g(x)上的切点坐标,由斜率求出切点坐标,再由函数值求出a即可;(2)设出g(x)上的切点坐标,分别由f(x)和g(x)及切点表示出切线方程,由切线重合表示出a,构造函数,求导求出函数值域,即可求得a的取值范围.(1)由题意知,f(−1)=−1−(−1)=0,f′(x)=3x2−1,f′(−1)=3−1=2,则y=f(x)在点(−1,0)处的切线方程为y=2(x+1),即y=2x+2,设该切线与g(x)切于点(x2,g(x2)),g′(x)=2x,则g′(x2)=2x2=2,解得x2=1,则g(1)=1+a=2+2,解得a=3;(2)f′(x)=3x2−1,则y=f(x)在点(x1,f(x1))处的切线方程为y−(x13−x1)=(3x12−1)(x−x1),整理得y=(3x12−1)x−2x13,设该切线与g(x)切于点(x2,g(x2)),g′(x)=2x,则g′(x2)=2x2,则切线方程为y−(x22+a)=2x2(x−x2),整理得y=2x2x−x22+a,则{3x12−1=2x2−2x13=−x22+a ,整理得a=x22−2x13=(3x122−12)2−2x13=94x14−2x13−32x12+14,令ℎ(x)=94x4−2x3−32x2+14,则ℎ′(x)=9x3−6x2−3x=3x(3x+1)(x−1),令ℎ′(x)>0,解得−13<x<0或x>1,令ℎ′(x)<0,解得x<−13或0<x<1,则x变化时,ℎ′(x),ℎ(x)的变化情况如下表:则ℎ(x)的值域为[−1,+∞),故a的取值范围为[−1,+∞).9.【2022年全国甲卷】已知函数f(x)=e xx−lnx+x−a.(1)若f(x)≥0,求a的取值范围;(2)证明:若f(x)有两个零点x1,x2,则环x1x2<1.【答案】(1)(−∞,e+1](2)证明见的解析【解析】【分析】(1)由导数确定函数单调性及最值,即可得解;(2)利用分析法,转化要证明条件为e xx −x e1x−2[lnx−12(x−1x)]>0,再利用导数即可得证.(1)f(x)的定义域为(0,+∞),f′(x)=(1x −1x2)e x−1x+1=1x(1−1x)e x+(1−1x)=x−1x(e xx+1)令f(x)=0,得x=1当x∈(0,1),f′(x)<0,f(x)单调递减当x∈(1,+∞),f′(x)>0,f(x)单调递增f(x)≥f(1)=e+1−a,若f(x)≥0,则e+1−a≥0,即a≤e+1所以a的取值范围为(−∞,e+1](2)由题知,f(x)一个零点小于1,一个零点大于1不妨设x1<1<x2要证x1x2<1,即证x1<1x2因为x1,1x2∈(0,1),即证f(x1)>f(1x2)因为f(x1)=f(x2),即证f(x2)>f(1x2)即证e xx −lnx+x−x e1x−lnx−1x>0,x∈(1,+∞)即证e xx −x e1x−2[lnx−12(x−1x)]>0下面证明x>1时,e xx −x e1x>0,lnx−12(x−1x)<0设g(x)=e xx−x e1x,x>1,则g′(x)=(1x −1x2)e x−(e1x+x e1x⋅(−1x2))=1x(1−1x)e x−e1x(1−1x)=(1−1x)(exx−e1x)=x−1x(exx−e1x)设φ(x)=e xx (x>1),φ′(x)=(1x−1x2)e x=x−1x2ex>0所以φ(x)>φ(1)=e,而e1x<e所以e xx−e1x>0,所以g′(x)>0所以g(x)在(1,+∞)单调递增即g(x)>g(1)=0,所以e xx−x e1x>0令ℎ(x)=lnx−12(x−1x),x>1ℎ′(x)=1x−12(1+1x2)=2x−x2−12x2=−(x−1)22x2<0所以ℎ(x)在(1,+∞)单调递减即ℎ(x)<ℎ(1)=0,所以lnx−12(x−1x)<0;综上, e xx −x e1x−2[lnx−12(x−1x)]>0,所以x1x2<1.【点睛】关键点点睛:本题是极值点偏移问题,关键点是通过分析法,构造函数证明不等式ℎ(x)=lnx−12(x−1x)这个函数经常出现,需要掌握10.【2022年全国乙卷】已知函数f(x)=ax−1x−(a+1)lnx.(1)当a=0时,求f(x)的最大值;(2)若f(x)恰有一个零点,求a的取值范围.【答案】(1)−1(2)(0,+∞)【解析】【分析】(1)由导数确定函数的单调性,即可得解;(2)求导得f′(x)=(ax−1)(x−1)x2,按照a≤0、0<a<1及a>1结合导数讨论函数的单调性,求得函数的极值,即可得解.(1)当a=0时,f(x)=−1x −lnx,x>0,则f′(x)=1x2−1x=1−xx2,当x∈(0,1)时,f′(x)>0,f(x)单调递增;当x∈(1,+∞)时,f′(x)<0,f(x)单调递减;所以f(x)max=f(1)=−1;(2)f(x)=ax−1x −(a+1)lnx,x>0,则f′(x)=a+1x2−a+1x=(ax−1)(x−1)x2,当a≤0时,ax−1≤0,所以当x∈(0,1)时,f′(x)>0,f(x)单调递增;当x∈(1,+∞)时,f′(x)<0,f(x)单调递减;所以f(x)max=f(1)=a−1<0,此时函数无零点,不合题意;当0<a<1时,1a >1,在(0,1),(1a,+∞)上,f′(x)>0,f(x)单调递增;在(1,1a)上,f′(x)<0,f(x)单调递减;又f(1)=a−1<0,当x趋近正无穷大时,f(x)趋近于正无穷大,所以f(x)仅在(1a,+∞)有唯一零点,符合题意;当a=1时,f′(x)=(x−1)2x2≥0,所以f(x)单调递增,又f(1)=a−1=0,所以f(x)有唯一零点,符合题意;当a>1时,1a <1,在(0,1a),(1,+∞)上,f′(x)>0,f(x)单调递增;在(1a,1)上,f′(x)<0,f(x)单调递减;此时f(1)=a−1>0,又f(1a n )=1a n−1−a n+n(a+1)lna,当n趋近正无穷大时,f(1a n)趋近负无穷,所以f(x)在(0,1a )有一个零点,在(1a,+∞)无零点,所以f(x)有唯一零点,符合题意;综上,a的取值范围为(0,+∞).【点睛】关键点点睛:解决本题的关键是利用导数研究函数的极值与单调性,把函数零点问题转化为函数的单调性与极值的问题.11.【2022年全国乙卷】已知函数f(x)=ln(1+x)+axe−x(1)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若f(x)在区间(−1,0),(0,+∞)各恰有一个零点,求a的取值范围.【答案】(1)y=2x(2)(−∞,−1)【解析】【分析】(1)先算出切点,再求导算出斜率即可(2)求导,对a分类讨论,对x分(−1,0),(0,+∞)两部分研究(1)f(x)的定义域为(−1,+∞)当a=1时,f(x)=ln(1+x)+xe x ,f(0)=0,所以切点为(0,0)f′(x)=11+x+1−xe x,f′(0)=2,所以切线斜率为2所以曲线y=f(x)在点(0,f(0))处的切线方程为y=2x (2)f(x)=ln(1+x)+ax e xf′(x)=11+x+a(1−x)e x=ex+a(1−x2)(1+x)e x设g(x)=e x+a(1−x2)1°若a>0,当x∈(−1,0),g(x)=e x+a(1−x2)>0,即f′(x)>0所以f(x)在(−1,0)上单调递增,f(x)<f(0)=0故f(x)在(−1,0)上没有零点,不合题意2°若−1⩽a⩽0,当x∈(0,+∞),则g′(x)=e x−2ax>0所以g(x)在(0,+∞)上单调递增所以g(x)>g(0)=1+a⩾0,即f′(x)>0所以f(x)在(0,+∞)上单调递增,f(x)>f(0)=0故f(x)在(0,+∞)上没有零点,不合题意3°若a<−1(1)当x∈(0,+∞),则g′(x)=e x−2ax>0,所以g(x)在(0,+∞)上单调递增g(0)=1+a<0,g(1)=e>0所以存在m∈(0,1),使得g(m)=0,即f′(m)=0当x∈(0,m),f′(x)<0,f(x)单调递减当x∈(m,+∞),f′(x)>0,f(x)单调递增所以当x∈(0,m),f(x)<f(0)=0当x→+∞,f(x)→+∞所以f(x)在(m,+∞)上有唯一零点又(0,m)没有零点,即f(x)在(0,+∞)上有唯一零点(2)当x∈(−1,0),g(x)=e x+a(1−x2)设ℎ(x)=g′(x)=e x−2axℎ′(x)=e x−2a>0所以g′(x)在(−1,0)单调递增g′(−1)=1e+2a<0,g′(0)=1>0所以存在n∈(−1,0),使得g′(n)=0当x∈(−1,n),g′(x)<0,g(x)单调递减当x∈(n,0),g′(x)>0,g(x)单调递增,g(x)<g(0)=1+a<0又g(−1)=1e>0所以存在t∈(−1,n),使得g(t)=0,即f′(t)=0当x∈(−1,t),f(x)单调递增,当x∈(t,0),f(x)单调递减有x→−1,f(x)→−∞而f(0)=0,所以当x∈(t,0),f(x)>0所以f(x)在(−1,t)上有唯一零点,(t,0)上无零点即f(x)在(−1,0)上有唯一零点所以a<−1,符合题意所以若f(x)在区间(−1,0),(0,+∞)各恰有一个零点,求a的取值范围为(−∞,−1)【点睛】方法点睛:本题的关键是对a的范围进行合理分类,否定和肯定并用,否定只需要说明一边不满足即可,肯定要两方面都说明.12.【2022年新高考1卷】已知函数f(x)=e x−ax和g(x)=ax−lnx有相同的最小值.(1)求a;(2)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【答案】(1)a=1(2)见解析【解析】【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.(2)根据(1)可得当b>1时,e x−x=b的解的个数、x−lnx=b的解的个数均为2,构建新函数ℎ(x)=e x+lnx−2x,利用导数可得该函数只有一个零点且可得f(x),g(x)的大小关系,根据存在直线y=b与曲线y=f(x)、y=g(x)有三个不同的交点可得b的取值,再根据两类方程的根的关系可证明三根成等差数列.(1)f(x)=e x−ax的定义域为R,而f′(x)=e x−a,若a≤0,则f′(x)>0,此时f(x)无最小值,故a>0.g(x)=ax−lnx的定义域为(0,+∞),而g′(x)=a−1x =ax−1x.当x<lna时,f′(x)<0,故f(x)在(−∞,lna)上为减函数,当x>lna时,f′(x)>0,故f(x)在(lna,+∞)上为增函数,故f(x)min=f(lna)=a−alna.当0<x<1a 时,g′(x)<0,故g(x)在(0,1a)上为减函数,当x>1a 时,g′(x)>0,故g(x)在(1a,+∞)上为增函数,故g(x)min=g(1a )=1−ln1a.因为f(x)=e x−ax和g(x)=ax−lnx有相同的最小值,故1−ln1a =a−alna,整理得到a−11+a=lna,其中a>0,设g(a)=a−11+a −lna,a>0,则g′(a)=2(1+a)2−1a=−a2−1a(1+a)2≤0,故g(a)为(0,+∞)上的减函数,而g(1)=0,故g(a)=0的唯一解为a=1,故1−a1+a=lna的解为a=1.综上,a=1.(2)由(1)可得f(x)=e x−x和g(x)=x−lnx的最小值为1−ln1=1−ln11=1.当b>1时,考虑e x−x=b的解的个数、x−lnx=b的解的个数.设S(x)=e x−x−b,S′(x)=e x−1,当x<0时,S′(x)<0,当x>0时,S′(x)>0,故S(x)在(−∞,0)上为减函数,在(0,+∞)上为增函数,所以S(x)min=S(0)=1−b<0,而S(−b)=e−b>0,S(b)=e b−2b,设u(b)=e b−2b,其中b>1,则u′(b)=e b−2>0,故u(b)在(1,+∞)上为增函数,故u(b)>u(1)=e−2>0,故S(b)>0,故S(x)=e x−x−b有两个不同的零点,即e x−x=b的解的个数为2.设T(x)=x−lnx−b,T′(x)=x−1x,当0<x<1时,T′(x)<0,当x>1时,T′(x)>0,故T(x)在(0,1)上为减函数,在(1,+∞)上为增函数,所以T(x)min=T(1)=1−b<0,而T(e−b)=e−b>0,T(e b)=e b−2b>0,T(x)=x−lnx−b有两个不同的零点即x−lnx=b的解的个数为2.当b=1,由(1)讨论可得x−lnx=b、e x−x=b仅有一个零点,当b<1时,由(1)讨论可得x−lnx=b、e x−x=b均无零点,故若存在直线y=b与曲线y=f(x)、y=g(x)有三个不同的交点,则b>1.设ℎ(x)=e x+lnx−2x,其中x>0,故ℎ′(x)=e x+1x−2,设s(x)=e x−x−1,x>0,则s′(x)=e x−1>0,故s(x)在(0,+∞)上为增函数,故s(x)>s(0)=0即e x>x+1,所以ℎ′(x)>x+1x−1≥2−1>0,所以ℎ(x)在(0,+∞)上为增函数,而ℎ(1)=e−2>0,ℎ(1e3)=e1e3−3−2e3<e−3−2e3<0,故ℎ(x)在(0,+∞)上有且只有一个零点x 0,1e3<x 0<1且:当0<x <x 0时,ℎ(x)<0即e x −x <x −lnx 即f(x)<g(x), 当x >x 0时,ℎ(x)>0即e x −x >x −lnx 即f(x)>g(x),因此若存在直线y =b 与曲线y =f(x)、y =g(x)有三个不同的交点, 故b =f(x 0)=g(x 0)>1,此时e x −x =b 有两个不同的零点x 1,x 0(x 1<0<x 0), 此时x −lnx =b 有两个不同的零点x 0,x 4(0<x 0<1<x 4), 故e x 1−x 1=b ,e x 0−x 0=b ,x 4−lnx 4−b =0,x 0−lnx 0−b =0 所以x 4−b =lnx 4即e x 4−b =x 4即e x 4−b −(x 4−b)−b =0, 故x 4−b 为方程e x −x =b 的解,同理x 0−b 也为方程e x −x =b 的解又e x 1−x 1=b 可化为e x 1=x 1+b 即x 1−ln(x 1+b)=0即(x 1+b)−ln(x 1+b)−b =0, 故x 1+b 为方程x −lnx =b 的解,同理x 0+b 也为方程x −lnx =b 的解, 所以{x 1,x 0}={x 0−b,x 4−b},而b >1, 故{x 0=x 4−b x 1=x 0−b 即x 1+x 4=2x 0. 【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系. 13.【2022年新高考2卷】已知函数f(x)=x e ax −e x . (1)当a =1时,讨论f(x)的单调性;(2)当x >0时,f(x)<−1,求a 的取值范围; (3)设n ∈N ∗,证明:√12+1√22+2⋯√n 2+n>ln(n +1).【答案】(1)f(x)的减区间为(−∞,0),增区间为(0,+∞). (2)a ≤12 (3)见解析 【解析】 【分析】(1)求出f ′(x),讨论其符号后可得f(x)的单调性.(2)设ℎ(x)=x e ax −e x +1,求出ℎ″(x),先讨论a >12时题设中的不等式不成立,再就0<a≤12结合放缩法讨论ℎ′(x)符号,最后就a ≤0结合放缩法讨论ℎ(x)的范围后可得参数的取值范围.(3)由(2)可得2lnt <t −1t 对任意的t >1恒成立,从而可得ln(n +1)−lnn <√n 2+n 对任意的n ∈N ∗恒成立,结合裂项相消法可证题设中的不等式. (1)当a =1时,f(x)=(x −1)e x ,则f ′(x)=x e x , 当x <0时,f ′(x)<0,当x >0时,f ′(x)>0, 故f(x)的减区间为(−∞,0),增区间为(0,+∞). (2)设ℎ(x)=x e ax −e x +1,则ℎ(0)=0,又ℎ′(x)=(1+ax)e ax −e x ,设g(x)=(1+ax)e ax −e x , 则g ′(x)=(2a +a 2x)e ax −e x , 若a >12,则g ′(0)=2a −1>0, 因为g ′(x)为连续不间断函数,故存在x 0∈(0,+∞),使得∀x ∈(0,x 0),总有g ′(x)>0, 故g(x)在(0,x 0)为增函数,故g(x)>g(0)=0,故ℎ(x)在(0,x 0)为增函数,故ℎ(x)>ℎ(0)=−1,与题设矛盾. 若0<a ≤12,则ℎ′(x)=(1+ax)e ax −e x =e ax+ln(1+ax)−e x , 下证:对任意x >0,总有ln(1+x)<x 成立,证明:设S(x)=ln(1+x)−x ,故S ′(x)=11+x −1=−x1+x <0, 故S(x)在(0,+∞)上为减函数,故S(x)<S(0)=0即ln(1+x)<x 成立. 由上述不等式有e ax+ln(1+ax)−e x <e ax+ax −e x =e 2ax −e x ≤0, 故ℎ′(x)≤0总成立,即ℎ(x)在(0,+∞)上为减函数, 所以ℎ(x)<ℎ(0)=−1.当a ≤0时,有ℎ′(x)=e ax −e x +ax e ax <1−1+0=0, 所以ℎ(x)在(0,+∞)上为减函数,所以ℎ(x)<ℎ(0)=−1. 综上,a ≤12. (3)取a=12,则∀x>0,总有x e12x−e x+1<0成立,令t=e12x,则t>1,t2=e x,x=2lnt,故2tlnt<t2−1即2lnt<t−1t对任意的t>1恒成立.所以对任意的n∈N∗,有2ln√n+1n <√n+1n−√nn+1,整理得到:ln(n+1)−lnn<√n2+n,故√12+1√22+2⋯√n2+n>ln2−ln1+ln3−ln2+⋯+ln(n+1)−lnn=ln(n+1),故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.14.【2022年北京】已知函数f(x)=e x ln(1+x).(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)设g(x)=f′(x),讨论函数g(x)在[0,+∞)上的单调性;(3)证明:对任意的s,t∈(0,+∞),有f(s+t)>f(s)+f(t).【答案】(1)y=x(2)g(x)在[0,+∞)上单调递增.(3)证明见解析【解析】【分析】(1)先求出切点坐标,在由导数求得切线斜率,即得切线方程;(2)在求一次导数无法判断的情况下,构造新的函数,再求一次导数,问题即得解;(3)令m(x)=f(x+t)−f(x),(x,t>0),即证m(x)>m(0),由第二问结论可知m(x)在[0,+∞)上单调递增,即得证.(1)解:因为f(x)=e x ln(1+x),所以f(0)=0,即切点坐标为(0,0),又f′(x)=e x(ln(1+x)+11+x),∴切线斜率k=f′(0)=1∴切线方程为:y=x(2)解:因为g(x)=f′(x)=e x(ln(1+x)+11+x),所以g′(x)=e x(ln(1+x)+21+x−1(1+x)2),令ℎ(x)=ln(1+x)+21+x−1(1+x)2,则ℎ′(x)=11+x −2(1+x)2+2(1+x)3=x2+1(1+x)3>0,∴ℎ(x)在[0,+∞)上单调递增,∴ℎ(x)≥ℎ(0)=1>0∴g′(x)>0在[0,+∞)上恒成立,∴g(x)在[0,+∞)上单调递增.(3)解:原不等式等价于f(s+t)−f(s)>f(t)−f(0),令m(x)=f(x+t)−f(x),(x,t>0),即证m(x)>m(0),∵m(x)=f(x+t)−f(x)=e x+t ln(1+x+t)−e x ln(1+x),m′(x)=e x+t ln(1+x+t)+e x+t1+x+t −e x ln(1+x)−e x1+x=g(x+t)−g(x),由(2)知g(x)=f′(x)=e x(ln(1+x)+11+x)在[0,+∞)上单调递增,∴g(x+t)>g(x),∴m′(x)>0∴m(x)在(0,+∞)上单调递增,又因为x,t>0,∴m(x)>m(0),所以命题得证.15.【2022年浙江】设函数f(x)=e2x+lnx(x>0).(1)求f(x)的单调区间;(2)已知a,b∈R,曲线y=f(x)上不同的三点(x1,f(x1)),(x2,f(x2)),(x3,f(x3))处的切线都经过点(a,b).证明:(ⅰ)若a >e ,则0<b −f(a)<12(ae−1);(ⅱ)若0<a <e ,x 1<x 2<x 3,则2e+e−a 6e2<1x 1+1x 3<2a −e −a 6e2. (注:e =2.71828⋯是自然对数的底数)【答案】(1)f(x)的减区间为(0,e 2),增区间为(e 2,+∞). (2)(ⅰ)见解析;(ⅱ)见解析. 【解析】 【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)(ⅰ)由题设构造关于切点横坐标的方程,根据方程有3个不同的解可证明不等式成立,(ⅱ) k =x 3x 1,m =a e<1,则题设不等式可转化为t 1+t 3−2−2m<(m−13)(m 2−m+12)36m(t 1+t 3),结合零点满足的方程进一步转化为lnm +(m−1)(m−13)(m 2−m+12)72(m+1)<0,利用导数可证该不等式成立. (1)f ′(x)=−e 2x 2+1x=2x−e 2x 2,当0<x <e 2,f ′(x)<0;当x >e2,f ′(x)>0, 故f(x)的减区间为(0,e 2),f(x)的增区间为(e 2,+∞). (2)(ⅰ)因为过(a,b)有三条不同的切线,设切点为(x i ,f(x i )),i =1,2,3, 故f(x i )−b =f ′(x i )(x i −a),故方程f(x)−b =f ′(x)(x −a)有3个不同的根,该方程可整理为(1x −e 2x 2)(x −a)−e 2x −lnx +b =0, 设g(x)=(1x −e 2x 2)(x −a)−e 2x −lnx +b , 则g ′(x)=1x −e 2x 2+(−1x 2+e x 3)(x −a)−1x +e 2x 2 =−1x 3(x −e )(x −a),当0<x <e 或x >a 时,g ′(x)<0;当e <x <a 时,g ′(x)>0, 故g(x)在(0,e ),(a,+∞)上为减函数,在(e ,a)上为增函数,因为g(x)有3个不同的零点,故g(e )<0且g(a)>0, 故(1e −e2e 2)(e −a)−e 2e−ln e +b <0且(1a −e 2a 2)(a −a)−e2a −lna +b >0, 整理得到:b <a 2e+1且b >e2a +lna =f(a),此时b −f(a)−12(ae−1)<a2e+1−(e 2a +lna)−a2e+12=32−e 2a −lna , 设u(a)=32−e 2a −lna ,则u ′(a)=e -2a2a 2<0, 故u(a)为(e ,+∞)上的减函数,故u(a)<32−e 2e −ln e =0,故0<b −f(a)<12(ae−1).(ⅱ)当0<a <e 时,同(ⅰ)中讨论可得:故g(x)在(0,a),(e ,+∞)上为减函数,在(a,e )上为增函数, 不妨设x 1<x 2<x 3,则0<x 1<a <x 2<e <x 3, 因为g(x)有3个不同的零点,故g(a)<0且g(e )>0, 故(1e −e2e 2)(e −a)−e 2e−ln e +b >0且(1a −e 2a 2)(a −a)−e2a −lna +b <0, 整理得到:a2e+1<b <a 2e+lna ,因为x 1<x 2<x 3,故0<x 1<a <x 2<e <x 3, 又g(x)=1−a+e x+e a2x 2−lnx +b ,设t =ex ,a e=m ∈(0,1),则方程1−a+e x+e a2x 2−lnx +b =0即为: −a+e et +a2et 2+lnt +b =0即为−(m +1)t +m 2t 2+lnt +b =0,记t 1=e x 1,t 2=e x 2,t 3=e x 3, 则t 1,t 1,t 3为−(m +1)t +m 2t 2+lnt +b =0有三个不同的根, 设k =t1t 3=x3x 1>e a >1,m =a e<1,要证:2e+e−a 6e2<1x 1+1x 2<2a −e −a 6e2,即证2+e −a 6e<t 1+t 3<2ea−e −a6e,即证:13−m6<t 1+t 3<2m −1−m6,即证:(t 1+t 3−13−m6)(t 1+t 3−2m +1−m6)<0, 即证:t 1+t 3−2−2m <(m−13)(m 2−m+12)36m(t 1+t 3),而−(m +1)t 1+m 2t 12+lnt 1+b =0且−(m +1)t 3+m 2t 32+lnt 3+b =0,故lnt 1−lnt 3+m 2(t 12−t 32)−(m +1)(t 1−t 3)=0,故t 1+t 3−2−2m =−2m ×lnt 1−lnt 3t 1−t 3,故即证:−2m ×lnt 1−lnt 3t 1−t 3<(m−13)(m 2−m+12)36m(t 1+t 3),即证:(t 1+t 3)ln t 1t 3t 1−t 3+(m−13)(m 2−m+12)72>0即证:(k+1)lnk k−1+(m−13)(m 2−m+12)72>0,记φ(k)=(k+1)lnk k−1,k >1,则φ′(k)=1(k−1)2(k −1k −2lnk)>0,设u(k)=k −1k −2lnk ,则u ′(k)=1+1k 2−2k >2k −2k =0即φ′(k)>0, 故φ(k)在(1,+∞)上为增函数,故φ(k)>φ(m), 所以(k+1)lnk k−1+(m−13)(m 2−m+12)72>(m+1)lnm m−1+(m−13)(m 2−m+12)72,记ω(m)=lnm +(m−1)(m−13)(m 2−m+12)72(m+1),0<m <1,则ω′(m)=(m−1)2(3m 3−20m 2−49m+72)72m(m+1)2>(m−1)2(3m 3+3)72m(m+1)2>0,所以ω(m)在(0,1)为增函数,故ω(m)<ω(1)=0, 故lnm +(m−1)(m−13)(m 2−m+12)72(m+1)<0即(m+1)lnm m−1+(m−13)(m 2−m+12)72>0,故原不等式得证: 【点睛】思路点睛:导数背景下的切线条数问题,一般转化为关于切点方程的解的个数问题,而复杂方程的零点性质的讨论,应该根据零点的性质合理转化需求证的不等式,常用的方法有比值代换等.1.(2022·全国·南京外国语学校模拟预测)设函数()f x 在R 上存在导数()f x ',对于任意的实数x ,有()()22f x f x x +-=,当(],0x ∈-∞时,()42f x x '+<,若()()2422f m f m m m +++≤-,则实数m 的取值范围是( ) A .[)1,2 B .(](),12,-∞+∞ C .[)2,2-D .(](),12,-∞-+∞【解析】 【分析】构造函数()()24g x f x x x =-+,得到()g x 为奇函数,()g x 在R 上单调递减,分20m -<和20m ->两种情况,利用奇偶性和单调性解不等式,求出实数m 的取值范围.【详解】∵()42f x x '+<,∴()420f x x '+-<.令()()24g x f x x x =-+,且()()24g x f x x ''=-+,则()g x 在(],0-∞上单调递减.又∵()()22f x f x x +-=,∴()()()()2244g x g x f x x x f x x x +-=-++---=()()220f x f x x +--=,∴()g x 为奇函数,()g x 在R 上单调递减. ∵()()2422f m f m m m +++≤-,∴()()2242402f m f m m m m +++-+≤-.当20m -<,即2m <时,()()224240f m f m m m +++-+≥,即()()()()2222424f m m m f m m m ⎡⎤+-+++≥--+⎣⎦即()()2g m g m +≥-,由于()g x 在R 上递减,则2m m +≤-, 解得:1m ≤-, ∴1m ≤-.当20m ->,即2m >时,()()224240f m f m m m +++-+≤,即()()2g m g m +≤-.由()g x 在R 上递减,则2m m +≥-, 解得:1m ≥-,所以2m >.综上所述,实数m 的取值范围是(](),12,-∞-+∞.【点睛】构造函数,研究出构造的函数的奇偶性和单调性,进而解不等式,是经常考查的一类题目,结合题干信息,构造出函数是关键.2.(2022·内蒙古·海拉尔第二中学模拟预测(理))已知函数()()e ln e (0)xf x a a a =+>,若对任意实数1x >,不等式()()ln 1f x x ≥-总成立,则实数a 的取值范围为( ) A .210,e ⎛⎫ ⎪⎝⎭B .221,e e ⎛⎤⎥⎝⎦C .21,e ⎛⎫+∞ ⎪⎝⎭D .21,e ⎡⎫+∞⎪⎢⎣⎭【答案】D 【解析】 【分析】将所求不等式变形为()()ln 1ln eln eln 1x x ax a x -+++≥+-,构造函数()e x g x x =+,可知该函数在R 上为增函数,由此可得出()ln ln 1a x x ≥--,其中1x >,利用导数求出()()ln 1h x x x =--的最大值,即可求得实数a 的取值范围. 【详解】当1x >时,由()()ln 1f x x ≥-可得()ln eln 1ln 1x aa x +++≥-, 即()()()ln 1ln eln 1ln 1eln 1x x ax a x x x -+++≥-+-=+-,构造函数()e x g x x =+,其中x ∈R ,则()e 10xg x '=+>,所以,函数()g x 在R 上为增函数, 由()()ln 1ln eln eln 1x x ax a x -+++≥+-可得()()ln ln 1g x a g x +≥-⎡⎤⎣⎦,所以,()ln ln 1x a x +≥-,即()ln ln 1a x x ≥--,其中1x >, 令()()ln 1h x x x =--,其中1x >,则()12111xh x x x -'=-=--. 当12x <<时,()0h x '>,函数()h x 单调递增, 当2x >时,()0h x '<,函数()h x 单调递减,所以,()()max ln 22a h x h ≥==-,21e a ∴≥. 故选:D. 【点睛】关键点点睛:本题考查利用函数不等式恒成立求参数,解题的关键就是将所求不等式进行转化,通过不等式的结构构造新函数,结合新函数的单调性来求解.3.(2022·江苏无锡·模拟预测)已知13e ,(93ln 3)e a b c --===-,则a ,b ,c 的大小为( ) A .a b c << B .a c b << C .c a b << D .b c a <<【答案】C 【解析】 【分析】根据给定条件,构造函数ln ()(e)xf x x x=≥,利用函数的单调性比较大小作答. 【详解】 令函数ln ()(e)x f x x x =≥,当e x >时,求导得:()21ln 0xf x x '-=<, 则函数()f x 在[e,)+∞上单调递减,又ln 3(3)3a f ==,ln e (e)eb f ==,3333e ln3(3ln 3)e 3()e e 33c f -===,显然3e e 33<<,则有3e ()(3)(e)3f f f <<,所以c a b <<.故选:C 【点睛】思路点睛:某些数或式大小比较问题,探讨给定数或式的内在联系,构造函数,分析并运用函数的单调性求解.4.(2022·福建·三明一中模拟预测)己知e 为自然对数的底数,a ,b 均为大于1的实数,若1e ln a a b b b ++<,则( )A .1e a b +<B .1e a b +>C .e ab <D .e ab >【答案】B 【解析】 【分析】由题意化简得到e ln e ln e e a a b b <,设()ln f x x x =,得到(e )()eab f f <,结合题意和函数()f x 的单调性,即可求解. 【详解】由1e ln a a b b b ++<,可得1eln (ln 1)ln ea b a b b b b b b +<-=-=,即e ln e ln e e a a b b<,设()ln f x x x =,可得(e )()eab f f <,因为0a >,可得e 1a >,又因为(ln 1)0,0b b b ->>,所以ln 1b >,即e b >,所以1eb>, 当1x >时,()ln 10f x x '=+>,可得函数()f x 在(1,)+∞为单调递增函数,所以e eab<,即1e a b +>. 故选:B.5.(2022·河南·开封市东信学校模拟预测(文))已知函数e ()e ln 2xf x x =-,则曲线()y f x =在点(1,(1))f 处的切线方程为( ) A .e 2e 0x y +-= B .e e 02x y +=- C .e 2e 0x y --= D .e 2e 0x y ++=【答案】B 【解析】 【分析】根据导数的几何意义及点斜式方程即可求解. 【详解】 ∵e ()e 2x f x x ='-,∴e e (1)e 22f '=-=. 又1e (1)e ln12e f =-⨯=,切点为(1,e)所以曲线()y f x =在点(1,(1))f 处的切线的斜率为e (1)2k f '==, 所以曲线()y f x =在点(1,(1))f 处的切线方程为 ee (1)2y x -=-,即e e 02x y +=-. 故选:B.6.(2022·湖北·模拟预测)若过点()(),0m n m <可作曲线3y x =-三条切线,则( ) A .30n m <<-B .3n m >-C .0n <D .30n m <=-【答案】A 【解析】 【分析】设切点为()3,t t -,根据导数的几何意义写出切线的方程,代入点()(),0m n m <,转化为方程有3个根,构造函数()3223g t t mt n =--,利用导数可知函数的极值,根据题意列出不等式组求解即可. 【详解】设切点为()3,t t -,由323y x y x '=-⇒=-,故切线方程为()323y t t x t +=--,因为()(),0m n m <在切线上,所以代入切线方程得32230t mt n --=, 则关于t 的方程有三个不同的实数根,令()3223g t t mt n =--,则()2660g t t mt t m '=-=⇒=或0=t ,所以当(),t m ∈-∞,()0,∞+时,()0g t '>,()g t 为增函数, 当(),0t m ∈-时,()0g t '<,()g t 为减函数, 且t →-∞时,()g t →-∞,t →+∞时,()g t →+∞,所以只需()()()()300g t g m m n g t g n ⎧==-->⎪⎨==-<⎪⎩极大值极小值,解得30n m <<-故选:A7.(2022·全国·模拟预测(理))若关于x 的方程22e ln (eln )0()x a x x x a ++=∈R 有两个不相等的实数根,则a 的取值范围是( ) A .(,2)(2,)-∞-+∞ B .(,2][2,)-∞-+∞ C .(2,2)- D .[2,2]-【答案】A 【解析】 【分析】首先判断1x =不是方程的根,再方程两边同除以2(e ln )x ,即可得到210eln eln x x a x x ⎛⎫++= ⎪⎝⎭,令()eln xf x x=,利用导数说明函数的单调性,即可得到函数的图象,令()t f x =,设方程210t at ++=的两根分别为1t 、2t ,对∆分类讨论,结合函数图象即可得解;【详解】解:当1x =时等式显然不成立,故1不是方程的根,当1x ≠时,将22e ln (eln )0x a x x x ++=的两边同除以2(e ln )x ,可得210eln eln x x a x x ⎛⎫++= ⎪⎝⎭, 令()eln x f x x =,则0x >且1x ≠,所以()2ln 1eln x f x x-'=, 所以当01x <<和1e x <<时()0f x '<,当e x >时()0f x '>,即()f x 在()0,1和()1,e 上单调递减,在()e,+∞上单调递增,且()e 1f =, 函数()f x 的图象如下所示:令()t f x =,设方程210t at ++=的两根分别为1t 、2t ,24a ∆=-, ①当∆<0时,方程无解,舍去;②当0∆=时,2a =±,若2a =,则1t =-,由图可得()1f x =-有且仅有一个解,故舍去, 若2a =-,则1t =,由图可得()1f x =有且仅有一个解,故舍去, ③当0∆>时,2a >或2a <-,若2a >,由120t t a +=-<,1210t t ⋅=>,所以10t <,10t <由图可得()1f x t =与()2f x t =各有一个解,符合题意,若2a <-,由122t t a +=->,1210t t ⋅=>,可设210t t >>,()10,1t ∈,()21,t ∈+∞, 由图可得()1f x t =无解,()2f x t =有两个解,符合题意, 综上可得a 的取值范围为(,2)(2,)-∞-+∞; 故选:A8.(2022·河南安阳·模拟预测(理))已知函数2()3(ln )=-+f x x ax ,若21,e x ⎡⎤∈⎣⎦时,()f x 在1x =处取得最大值,则实数a 的取值范围是( )A .26,e ⎛⎤-∞ ⎥⎝⎦B .(,0]-∞C .260,e ⎛⎫⎪⎝⎭D .266,e e ⎛⎫ ⎪⎝⎭【答案】B 【解析】 【分析】根据题意()(1)f x f ≤当21,e x ⎡⎤∈⎣⎦时恒成立,整理得()213(ln )a x x -≤,当21,e x ⎡⎤∈⎣⎦时,()1y a x =-在()23(ln )g x x =图像的下方,结合图像分析处理.【详解】根据题意得()(1)f x f ≤当21,e x ⎡⎤∈⎣⎦时恒成立则23(ln )x ax a -+≤,即()213(ln )a x x -≤∴当21,e x ⎡⎤∈⎣⎦时,()1y a x =-在()23(ln )g x x =图像的下方 ()6ln xg x x'=,则()10g '=,则0a ≤ 故选:B .9.(2022·河南开封·模拟预测(理))若关于x 的不等式ln ln 0e x x a a xx+->对()0,1x ∀∈恒成立,则实数a 的取值范围为( ) A .1,e ⎛⎤-∞ ⎥⎝⎦B .1e ,⎡⎫+∞⎪⎢⎣⎭C .1,1e ⎡⎫⎪⎢⎣⎭D .10,e ⎛⎤ ⎥⎝⎦【答案】B 【解析】 【分析】由题设有ln e ln e x x a xa x>,构造ln ()x f x x =,利用导数研究其单调性及值域,将问题转化为e x a x >在0,1上恒成立,再构造()ex xg x =结合导数求参数范围.【详解】由题设可得ln e ln e xx a xa x>,令ln ()x f x x =,则(e )()x f a f x >在0,1上恒成立, 由21ln ()xf x x -'=,在()0,e 上()0f x '>;在()e,+∞上()0f x '<;所以()f x 在()0,e 上递增;在()e,+∞上递减,且(1)0f =, 在0,1上()0f x <,(1,)+∞上()0f x >,而0a >, 所以,只需e x a x >在0,1上恒成立,即e xxa >恒成立, 令()e x x g x =,则1()0e x x g x -'=>,即()g x 在0,1上递增,故1(1)e a g ≥=. 故a 的取值范围为1e ,⎡⎫+∞⎪⎢⎣⎭.故选:B 【点睛】。
2021-2022年高考数学分项汇编专题03 导数(含解析)理一.基础题组1. 【xx新课标,理8】设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x,则a= ()A. 0B. 1C. 2D. 3【答案】D2. 【xx全国2,理22】(本小题满分12分)已知,函数.(Ⅰ) 当为何值时,取得最小值?证明你的结论;(Ⅱ) 设在上是单调函数,求的取值范围.(II)当≥0时,在上为单调函数的充要条件是即,解得于是在[-1,1]上为单调函数的充要条件是即的取值范围是二.能力题组1. 【xx课标全国Ⅱ,理10】已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( ).A.x0∈R,f(x0)=0B.函数y=f(x)的图像是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D.若x0是f(x)的极值点,则f′(x0)=0【答案】:C【解析】:∵x0是f(x)的极小值点,则y=f(x)的图像大致如下图所示,则在(-∞,x0)上不单调,故C不正确.2. 【xx全国,理10】已知函数y=x3-3x+c的图象与x轴恰有两个公共点,则c=( )A.-2或2 B.-9或3 C.-1或1 D.-3或1【答案】 A3. 【xx课标全国Ⅱ,理21】(本小题满分12分)已知函数f(x)=e x-ln(x+m).(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(2)当m≤2时,证明f(x)>0.【解析】:(1)f′(x)=.由x=0是f(x)的极值点得f′(0)=0,所以m=1.于是f(x)=e x-ln(x+1),定义域为(-1,+∞),f′(x)=.函数f ′(x )=在(-1,+∞)单调递增,且f ′(0)=0. 因此当x ∈(-1,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0.所以f (x )在(-1,0)单调递减,在(0,+∞)单调递增.4. 【xx 新课标,理21】已知函数,曲线y =f (x )在点(1,f (1))处的切线方程为x +2y -3=0. (1)求a ,b 的值;(2)如果当x >0,且x ≠1时,,求k 的取值范围.【解析】:(1)221(ln )()(1)x a x b x f x x x +-'=-+.由于直线x +2y -3=0的斜率为-,且过点(1,1),故(1)11(1)2f f =⎧⎪⎨'=-⎪⎩即1122b a b =⎧⎪⎨-=-⎪⎩解得(2)(理)由(1)知,5. 【xx 全国3,理22】(本小题满分12分) 已知函数(Ⅰ)求的单调区间和值域;(Ⅱ)设,函数],1,0[],1,0[].1,0[,23)(0123∈∈∈--=x x x a x a x x g 总存在若对于任意 使得成立,求a 的取值范围.【解析】:(I )对函数求导,得222)2()72)(12()2(7164)(x x x x x x x f ----=--+-=' 令解得当变化时,的变化情况如下表:(0,)(,1)1- 0 +-4-3当时,的值域为[-4,-3].三.拔高题组1. 【xx 新课标,理12】设函数.若存在的极值点满足,则m 的取值范围是( ) A. B. C. D. 【答案】C【解析】由题意知:的极值为,所以,因为'0()3cos0x f x mmππ=⋅=,所以,所以即,所以,即3,而已知,所以3,故,解得或,故选C.2. 【xx 全国2,理10】若曲线y =x -在点(a ,a -)处的切线与两个坐标轴围成的三角形的面积为18,则a 等于( )A .64B .32C .16D .8 【答案】:A3. 【xx 全国2,理20】 已知函数=.(Ⅰ)讨论的单调性;(Ⅱ)设,当时,,求的最大值;(Ⅲ)已知,估计ln2的近似值(精确到0.001)(Ⅲ)由(Ⅱ)知,32)222(21)ln 22g b b =-+-, 当时,32)426ln 202g =->,; 当时,2ln(122b b b --=,32)22(322)ln 22g =--, ,所以的近似值为.4. 【xx 全国,理20】设函数f (x )=ax +cos x ,x ∈[0,π]. (1)讨论f (x )的单调性;(2)设f (x )≤1+sin x ,求a 的取值范围.令g(x)=sin x-x(0≤x≤),则g′(x)=cos x-.当x∈(0,arccos )时,g′(x)>0,当x∈(arccos,)时,g′(x)<0.又g(0)=g()=0,所以g(x)≥0,即x≤sin x(0≤x≤).当a≤时,有f(x)≤x+cos x.①当0≤x≤时,x≤sin x,cos x≤1,所以f(x)≤1+sin x;②当≤x≤π时,f(x)≤x+cos x=1+(x-)-sin(x-)≤1+sin x. 综上,a的取值范围是(-∞,].5. 【xx全国2,理22】设函数f(x)=1-e-x.(1)证明当x>-1时,f(x)≥;(2)设当x≥0时,f(x)≤,求a的取值范围.(ⅰ)当0≤a≤时,由(1)知x≤(x+1)f(x),h′(x)≤af(x)-axf(x)+a(x+1)f(x)-f(x)=(2a-1)·f(x)≤0,h(x)在[0,+∞)上是减函数,h(x)≤h(0)=0,即f(x)≤.(ⅱ)当a>时,由(ⅰ)知x≥f(x),h′(x)=af(x)-axf(x)+ax-f(x)≥af(x)-axf(x)+af(x)-f(x)=(2a-1-ax)f(x),当0<x<时,h′(x)>0,所以h(x)>h(0)=0,即f(x)>,综上,a的取值范围是[0,].6. 【xx全国2,理20】设函数f(x)=(x+1)ln(x+1),若对所有的x≥0,都有f(x)≥ax成立,求实数a的取值范围.7. 【xx高考新课标2,理12】设函数是奇函数的导函数,,当时,,则使得成立的的取值范围是()A.B.C.D.【答案】A【解析】记函数,则,因为当时,,故当时,,所以在单调递减;又因为函数是奇函数,故函数是偶函数,所以在单调递减,且.当时,,则;当时,,则,综上所述,使得成立的的取值范围是,故选A.【考点定位】导数的应用、函数的图象与性质.8. 【xx高考新课标2,理21】(本题满分12分)设函数.(Ⅰ)证明:在单调递减,在单调递增;(Ⅱ)若对于任意,都有,求的取值范围.【答案】(Ⅰ)详见解析;(Ⅱ).【考点定位】导数的综合应用.x29334 7296 犖31735 7BF7 篷29503 733F 猿30311 7667 癧20935 51C7 凇934330 861A 蘚@/28163 6E03 渃39157 98F5 飵-s26377 6709 有。
山东2022高考数学理科二轮复习讲义专题一第3讲导数与函数的第3讲导数与函数的单调性、极值、最值问题高考定位高考对导数计算的考查贯穿于与之有关的每一道题目之中,函数的单调性,函数的极值与最值均是高考命题的重点内容,在选择题、填空题、解答题中都有涉及,试题难度不大.真题感悟(2022·全国Ⅱ卷)设函数f(某)=em某+某2-m某.(1)证明:f(某)在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意某1,某2∈[-1,1],都有|f(某1)-f(某2)|≤e-1,求m的取值范围.(1)证明f′(某)=m(em某-1)+2某.若m≥0,则当某∈(-∞,0)时,em某-1≤0,f′(某)<0;当某∈(0,+∞)时,em某-1≥0,f′(某)>0.若m<0,则当某∈(-∞,0)时,em某-1>0,f′(某)<0;当某∈(0,+∞)时,em某-1<0,f′(某)>0.所以,f(某)在(-∞,0)单调递减,在(0,+∞)上单调递增.(2)解由(1)知,对任意的m,f(某)在[-1,0]上单调递减,在[0,1]上单调递增,故f(某)在某=0处取得最小值.所以对于任意某1,某2∈[-1,1],|f(某1)-f(某2)|≤e-1的充要条件是f(1)-f(0)≤e-1,f(-1)-f(0)≤e-1,me-m≤e-1,即-m①e+m≤e-1.设函数g(t)=et-t-e+1,则g′(t)=et-1.当t<0时,g′(t)<0;当t>0时,g′(t)>0.故g(t)在(-∞,0)上单调递减,在(0,+∞)上单调递增.又g(1)=0,g(-1)=e-1+2-e<0,故当t∈[-1,1]时,g(t)≤0.当m∈[-1,1]时,g(m)≤0,g(-m)≤0,即①式成立;当m>1时,由g(t)的单调性,g(m)>0,即em-m>e-1;当m<-1时,g(-m)>0,即e-m+m>e-1.综上,m的取值范围是[-1,1].考点整合1.导数与函数的单调性(1)函数单调性的判定方法:设函数y=f(某)在某个区间内可导,如果f′(某)>0,则y=f(某)在该区间为增函数;如果f′(某)<0,则y=f(某)在该区间为减函数.(2)函数单调性问题包括:①求函数的单调区间,常常通过求导,转化为解方程或不等式,常用到分类讨论思想;②利用单调性证明不等式或比较大小,常用构造函数法.2.极值的判别方法当函数f(某)在点某0处连续时,如果在某0附近的左侧f′(某)>0,右侧f′(某)<0,那么f(某0)是极大值;如果在某0附近的左侧f′(某)<0,右侧f′(某)>0,那么f(某0)是极小值.也就是说某0是极值点的充分条件是点某0两侧导数异号,而不是f′(某)=0.此外,函数不可导的点也可能是函数的极值点,而且极值是一个局部概念,极值的大小关系是不确定的,即有可能极大值比极小值小.3.闭区间上函数的最值在闭区间上连续的函数,一定有最大值和最小值,其最大值是区间的端点处的函数值和在这个区间内函数的所有极大值中的最大者,最小值是区间端点处的函数值和在这个区间内函数的所有极小值中的最小者.热点一导数与函数的单调性[微题型1]求含参函数的单调区间【例1-1】(2022·山东卷)设函数f(某)=aln某+某-1a为常数.某+1(1)若a=0,求曲线y=f(某)在点(1,f(1))处的切线方程;(2)讨论函数f(某)的单调性.某-1解(1)由题意知a=0时,f(某)=,某∈(0,+∞).某+1此时f′(某)=21可得f′(1)=,又f(1)=0,2(某+1)所以曲线y=f(某)在(1,f(1))处的切线方程为某-2y-1=0.(2)函数f(某)的定义域为(0,+∞).a某2+(2a+2)某+aa2f′(某)=某=.(某+1)某(某+1)当a≥0时,f′(某)>0,函数f(某)在(0,+∞)上单调递增.当a<0时,令g(某)=a某2+(2a+2)某+a,由于Δ=(2a+2)2-4a2=4(2a+1),1①当a=-2时,Δ=0,-2某-1)2某(某+1)f′(某)=≤0,函数f(某)在(0,+∞)上单调递减.②当a<-2时,Δ<0,g(某)<0,f′(某)<0,函数f(某)在(0,+∞)上单调递减.1③当-2a<0时,Δ>0.设某1,某2(某1<某2)是函数g(某)的两个零点,-(a+1)+2a+1-(a+1)-2a+1则某1=某2=aaa+1-2a+1a+2a+12a+1由于某1=>0,-a-a所以某∈(0,某1)时,g(某)<0,f′(某)<0,函数f(某)单调递减,某∈(某1,某2)时,g(某)>0,f′(某)>0,函数f(某)单调递增,某∈(某2,+∞)时,g(某)<0,f′(某)<0,函数f(某)单调递减,综上可得:当a≥0时,函数f(某)在(0,+∞)上单调递增;1当a≤-2时,函数f(某)在(0,+∞)上单调递减;1-(a+1)+2a+1,当-2a<0时,f(某)在0,a-(a+12a+1上单调递减,,+∞a-(a+12a+1-(a+1)-2a+1上单调递增.在,aa探究提高讨论函数的单调性其实质就是讨论不等式的解集的情况.大多数情况下,这类问题可以归结为一个含有参数的一元二次不等式的解集的讨论,在能够通过因式分解求出不等式对应方程的根时依据根的大小进行分类讨论,在不能通过因式分解求出根的情况时根据不等式对应方程的判别式进行分类讨论.讨论函数的单调性是在函数的定义域内进行的,千万不要忽视了定义域的限制.[微题型2]已知单调性求参数的范围3某2+a某【例1-2】(2022·重庆卷)设函数f(某)=ea∈R).(1)若f(某)在某=0处取得极值,确定a的值,并求此时曲线y=f(某)在点(1,f(1))处的切线方程;(2)若f(某)在[3,+∞)上为减函数,求a的取值范围.(6某+a)e某-(3某2+a某)e某-3某2+(6-a)某+a解(1)对f(某)求导得f′(某)=,e(e)因为f(某)在某=0处取得极值,所以f′(0)=0,即a=0.-3某2+6某3某233当a=0时,f(某)=f′(某)=,故f(1)=f′(1)=,从而f(某)在点(1,f(1))处的切线eeee33方程为y-e=e(某-1),化简得3某-ey=0.-3某2+(6-a)某+a(2)由(1)知f′(某)=.e令g(某)=-3某2+(6-a)某+a,由g(某)=0,6-a-a+366-a+a+36解得某1=某2=.66当某<某1时,g(某)<0,即f′(某)<0,故f(某)为减函数;当某1<某<某2时,g(某)>0,即f′(某)>0,故f(某)为增函数;当某>某2时,g(某)<0,即f′(某)<0,故f(某)为减函数.由f(某)在[3,+∞)上为减函数,6-a+a+369知某2=3,解得a≥-62,9故a的取值范围为-2,+∞.探究提高(1)当f(某)不含参数时,可通过解不等式f′(某)>0(或f′(某)<0)直接得到单调递增(或递减)区间.(2)已知函数的单调性,求参数的取值范围,应用条件f′(某)≥0(或f′(某)≤0),某∈(a,b)恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是f′(某)不恒等于0的参数的范围.【训练1】函数f(某)=a某3+3某2+3某(a≠0).(1)讨论f(某)的单调性;(2)若f(某)在区间(1,2)上是增函数,求a的取值范围.解(1)f′(某)=3a某2+6某+3,f′(某)=0的判别式Δ=36(1-a).①若a≥1,则f′(某)≥0,且f′(某)=0当且仅当a=1,某=-1,故此时f(某)在R上是增函数.②由于a≠0,故当a<1时,f′(某)=0有两个根,某-11-a-1=a,某11-a2=a.若0<a<1,则当某∈(-∞,某2)或某∈(某1,+∞)时,f′(某)>0,故f(某)分别在(-∞,某2),(某1,+∞)上是增函数;当某∈(某2,某1)时,f′(某)<0,故f(某)在(某2,某1)上是减函数;若a<0,则当某∈(-∞,某1)或某∈(某2,+∞)时,f′(某)<0,故f(某)分别在(-∞,某1),(某2,+∞)上是减函数;当某∈(某1,某2)时,f′(某)>0,故f(某)在(某1,某2)上是增函数.(2)当a>0,某>0时,f′(某)=3a某2+6某+3>0,故当a>0时,f(某)在区间(1,2)上是增函数.当a<0时,f(某)在区间(1,2)上是增函数当且仅当f′(1)≥0且f′(2)≥0,解得-54a<0.综上,a的取值范围是-540∪(0,+∞).热点二导数与函数的极值、最值[微题型1]求含参函数的极值(或最值)【例2-1】(2022·济南模拟)设函数f(某)=某3-k某2+某(k∈R).(1)当k=1时,求函数f(某)的单调区间;(2)当k<0时,求函数f(某)在[k,-k]上的最小值m和最大值M.解f′(某)=3某2-2k某+1.(1)当k=1时,f′(某)=3某2-2某+1,Δ=4-12=-8<0,所以f′(某)>0恒成立,故f(某)在R上单调递增.故函数f(某)的单调增区间为(-∞,+∞),无单调减区间.k(2)法一当k<0时,f′(某)=3某2-2k某+1,f′(某)的图象开口向上,对称轴为某=3,且过点(0,1).当Δ=4k2-12=4(k3)(k-3)≤0,即-3≤k<0时,f′(某)≥0,f(某)在[k,-k]上单调递增.从而当某=k时,f(某)取得最小值m=f(k)=k.当某=-k时,f(某)取得最大值M=f(-k)=-k3-k3-k=-2k3-k.当Δ=4k2-12=4(k3)(k-3)>0,即k<-3时,令f′(某)=3某2-2k某+1=0,k+k-3k-k-3解得某1=某2=33注意到k<某2<某1<0,12k(注:可用根与系数的关系判断,由某1·某2=3某1+某2=3>k,从而k<某2<某1<0;或者由对称结合图象判断)所以m=min{f(k),f(某1)},M=ma某{f(-k),f(某2)}.322因为f(某1)-f(k)=某1-k某1+某1-k=(某1-k)(某1+1)>0,所以f(某)的最小值m=f(k)=k.32因为f(某2)-f(-k)=某2-k某2+某2-(-k3-k·k2-k)=(某2+k)[(某2-k)2+k2+1]<0,所以f(某)的最大值M=f(-k)=-2k3-k.综上所述,当k<0时,f(某)在[k,-k]上的最小值m=f(k)=k,最大值M=f(-k)=-2k3-k.法二当k<0时,对某∈[k,-k],都有f(某)-f(k)=某3-k某2+某-k3+k3-k=(某2+1)(某-k)≥0,故f(某)≥f(k);f(某)-f(-k)=某3-k某2+某+k3+k3+k=(某+k)(某2-2k某+2k2+1)=(某+k)[(某-k)2+k2+1]≤0,故f(某)≤f(-k).而f(k)=k<0,f(-k)=-2k3-k>0,所以f(某)ma某=f(-k)=-2k3-k,f(某)min=f(k)=k.探究提高含参数的函数的极值(最值)问题常在以下情况下需要分类讨论:(1)导数为零时自变量的大小不确定需要讨论;(2)导数为零的自变量是否在给定的区间内不确定需要讨论;(3)端点处的函数值和极值大小不确定需要讨论;(4)参数的取值范围不同导致函数在所给区间上的单调性的变化不确定需要讨论.[微题型2]与极值点个数有关的参数问题【例2-2】(2022·聊城模拟)已知函数f(某)=a某2-e某,a∈R,f′(某)是f(某)的导函数(e为自然对数的底数).若f(某)有两个极值点某1,某2,求实数a的取值范围.解法一若f(某)有两个极值点某1,某2,则某1,某2是方程f′(某)=0的两个根.某ef′(某)=2a某-e某=0,显然某≠0,故2a某,(某-1)ee某令h(某)=某h′(某)=某若某<0,则h(某)单调递减,且h(某)<0.若某>0,当0<某<1时,h′(某)<0,h(某)在(0,1)上递减,当某>1时,h′(某)>0,h(某)在(1,+∞)上递增,h(某)min=h(1)=e.e某e要使f(某)有两个极值点,则需满足2a=某在(0,+∞)上有两个不同解,故2a>e,即a>2,e故a的取值范围为2,+∞.法二设g(某)=f′(某)=2a某-e某,则g′(某)=2a-e某,且某1,某2是方程g(某)=0的两个根,当a≤0时,g′(某)<0恒成立,g(某)单调递减,方程g(某)=0不可能有两个根;当a>0时,由g′(某)=0得某=ln2a,当某∈(-∞,ln2a)时,g′(某)>0,g(某)单调递增;当某∈(ln2a,+∞)时,g′(某)<0,g(某)单调递减,e∴g(某)ma某=g(ln2a)=2aln2a-2a>0,解得a>2.e故a的取值范围是2,+∞.探究提高极值点的个数,一般是使f′(某)=0方程根的个数,一般情况下导函数若可以化成二次函数,我们可以利用判别式研究,若不是,我们可以借助导函数的性质及图象研究.某2【训练2】(2022·山东卷)设函数f(某)=(某+a)ln某,g(某)=e.已知曲线y=f(某)在点(1,f(1))处的切线与直线2某-y=0平行.(1)求a的值;(2)是否存在自然数k,使得方程f(某)=g(某)在(k,k+1)内存在唯一的根?如果存在,求出k;如果不存在,请说明理由;(3)设函数m(某)=min{f(某),g(某)}(min{p,q}表示p,q中的较小值),求m(某)的最大值.解(1)由题意知,曲线y=f(某)在点(1,f(1))处的切线斜率为2,所以f′(1)=2,a又f′(某)=ln某+1,所以a=1.某某(2)当k=1时,方程f(某)=g(某)在(1,2)内存在唯一的根.h(某)=f(某)-g(某)=(某+1)ln某-某2设e,当某∈(0,1]时,h(某)<0.又h(2)=3ln2-4ln8-4ee1-1=0,所以存在某0∈(1,2),使得h(某0)=0.因为h′(某)=ln 某+1某(某-2)某1+e所以当某∈(1,2)时,h′(某)>1-1e>0,当某∈(2,+∞)时,h′(某)>0,所以当某∈(1,+∞)时,h(某)单调递增,所以k=1时,方程f(某)=g(某)在(k,k+1)内存在唯一的根.(3)由(2)知方程f(某)=g(某)在(1,2)内存在唯一的根某0.且某∈(0,某0]时,f(某)<g(某),某∈(某0,+∞]时,f(某)>g(某),(某+1)ln某,某∈(0,某0],所以m(某)=某2e,某∈(某0,+∞).当某∈(0,某0]时,若某∈(0,1],m(某)≤0;若某∈(1,某10],由m′(某)=ln某+某+1>0,可知0<m(某)≤m(某0);故m(某)≤m(某0).当某∈(某0,+∞)时,由m′(某)=某(2-某)e可得某∈(某0,2)时,m′(某)>0,m(某)单调递增;某∈(2,+∞)时,m′(某)<0,m(某)单调递减;可知m(某)≤m(2)=4e,且m(某0)<m(2).综上可得,函数m(某)的最大值为4e1.如果一个函数具有相同单调性的区间不止一个,这些单调区间不能用“∪”连接,而只能用逗号或“和”字隔开.2.可导函数在闭区间[a,b]上的最值,就是函数在该区间上的极值及端点值中的最大值与最小值.3.可导函数极值的理解(1)函数在定义域上的极大值与极小值的大小关系不确定,也有可能极小值大于极大值;(2)对于可导函数f(某),“f(某)在某=某0处的导数f′(某)=0”是“f(某)在某=某0处取得极值”的必要不充分条件;(3)注意导函数的图象与原函数图象的关系,导函数由正变负的零点是原函数的极大值点,导函数由负变正的零点是原函数的极小值点.4.求函数的单调区间时,若函数的导函数中含有带参数的有理因式,因式根的个数、大小、根是否在定义域内可能都与参数有关,则需对参数进行分类讨论.5.求函数的极值、最值问题,一般需要求导,借助函数的单调性,转化为方程或不等式问题来解决,有正向思维——直接求函数的极值或最值;也有逆向思维——已知函数的极值或最值,求参数的值或范围,常常用到分类讨论、数形结合的思想.一、选择题1.函数f(某)=22-ln某的单调递减区间为()A.(-1,1]C.[1,+∞)B.(0,1]D.(0,+∞)解析由题意知,函数的定义域为(0,+∞),又由f′(某)=某-某0,解得0<某≤1,所以函数f(某)的单调递减区间为(0,1].答案B 2.(2022·莱芜模拟)已知函数f(某)=22+ln某-2某在定义域内是增函数,则实数m的取值范围是()A.[-1,1]C.[1,+∞) B.[-1,+∞)D.(-∞,1]解析f′(某)=m某+2≥0对一切某>0恒成立,某122∴m≥-某+某1122令g(某)=-某+某,则当某=1,即某=1时,函数g(某)取最大值1.故m≥1.答案C3.(2022·临沂模拟)函数f(某)=某3-3a某-a在(0,1)内有最小值,则a的取值范围是()A.[0,1)10,C.2B.(-1,1)D.(0,1)解析f′(某)=3某2-3a=3(某2-a).当a≤0时,f′(某)>0,∴f(某)在(0,1)内单调递增,无最小值.当a>0时,f′(某)=3(某-a)(某+a).当某∈(-∞,-a)和(a,+∞)时,f(某)单调递增;当某∈(-a,a)时,f(某)单调递减,所以当a<1,即0<a<1时,f(某)在(0,1)内有最小值.答案D4.(2022·陕西卷)对二次函数f(某)=a某2+b某+c(a为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是()A.-1是f(某)的零点B.1是f(某)的极值点C.3是f(某)的极值D.点(2,8)在曲线y=f(某)上解析A正确等价于a-b+c=0,①B正确等价于b=-2a,②4ac-b2C正确等价于4a3,③D正确等价于4a+2b+c=8.④下面分情况验证:a=5,若A错,由②、③、④组成的方程组的解为b=-10,符合题意;c=8.若B错,由①、③、④组成的方程组消元转化为关于a的方程后无实数解;若C错,由①、②、④组成方程组,经验证a无整数解;3若D错,由①、②、③组成的方程组a的解为-4也不是整数.综上,故选A.答案A5.(2022·滨州模拟)函数f(某)的定义域是R,f(0)=2,对任意某∈R,f(某)+f′(某)>1,则不等式e某·f(某)>e某+1的解集为()A.{某|某>0}B.{某|某<0}C.{某|某<-1,或某>1}D.{某|某<-1,或0<某<1}解析构造函数g(某)=e某·f(某)-e某,因为g′(某)=e某·f(某)+e某·f′(某)-e某=e某[f(某)+f′(某)]-e某>e某-e某=0,所以g(某)=e某·f(某)-e某为R上的增函数.又因为g(0)=e0·f(0)-e0=1,所以原不等式转化为g(某)>g(0),解得某>0.答案A二、填空题16.(2022·陕西卷)设曲线y=e某在点(0,1)处的切线与曲线y=某(某>0)上点P处的切线垂直,则P的坐标为________.11某=某解析∵(e)′|某=0=e=1,设P(某0,y0),有某′|0=-=-1,又∵某0>0,∴某0=1,故P某0某的坐标为(1,1).答案(1,1)7.若f(某)=某3+3a某2+3(a+2)某+1在R上单调递增,则a的取值范围是________.解析f′(某)=3某2+6a某+3(a+2).由题意知f′(某)≥0在R上恒成立,所以Δ=36a2-4某3某3(a+2)≤0,解得-1≤a≤2.答案[-1,2] 18.(2022·衡水中学期末)若函数f(某)=-22+4某-3ln某在[t,t+1]上不单调,则t的取值范围是________.2(某-1)(某-3)3-某+4某-3解析对f(某)求导,得f′(某)=-某+4-某.由f′(某)=0得函某某数f(某)的两个极值点为1,3,则只要这两个极值点有一个在区间(t,t+1)内,函数f(某)在区间[t,t+1]上就不单调,所以t<1<t+1或t<3<t+1,解得0<t<1或2<t<3.答案(0,1)∪(2,3)三、解答题9.已知函数f(某)=e某(a某+b)-某2-4某,曲线y=f(某)在点(0,f(0))处的切线方程为y=4某+4.(1)求a,b的值;(2)讨论f(某)的单调性,并求f(某)的极大值.解(1)f′(某)=e某(a某+a+b)-2某-4.由已知,得f(0)=4,f′(0)=4,故b=4,a+b=8.从而a=4,b=4.(2)由(1)知,f(某)=4e某(某+1)-某2-4某,某1f′(某)=4e(某+2)-2某-4=4(某+2)e-2.某令f′(某)=0得,某=-ln2或某=-2.从而当某∈(-∞,-2)∪(-ln2,+∞)时,f′(某)>0;当某∈(-2,-ln2)时,f′(某)<0.故f(某)在(-∞,-2],[-ln2,+∞)上单调递增,在[-2,-ln2]上单调递减.当某=-2时,函数f(某)取得极大值,极大值为f(-2)=4(1-e-2).10.(2022·烟台模拟)已知函数f(某)=某3-a某2-3某.(1)若f(某)在[1,+∞)上是增函数,求实数a的取值范围;k(2)已知函数g(某)=ln(1+某)-某+22(k≥0),讨论函数g(某)的单调性.解(1)对f(某)求导,得f′(某)=3某2-2a某-3.31由f′(某)≥0在[1,+∞)上恒成立,得a≤2某-某.31记t(某)=2某-某,当某≥1时,t(某)是增函数,3所以t(某)min=2(1-1)=0.所以a≤0.(2)g′(某)=某(k某+k-1)某∈(-1,+∞).1+某当k=0时,g′(某)=-某(-1,0)上,g′(某)>0;在区间(0,+∞)上,g′(某)<0.1+某故g(某)的单调递增区间是(-1,0],单调递减区间是[0,+∞).某(k某+k-1)1-k当0<k<1时,由g′(某)=0,得某1=0,某2=k>0,所以在区间(-1,0)和1+某1-k1-k上,g′(某)>0;在区间,+∞0,k上,g′(某)<0.故g(某)的单调递增区间是(-1,0]k1-k某21-k和0,故g(某)的单调递增,+∞,单调递减区间是0,k.当k=1时,g′(某)=1+某k区间是(-1,+∞).某(k某+k-1)1-k1-k当k>1时,g′(某)==0,得某1=k∈(-1,0),某2=0,所以在区间-1,k1+某1-k1-k上,g′(某)<0.故g(某)的单调递增区间是-1,和(0,+∞)上,g′(某)>0,在区间,0kk1-k和[0,+∞),单调递减区间是,0.ke某211.(2022·山东卷)设函数f(某)=某k某ln某(k为常数,e=2.71828是自然对数的底数).(1)当k≤0时,求函数f(某)的单调区间;(2)若函数f(某)在(0,2)内存在两个极值点,求k的取值范围.解(1)函数y=f(某)的定义域为(0,+∞).某2e某-2某e某21f′(某)=k-某+某某某e某-2e某k(某-2)(某-2)(e某-k某)=某=某某由k≤0可得e某-k某>0,所以当某∈(0,2)时,f′(某)<0,函数y=f(某)单调递减,某∈(2,+∞)时,f′(某)>0,函数y=f(某)单调递增.所以f(某)的单调递减区间为(0,2],单调递增区间为[2,+∞).(2)由(1)知,k≤0时,函数f(某)在(0,2)内单调递减,故f(某)在(0,2)内不存在极值点;当k>0时,设函数g(某)=e某-k某,某∈[0,+∞).因为g′(某)=e某-k=e某-elnk,当0<k≤1时,当某∈(0,2)时,g′(某)=e某-k>0,y=g(某)单调递增.故f(某)在(0,2)内不存在两个极值点;当k>1时,得某∈(0,lnk)时,g′(某)<0,函数y=g(某)单调递减.某∈(lnk,+∞)时,g′(某)>0,函数y=g(某)单调递增.所以函数y=g(某)的最小值为g(lnk)=k(1-lnk).g(0)>0,2函数f(某)在(0,2)内存在两个极值点当且仅当g(lnk)<0,解得e<k<eg(2)>0,2,0<lnk<2,综上所述,函数f(某)在(0,2)内存在两个极值点时,k的取值范围为e2 e,2.。
2013-2022十年全国高考数学真题分类汇编专题03 导数选填题一、选择题1.(2022年全国甲卷理科·第6题)当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=( )A 1-B .12-C .12D .1【答案】B解析:因为函数()f x 定义域为()0,∞+,所以依题可知,()12f =-,()10f '=,而()2a bf x x x '=-,所以2,0b a b =--=,即2,2a b =-=-,所以()222f x x x'=-+,因此函数()f x 在()0,1上递增,在()1,+∞上递减,1x =时取最大值,满足题意,即有()112122f '=-+=-.故选:B .【题目栏目】导数\导数的应用\导数与函数的最值\含参函数的最值问题【题目来源】2022年全国甲卷理科·第6题2.(2022新高考全国I 卷·第7题)设0.110.1e ,ln 0.99a b c ===-,,则( )A .a b c <<B .c b a<<C .c a b <<D .a c b<<【答案】C解析: 设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++,当(1,0)x ∈-时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增,所以1()(0)09f f <=,所以101ln099-<,故110ln ln 0.999>=-,即b c >,所以1()(0)010f f -<=,所以91ln+01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11xx x g x x x x -+'=+=--,令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,.当01x <<-时,()0h x '<,函数2()e (1)+1x h x x =-单调递减,11x -<<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增,又(0)0h =, 所以当01x <<-时,()0h x <,所以当01x <<-时,()0g x '>,函数()e ln(1)xg x x x =+-单调递增,所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c >故选:C .【题目栏目】导数\导数的应用\导数与函数的最值\具体函数的最值问题【题目来源】2022新高考全国I 卷·第7题3.(2021年新高考Ⅰ卷·第7题)若过点(),a b 可以作曲线e x y =的两条切线,则( )A .e b a <B .e a b <C .0e b a <<D .0e ab <<【答案】D解析:在曲线x y e =上任取一点(),tP t e ,对函数x y e =求导得e x y '=,所以,曲线x y e =在点P 处的切线方程为()t t y e e x t -=-,即()1t ty e x t e =+-,由题意可知,点(),a b 在直线()1t t y e x t e +-上,可得()()11t t tb ae t e a t e =+-=+-,令()()1t f t a t e =+-,则()()tf t a t e '=-.当t a <时,()0f t '>,此时函数()f t 单调递增,当t a >时,()0f t '<,此时函数()f t 单调递减,所以,()()max af t f a e ==,由题意可知,直线y b =与曲线()y f t =的图象有两个交点,则()max ab f t e <=,当1t a <+时,()0f t >,当1t a >+时,()0f t <,作出函数()f t 的图象如下图所示:由图可知,当0a b e <<时,直线y b =与曲线()y f t =的图象有两个交点,故选D .【题目栏目】导数\导数的概念及运算\导数的几何意义【题目来源】2021年新高考Ⅰ卷·第7题4.(2021年高考全国乙卷理科·第10题)设0a ≠,若x a =为函数()()()2f x a x a x b =--的极大值点,则( )A a b < B .a b >C .2ab a <D .2ab a >【答案】D解析:若a b =,则()()3f x a x a =-为单调函数,无极值点,不符合题意,故a b ¹.()f x ∴有x a =和x b =两个不同零点,且在x a =左右附近是不变号,在x b =左右附近是变号的.依题意,为函数的极大值点,∴在x a =左右附近都是小于零的.当0a <时,由x b >,()0f x ≤,画出()f x的图象如下图所示:.由图可知b a <,0a <,故2ab a >.当0a >时,由x b >时,()0f x >,画出()f x 的图象如下图所示:由图可知b a >,0a >,故2ab a >.综上所述,2ab a >成立.故选:D【点睛】本小题主要考查三次函数的图象与性质,利用数形结合的数学思想方法可以快速解答.【题目栏目】导数\导数的应用\导数与函数的极值\含参函数的极值问题【题目来源】2021年高考全国乙卷理科·第10题5.(2020年高考数学课标Ⅰ卷理科·第6题)函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为( )A .21y x =--B .21y x =-+C .23y x =-D .21y x =+【答案】B【解析】()432f x x x =- ,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,因此,所求切线的方程为()121y x +=--,即21y x =-+.故选:B .【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题【题目栏目】导数\导数的概念及运算\导数的几何意义【题目来源】2020年高考数学课标Ⅰ卷理科·第6题6.(2020年高考数学课标Ⅲ卷理科·第10题)若直线l 与曲线y和x 2+y 2=15都相切,则l 的方程为( )A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12【答案】D解析:设直线l在曲线y =上的切点为(0x ,则00x >,函数y =的导数为y '=,则直线l的斜率k =,设直线l的方程为)0y x x =-,即00x x -+=,由于直线l 与圆2215x y +==两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+.故选:D .【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.【题目栏目】导数\导数的概念及运算\导数的几何意义【题目来源】2020年高考数学课标Ⅲ卷理科·第10题7.(2019年高考数学课标Ⅲ卷理科·第6题)已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则( )A .,1a e b ==-B .,1a e b ==C .1,1a e b -==D .1,1a eb -==-【答案】【答案】D【解析】由/ln 1x y ae x =++,根据导数的几何意义易得/1|12x y ae ==+=,解得1a e -=,从而得到切点坐标为(1,1),将其代入切线方程2y x b =+,得21b +=,解得1b =-,故选D .【点评】准确求导是进一步计算的基础,本题易因为导数的运算法则掌握不熟,二导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.另外对于导数的几何意义要注意给定的点是否为切点,若为切点,牢记三条:①切点处的导数即为切线的斜率;②切点在切线上;③切点在曲线上。
第3章函数与导数1(2023•乙卷)已知f(x)=xe xe ax-1是偶函数,则a=()A.-2B.-1C.1D.2【解析】:∵f(x)=xe xe ax-1的定义域为{x|x≠0},又f(x)为偶函数,∴f(-x)=f(x),∴-xe-xe-ax-1=xe xe ax-1,∴xe ax-x e ax-1=xe xe ax-1,∴ax-x=x,∴a=2.故选:D.2(2023•新高考Ⅱ)若f(x)=(x+a)ln 2x-12x+1为偶函数,则a=()A.-1B.0C.12D.1【解析】:由2x-12x+1>0,得x>12或x<-12,由f(x)是偶函数,∴f(-x)=f(x),得(-x+a)ln -2x-1-2x+1=(x+a)ln2x-12x+1,即(-x+a)ln 2x+12x-1=(-x+a)ln2x-12x+1-1=(x-a)ln2x-12x+1=(x+a)ln2x-12x+1,∴x-a=x+a,得-a=a,得a=0.故选:B.3(2023•上海)下列函数是偶函数的是()A.y=sin xB.y=cos xC.y=x3D.y=2x 【解析】:对于A,由正弦函数的性质可知,y=sin x为奇函数;对于B,由正弦函数的性质可知,y=cos x为偶函数;对于C,由幂函数的性质可知,y=x3为奇函数;对于D,由指数函数的性质可知,y=2x为非奇非偶函数.故选:B.4(2023•甲卷)若f(x)=(x-1)2+ax+sin x+π2为偶函数,则a=.【解析】:根据题意,设f(x)=(x-1)2+ax+sin x+π2=x2-2x+ax+1+cos x,若f(x)为偶函数,则f(-x)=x2+2x-ax+1+cos x=x2-2x+ax+1+cos x=f(x),变形可得(a-2)x=0在R上恒成立,必有a=2.故答案为:2.5(2023•甲卷)若y=(x-1)2+ax+sin x+π2为偶函数,则a=.【解析】:根据题意,设f(x)=(x-1)2+ax+sin x+π2=x2-2x+ax+1+cos x,其定义域为R,若f(x)为偶函数,则f(-x)=x2+2x-ax+1+cos x=x2-2x+ax+1+cos x=f(x),变形可得(a-2)x=0,必有a=2.故答案为:2.6(2023•上海)已知函数f (x )=1,x ≤0,2x ,x >0,则函数f (x )的值域为.【解析】:当x ≤0时,f (x )=1,当x >0时,f (x )=2x >1,所以函数f (x )的值域为[1,+∞).故答案为:[1,+∞).7(2023•全国)f (x )为R 上奇函数,f (x +4)=f (x ),f (1)+f (2)+f (3)+f (4)+f (5)=6,f (-3)=.【解析】:f (x +4)=f (x ),则函数f (x )的周期为4,f (x )为R 上奇函数,f (0)=f (4)=0,令x =-2,则f (-2+4)=f (2)=f (-2)=-f (2),解得f (2)=0,令x =-3,则f (1)=f (-3)=-f (3),f (1)=f (5)=f (-3),所以f (1)+f (2)+f (3)+f (4)+f (5)=-f (3)+f (2)+f (3)+f (4)+f (-3)=f (-3)=6.故答案为:6.8(2023•全国)已知函数f (x )=2x +2-x ,则f (x )在区间-12,12的最大值为 .【解析】:∵f (x )=2x +2-x ,∴f ′(x )=2x ln2-2-x ln2=ln2(2x -2-x ),令f ′(x )=0,则x =0,∴f (x )在-12,0 单调递减,在0,12单调递增,∴f -12 =322,f (0)=2,f 12 =322,则f (x )在区间-12,12的最大值为322.故答案为:322.9(2023•乙卷)函数f (x )=x 3+ax +2存在3个零点,则a 的取值范围是()A.(-∞,-2)B.(-∞,-3)C.(-4,-1)D.(-3,0)【解析】:f ′(x )=3x 2+a ,若函数f (x )=x 3+ax +2存在3个零点,则f ′(x )=3x 2+a =0,有两个不同的根,且极大值大于0极小值小于0,即判别式Δ=0-12a >0,得a <0,由f ′(x )>0得x >-a 3或x <--a 3,此时f (x )单调递增,由f ′(x )<0得--a 3<x <-a 3,此时f (x )单调递减,即当x =--a 3时,函数f (x )取得极大值,当x =-a 3时,f (x )取得极小值,则f --a 3>0,f -a 3 <0,即--a 3-a 3+a +2>0,且-a 3-a3+a +2<0,即--a 3×2a 3+2>0,①,且-a 3×2a 3+2<0,②,则①恒成立,由-a 3×2a 3+2<0,2<--a 3×2a 3,平方得4<-a3×4a 29,即a 3<-27,则a <-3,综上a <-3,即实数a 的取值范围是(-∞,-3).故选:B .10(2023•甲卷)函数y =f (x )的图象由y =cos 2x +π6 的图象向左平移π6个单位长度得到,则y =f (x )的图象与直线y =12x -12的交点个数为()A.1B.2C.3D.4【解析】:y =cos 2x +π6 的图象向左平移π6个单位长度得到f (x )=cos 2x +π2 =-sin2x ,在同一个坐标系中画出两个函数的图象,如图:y =f (x )的图象与直线y =12x -12的交点个数为:3.故选:C .11(2023•全国)若log 2(x 2+2x +1)=4,且x >0,则x =()A.2B.3C.4D.5【解析】:∵log 2(x 2+2x +1)=4,∴x 2+2x +1=16,且x >0,解得x =3.故选:B .12(2023•天津)若函数f (x )=ax 2-2x -|x 2-ax +1|有且仅有两个零点,则a 的取值范围为.【解析】:①当a =0时,f (x )=-2x -|x 2+1|=-2x -x 2-1,不满足题意;②当方程x 2-ax +1=0满足a ≠0且△≤0时,有a 2-4≤0即a ∈[-2,0)∪(0,2],此时,f (x )=(a -1)x 2+(a -2)x -1,当a =1时,不满足,当a ≠1时,Δ=(a -2)2+4(a -1)=a 2>0,满足;③Δ>0时,a ∈(-∞,-2)∪(2,+∞),记x 2-ax +1的两根为m ,n ,不妨设m <n ,则f (x )=[(a -1)x -1](x +1),x ∈(-∞,m ]∪[n ,+∞)[(a +1)x -1](x -1),x ∈(m ,n ),当a >2时,x 1=1a -1,x 2=-1且x ∈(-∞,m ]∪[n ,+∞),但此时x 21-ax 1+1=-a +2(a -1)2<0,舍去x 1,x 3=1a +1,x 4=1,且x ∈(m ,n ),但此时x 23-ax 3+1=a +2(a -1)2>0,舍去x 3,故仅有1与-1两个解,于是,a ∈(-∞,0)∪(0,1)∪(1,+∞).故答案为:(-∞,0)∪(0,1)∪(1,+∞).13(2023•上海)已知函数f (x )=2-x +1,且g (x )=log 2(x +1),x ≥0f (-x ),x <0,则方程g (x )=2的解为.【解析】:当x ≥0时,g (x )=2⇔log 2(x +1)=2,解得x =3;当x <0时,g (x )=f (-x )=2x +1=2,解得x =0(舍);所以g (x )=2的解为:x =3.故答案为:x =3.14(多选)(2023•新高考Ⅰ)噪声污染问题越来越受到重视.用声压级来度量声音的强弱,定义声压级L p =20×lg pp 0,其中常数p 0(p 0>0)是听觉下限阈值,p 是实际声压.下表为不同声源的声压级:声源与声源的距离/m声压级/dB 燃油汽车1060~90混合动力汽车1050~60电动汽车1040已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为p 1,p 2,p 3,则()A.p 1≥p 2B.p 2>10p 3C.p 3=100p 0D.p 1≤100p 2【解析】:由题意得,60≤20lg p 1p 0≤90,1000p 0≤p 1≤1092p 0,50≤20lg p 2p 0≤60,1052p 0≤p 2≤1000p 0,20lg p 3p 0=40,p 3=100p 0,可得p 1≥p 2,A 正确;p 2≤10p 3=1000p 0,B 错误;p 3=100p 0,C 正确;p 1≤1092p 0=100×1052p 0≤100p 2,p 1≤100p 2,D 正确.故选:ACD .15(2023•甲卷)已知函数f (x )=e -(x -1)2.记a =f 22,b =f 32 ,c =f 62,则()A.b >c >aB.b >a >cC.c >b >aD.c >a >b【解析】:令g (x )=-(x -1)2,则g (x )的开口向下,对称轴为x =1,∵62-1-1-32 =6+32-42,而(6+3)2-42=9+62-16=62-7>0,∴62-1-1-32 =6+3-42>0,∴62-1>1-32,∴由一元二次函数的性质可知g 62 <g 32 ,∵62-1-1-22 =6+2-42,而(6+2)2-42=43-8<0,∴62-1<1-22,∴g 62>g 22 ,综合可得g 22 <g 62 <g 32 ,又y =e x为增函数,∴a <c <b ,即b >c >a .故选:A .16(2023•甲卷)曲线y =e xx +1在点1,e 2 处的切线方程为()A.y =e4x B.y =e 2x C.y =e 4x +e 4D.y =e2x +3e 4【解析】:因为y =e xx +1,y ′=e x (x +1)-e x (x +1)'(x +1)2=xe x(x +1)2,故函数在点1,e2处的切线斜率k =e 4,切线方程为y -e 2=e 4(x -1),即y =e4x +e 4.故选:C .17(2023•新高考Ⅱ)已知函数f (x )=ae x -ln x 在区间(1,2)上单调递增,则a 的最小值为()A.e 2B.eC.e -1D.e -2【解析】:对函数f (x )求导可得,f '(x )=ae x -1x,依题意,ae x -1x≥0在(1,2)上恒成立,即a ≥1xe x在(1,2)上恒成立,设g (x )=1xe x ,x ∈(1,2),则g '(x )=-(e x +xe x )(xe x )2=-e x (x +1)(xe x )2,易知当x ∈(1,2)时,g ′(x )<0,则函数g (x )在(1,2)上单调递减,则a ≥g (x )max =g (1)=1e=e -1.故选:C .18(2023•全国)已知函数f (x )=x 3+ax 2+x +b 在x =1处取得极小值1,则b =()A.-1B.0C.1D.2【解析】:f (x )=x 3+ax 2+x +b ,则f '(x )=3x 2+2ax +1,∵函数f (x )=x 3+ax 2+x +b 在x =1处取得极小值1,∴1+a +1+b =13+2a +1=0 ,解得a =-2b =1 ,故f (x )=x 3-2x 2+x +1,f '(x )=3x 2-4x +1,令f '(x )=0,解得x =13或x =1,f (x )在-∞,13 ,在(1,+∞)上单调递增,在13,1上单调递减,故f (x )在x =1处取得极小值,故b =1,符合题意.故选:C .19(2023•全国)曲线y =2ln x +x 2在(1,1)处切线方程为.【解析】:由y =2ln x +x 2可得y ′=2x+2x ,x >0,曲线在点(1,1)处的切线斜率为k =4,所以所求切线方程为y -1=4(x -1)即y =4x -3.故答案为:y =4x -3.20(2023•乙卷)设a ∈(0,1),若函数f (x )=a x +(1+a )x 在(0,+∞)上单调递增,则a 的取值范围是 .【解析】:∵函数f (x )=a x +(1+a )x 在(0,+∞)上单调递增,∴f ′(x )=a x ln a +(1+a )x ln (1+a )≥0在(0,+∞)上恒成立,即(1+a )x ln (1+a )≥-a x ln a ,化简可得1+a a x ≥-ln aln (1+a )在(0,+∞)上恒成立,而在(0,+∞)上1+a ax>1,故有1≥-ln a ln (1+a ),由a ∈(0,1),化简可得ln (1+a )≥ln 1a ,即1+a ≥1a ,a 2+a -1≥0,解答5-12≤a <1,故a 的取值范围是5-12,1.故答案为:5-12,1 .21(多选)(2023•新高考Ⅱ)若函数f (x )=a ln x +bx +c x2(a ≠0)既有极大值也有极小值,则()A.bc >0B.ab >0C.b 2+8ac >0D.ac <0【解析】:函数定义域为(0,+∞),且f ′(x )=a x -b x 2-2c x 3=ax 2-bx -2cx 3,由题意,方程f ′(x )=0即ax 2-bx -2c =0有两个正根,设为x 1,x 2,则有x 1+x 2=b a >0,x 1x 2=-2ca>0,Δ=b 2+8ac >0,∴ab >0,ac <0,∴ab •ac =a 2bc <0,即bc <0.故选:BCD .。
2022年全国高考数学真题及模拟题汇编:导数一.选择题(共5小题) 1.曲线()lnxf x x=在点(1,f (1))处的切线与两坐标轴围成的三角形的面积为( ) A .14B .12C .1D .22.函数2()lnxf x x=的单调减区间是( ) A .2[e ,)+∞B .[,)e +∞C .(0,2]eD .(0,]e3.函数()2f x xlnx =-在1x =处的切线方程为( ) A .20x y +=B .240x y --=C .30x y --=D .10x y ++=4.偶函数()f x '为()f x 的导函数,()f x '的图象如图所示,则函数()f x 的图象可能为()A .B .C .D .5.已知定义在R 上的可导函数()f x ,对x R ∀∈,都有2()()x f x e f x -=,当0x >时,()()0f x f x '+<,若211(21)(1)a a e f a e f a -+-+,则实数a 的取值范围是( )A .[0,2]B .(-∞,1][2-,)+∞C .(-∞,0][2,)+∞D .[1-,2]二.多选题(共2小题)6.已知函数()f x 的导函数为()f x ',若()()2()f x xf x f x x <'<-对(0,)x ∈+∞恒成立,则下列不等式中,一定成立的是( ) A .f π(1)()f π< B .f π(1)()f π> C .(2)1(1)42f f <+ D .(2)1(1)42f f +< 7.对于函数3211()32f x x x cx d =+++,c ,d R ∈,下列说法正确的是( )A .存在c ,d 使得函数()f x 的图像关于原点对称B .()f x 是单调函数的充要条件是14cC .若1x ,2x 为函数()f x 的两个极值点,则441218x x +>D .若2c d ==-,则过点(3,0)P 作曲线()y f x =的切线有且仅有2条 三.填空题(共6小题)8.已知2()(4)(0f x lnx ax b x a =++->,0)b >在1x =处取得极值,则21a b+的最小值为 .9.函数()f x xlnx x =-在1[,2]2上的最大值为 .10.函数()cos 1x f x e x =⋅+在0x =的切线方程为 . 11.已知函数()f x f +'(1)22x e ex x =+,则()f x '= . 12.直线3y kx =-与曲线4y x x =+相切,则k = .13.若函数3()31f x x x =--在区间(2,23)a a -+上有最大值,则实数a 的取值范围是 . 四.解答题(共10小题)14.已知函数()(1)f x x lnx ax =--,a R ∈.(1)设函数()()(()g x f x f x =''为()f x 的导函数),求()g x 的零点个数; (2)若()f x 的最大值是0,求实数a 的值.15.已知函数32()32f x x ax bx =-+在点1x =处有极小值1-. (1)求a 、b 的值;(2)求()f x 在[0,2]上的值域. 16.已知函数2()x f x xe x ax =--.(1)当12a =时,求()f x 的单调区间; (2)当0x 时,()0f x ,求实数a 的取值范围. 17.已知函数32()3f x x ax a =-+,0a >.(1)求证:()y f x =在(1,f (1))处和(1-,(1))f -处的切线不平行; (2)讨论()f x 的零点个数.18.已知函数2()((0,1))f x x xlna a =+∈,(0,1)x ∈.(1)当a e =时,求()()x g x e f x =在(0,(0))g 处的切线方程. (2)讨论函数()f x 的单调性;(3)若()x f x ae lnx >对(0,1)x ∀∈恒成立,求实数a 的取值范围. 19.已知函数212()log (1)f x ax x =-+.(1)若2a =-,求函数()f x 的单调区间; (2)若函数()f x 的定义域为R ,求实数a 范围; (3)若函数()f x 的值域为R ,求实数a 范围;(4)若函数()f x 在区间(1,1)-上是增函数,求实数a 的取值范围. 20.已知函数2()()f x xlnx ax x a R =-+∈. (1)当0a =时,求()f x 的单调区间;(2)若()f x 有两个零点1x ,2x ,且122x x >,证明:1228x x e>. 21.已知函数21()2()2f x x ax lnx a R =-+∈. (1)当53a =时,求函数()f x 的单调区间;(2)设函数21()()22g x f x x =-+,若()g x 有两个不同的零点1x ,2x ,求证:122x x e +>.22.已知函数2()(1)(1)f x x lnx x m x =--+-,m R ∈. (1)讨论()f x 极值点的个数.(2)若()f x 有两个极值点1x ,2x ,且12x x <,证明:12()()24f x f x m +>-. 23.设函数()()x f x x ae a R =-∈. (Ⅰ)求函数()f x 的极值:(Ⅱ)若()+∞时恒成立,求a的取值范围.f x ax在[0x∈,)2022年全国高考数学真题及模拟题汇编:导数参考答案与试题解析一.选择题(共5小题) 1.曲线()lnxf x x=在点(1,f (1))处的切线与两坐标轴围成的三角形的面积为( ) A .14B .12C .1D .2【考点】利用导数研究曲线上某点切线方程【分析】先利用导数求出切线方程,然后求出切线的横、纵截距,利用面积公式即可求出面积.【解答】解:由题意知f (1)0=,21()lnxf x x -'=, 故f '(1)1=,所以切线为1y x =-, 令0x =得1y =-;令0y =得1x =,故切线与两坐标轴围成的三角形的面积11|1|122S =⨯-⨯=.故选:B .【点评】本题考查导数的几何意义和三角形面积的计算,属于基础题. 2.函数2()lnxf x x =的单调减区间是( ) A .2[e ,)+∞B.)+∞C .(0,2]eD.【考点】利用导数研究函数的单调性 【分析】求导得312()(0)lnxf x x x -'=>,当x ∈,)+∞时,()0f x ',()f x 单调递减,从而可得答案. 【解答】解:2()(0)lnxf x x x=>, 2431212()(0)x xlnxlnx x f x x x x ⋅--∴'==>,当x ∈,)+∞时,()0f x ',()f x 单调递减,∴函数2()lnxf x x=的单调减区间是)+∞, 故选:B .【点评】本题考查了利用导数研究函数的单调性,熟练掌握导函数的符号与函数单调性的关系是关键,考查运算能力,属于中档题.3.函数()2f x xlnx =-在1x =处的切线方程为( ) A .20x y +=B .240x y --=C .30x y --=D .10x y ++=【考点】利用导数研究曲线上某点切线方程【分析】求出原函数的导函数,得到函数在1x =处的导数值,再求出f (1)的值,利用直线方程的点斜式得答案.【解答】解:由()2f x xlnx =-,得()1f x lnx '=-, f ∴'(1)11lnx =-=-,又f (1)2=-,∴函数()2f x xlnx =-在1x =处的切线方程为21(1)y x +=-⨯-,即10x y ++=. 故选:D .【点评】本题考查利用导数研究过曲线上某点处的切线方程,关键是熟记基本初等函数的导函数,是基础题.4.偶函数()f x '为()f x 的导函数,()f x '的图象如图所示,则函数()f x 的图象可能为()A .B .C .D .【考点】导数及其几何意义【分析】利用导函数的正负确定原函数的单调性,即可判断选项A ,D ,由原函数为三次函数,即可判断选选项B ,C .【解答】解:由题意可知,()f x '为偶函数,设()f x '的图象与x 轴的两个交点的横坐标分别为1x -,1x , 由图象可得,当1x x <-时,()0f x '>,则()f x 单调递增, 当11x x x -<<时,()0f x '<,则()f x 单调递减, 当1x x >时,()0f x '>,则()f x 单调递增, 故选项A 错误,选项D 错误;由()f x '的图象可知,()f x '在0x =左右的函数值是变化的,不同的,而选项C 中,()f x 的图象在0x =左右是一条直线,其切线的斜率为定值,即导数()f x '为定值,故选项C 错误,选项B 正确. 故选:B .【点评】本题考查了导函数的图象的理解与应用,导函数与原函数之间关系的应用,解题的关键是掌握导数的正负确定原函数的单调性,考查了逻辑推理能力与识图能力,属于中档题. 5.已知定义在R 上的可导函数()f x ,对x R ∀∈,都有2()()x f x e f x -=,当0x >时,()()0f x f x '+<,若211(21)(1)a a e f a e f a -+-+,则实数a 的取值范围是( )A .[0,2]B .(-∞,1][2-,)+∞C .(-∞,0][2,)+∞D .[1-,2]【考点】利用导数研究函数的单调性【分析】令()()x g x e f x =,判断()g x 的单调性和奇偶性,根据211(21)(1)a a e f a e f a -+-+,得到(21)(1)g a g a -+,再求出a 的取值范围.【解答】解:令()()x g x e f x =,则当0x >时,()[()()]0x g x e f x f x ''=+<, 所以()()x g x e f x =在区间(0,)+∞单调递减, 又2()()(())()()x x x x g x e f x e e f x e f x g x ---=-===, 所以()g x 为偶函数,且在区间(,0)-∞单调递增,又211(21)(1)a a e f a e f a -+-+,即(21)(1)g a g a -+, 所以|21||1|a a -+,即22(21)(1)a a -+,解得0a 或2a ,所以a 的取值范围为(-∞,0][2,)+∞. 故选:C .【点评】本题考查了利用导数研究函数的单调性和函数的奇偶性,考查了转化思想,属中档题.二.多选题(共2小题)6.已知函数()f x 的导函数为()f x ',若()()2()f x xf x f x x <'<-对(0,)x ∈+∞恒成立,则下列不等式中,一定成立的是( ) A .f π(1)()f π< B .f π(1)()f π> C .(2)1(1)42f f <+ D .(2)1(1)42f f +< 【考点】利用导数研究函数的最值 【分析】设2()()f x x g x x -=,()()f x h x x=,(0,)x ∈+∞,求出函数的导数,根据函数的单调性判断即可. 【解答】解:设2()()f x x g x x -=,()()f x h x x=,(0,)x ∈+∞, 则243[()1]2[()]()2()()f x x x f x x xf x f x x g x x x '---'-+'==,2()()()xf x f x h x x '-'=, 因为()()2()f x xf x f x x '<<-对(0,)x ∈+∞恒成立, 所以()0g x '<,()0h x '>,所以()g x 在(0,)+∞上单调递减,()h x 在(0,)+∞上单调递增, 则g (1)g >(2),h (1)()h π<, 即22(1)1(2)212f f -->,(1)()1f f ππ<, 即(2)142f f +<(1),f π(1)()f π<, 故选:AD .【点评】本题考查导数与不等式的综合应用,考查构造函数的方法的灵活应用与推理论证能力.7.对于函数3211()32f x x x cx d =+++,c ,d R ∈,下列说法正确的是( )A .存在c ,d 使得函数()f x 的图像关于原点对称B .()f x 是单调函数的充要条件是14cC .若1x ,2x 为函数()f x 的两个极值点,则441218x x +>D .若2c d ==-,则过点(3,0)P 作曲线()y f x =的切线有且仅有2条【考点】利用导数研究曲线上某点切线方程;命题的真假判断与应用;利用导数研究函数的极值【分析】利用奇函数的定义即可判断选项A ,求出()f x ',利用导数的正负与函数单调性的关系,求解即可判断选项B ,利用极值的定义以及指数的性质、韦达定理求解,即可判断选项C ,求出函数的极值点,作出函数的大致图,即可判断选项D . 【解答】解:若存在c ,d 使得函数()f x 的图象关于原点对称, 则函数()f x 为奇函数,因为函数3211()32f x x x cx d =+++,c ,d R ∈,则3211()32f x x x cx d -=-+-+,因为2()()2f x f x x d +-=+对于任意的x ,不满足()()0f x f x -+=, 所以函数()f x 不是奇函数, 故选项A 错误;因为函数3211()32f x x x cx d =+++,c ,d R ∈,则2()f x x x c '=++,要使得()f x 是单调函数, 必满足△140c =-,解得14c , 故选项B 正确;若函数有两个极值点,必满足△0>,即14c <, 此时12121x x x x c +=-⎧⎨=⎩,所以222121212()212x x x x x x c +=+-=-,则4422222222121212()2(12)22412(1)1x x x x x x c c c c c +=+-=--=-+=--,因为14c <, 所以22112(1)12(1)148c -->--=,所以441218x x +>, 故选项C 正确;若2c d ==-,则3211()2232f x x x x =+--,所以2()2f x x x '=+-,令()0f x '=,解得2x =-或1x =,当2x <-时,()0f x '>,则()f x 单调递增, 当21x -<<时,()0f x '<,则()f x 单调递减, 当1x >时,()0f x '>,则()f x 单调递增,所以当2x =-时,()f x 取得极大值,当1x =时,()f x 取得极小值, 作出函数的大致图象如图所示,其中两条虚线代表两条相切的切线, 故选项D 正确. 故选:BCD .【点评】本题以命题的真假判断为载体,考查了导数的综合应用,主要考查了利用导数研究函数的单调性、极值的理解与应用,利用导数研究曲线的切线问题,函数图象的理解与应用,奇函数定义的理解与应用,考查了逻辑推理能力与化简运算能力,属于中档题. 三.填空题(共6小题)8.已知2()(4)(0f x lnx ax b x a =++->,0)b >在1x =处取得极值,则21a b+的最小值为 3 .【考点】利用导数研究函数的极值【分析】根据在1x =处取得极值,求出23a b +=,由基本不等式“1“的应用代入求最小值. 【解答】解:1()24f x ax b x'=++-,因为()f x 在1x =处取得极值,所以f '(1)0=, 即1240a b ++-=,所以23a b +=. 所以211211221()(2)(41)(523333b a a b a b a b a b +=++=++++=, 当且仅当1a b ==时取等号.把1a =,1b =代入()f x 检验得,1x =是()f x 的极值点, 故21a b+的最小值为3. 故答案为:3.【点评】本题主要考查利用导数研究极值的方法,基本不等式求最值的方法等知识,属于中等题.9.函数()f x xlnx x =-在1[,2]2上的最大值为 222ln - .【考点】利用导数研究函数的最值【分析】求导分析,可求得(){max f x max f =(2),1()}2f ,作差f (2)1()2f -,可得答案.【解答】解:()f x xlnx x =-,()11f x lnx lnx ∴'=+-=,当1[2x ∈,1)时,()0f x '<,()f x 单调递减,当(1x ∈,2]时,()g x 单调递增,∴当1x =时,()f x 取得最小值,(){max f x max f =(2),1()}2f ,又f (2)111153()222()20222222f ln ln ln ln ln -=---=-=>=>,所以()222max f x ln =-, 故答案为:222ln -.【点评】本题考查利用导数研究函数的最值,考查运算求解能力,属于中档题.10.函数()cos 1x f x e x =⋅+在0x =的切线方程为 20x y -+= . 【考点】利用导数研究曲线上某点切线方程【分析】求出原函数的导函数,得到函数在0x =处的导数值,再求出(0)f ,利用直线方程的点斜式得答案.【解答】解:由()cos 1x f x e x =⋅+,得()cos sin x x f x e x e x '=⋅-⋅, 则(0)1f '=,又(0)2f =,∴函数()cos 1x f x e x =⋅+在0x =的切线方程为21(0)y x -=⨯-,即20x y -+=. 故答案为:20x y -+=.【点评】本题考查利用导数研究过曲线上某点处的切线方程,关键是熟记基本初等函数的导函数,是基础题.11.已知函数()f x f +'(1)22x e ex x =+,则()f x '= 222x ex e -+ . 【考点】导数的运算【分析】根据导数的公式即可得到结论. 【解答】解:()f x f +'(1)22x e ex x =+,()f x f ∴'+'(1)22x e ex =+, f ∴'(1)f +'(1)22e e =+, f ∴'(1)2=,()222x f x ex e ∴'=-+, 故答案为:222x ex e -+.【点评】本题主要考查导数的基本运算,比较基础.12.直线3y kx =-与曲线4y x x =+相切,则k = 3-或5 . 【考点】利用导数研究曲线上某点切线方程【分析】求出原函数的导函数,设出切点坐标,由题意可得切点横坐标与k 的方程组,求解得答案.【解答】解:由4y x x =+,得314y x '=+,设切点为4000(,)x x x +,则30400143k x kx x x ⎧=+⎪⎨-=+⎪⎩,解得013x k =-⎧⎨=-⎩或015x k =⎧⎨=⎩. 3k ∴=-或5.故答案为:3-或5.【点评】本题考查利用导数研究过曲线上某点处的切线方程,考查运算求解能力,是中档题. 13.若函数3()31f x x x =--在区间(2,23)a a -+上有最大值,则实数a 的取值范围是 (2-,1]2- .【考点】利用导数研究函数的最值【分析】对()f x 求导得2()33f x x '=-,求得其最大值点,再根据()f x 在区间(2,23)a a -+上有最大值,求出a 的取值范围.【解答】解:因为函数3()31f x x x =--,所以2()33f x x '=-, 当1x <-时,()0f x '>,()f x 单调递增, 当11x -<<时,()0f x '<,()f x 单调递减, 当1x >时,()0f x '>,()f x 单调递增, 所以当1x =-时,()f x 取得最大值,又(1)f f -=(2)2=,且()f x 在区间(2,23)a a -+上有最大值, 所以21232a a -<-<+,解得122a -<-,所以实数a 的取值范围是(2-,1]2-.故答案为:(2-,1]2-.【点评】本题考查导数的综合应用,考查了转化思想,属于中档题. 四.解答题(共10小题)14.已知函数()(1)f x x lnx ax =--,a R ∈.(1)设函数()()(()g x f x f x =''为()f x 的导函数),求()g x 的零点个数; (2)若()f x 的最大值是0,求实数a 的值. 【考点】利用导数研究函数的最值【分析】(1)由题意得()2g x lnx ax =-,令()0g x =,得2lnx a x =,设(),0lnxh x x x=>,求导可知函数()h x 的单调递增区间是(0,)e ,单调递减区间是(,)e +∞,作出函数()h x 的大致图象,数形结合即可求出()g x 的零点个数. (2)由(1)可知当12a e 和0a 时,函数()f x 无最大值,当102a e<<时,存在1(1,)x e ∈,2(,)x e ∈+∞,使得12()()2h x h x a==,由单调性可知222222222()()(1)(1)02max lnx f x f x x lnx ax x lnx x x ==--=-⋅-=,从而求出a 的值. 【解答】解:(1)由题意得()()2g x f x lnx ax ='=-, 令()0g x =,得2lnxa x=, 设(),0lnx h x x x =>,则21()lnxh x x-'=, 当x e >时,()0h x '<;当0x e <<时,()0h x '>,∴函数()h x 的单调递增区间是(0,)e ,单调递减区间是(,)e +∞, ∴1()()max h x h e e==, 作出函数()h x 的大致图象如图所示, 数形结合可知, 当20a 或12a e =,即0a 或12a e=时,函数()g x 有1个零点; 当12a e >,即12a e>时,函数()g x 没有零点; 当102a e <<,即102a e<<时,函数()g x 有2个零点.(2)由1可知()(()2)f x x h x a '=-, ①当12ae时,()0f x '恒成立,()f x 在(0,)+∞上单调递减,无最大值, ②当0a 时,存在唯一的0(0x ∈,1],使得0()2h x a =, 当0x x >时,()0f x '>,当00x x <<时,()0f x '<,()f x ∴在0(0,)x 上单调递减,0(x ,)+∞上单调递增,无最大值,③当102a e<<时,存在1(1,)x e ∈,2(,)x e ∈+∞,使得12()()2h x h x a ==, 易得()f x 在1(0,)x ,2(x ,)+∞上单调递减,在1(x ,2)x 上单调递增,又当(0,1)x ∈时,()(1)0f x x lnx ax =--<,∴222222222()()(1)(1)02max lnx f x f x x lnx ax x lnx x x ==--=-⋅-=, 解得:22x e =,∴22212lnx a x e ==.【点评】本题主要考查了利用导数研究函数的单调性和最值,考查了方程的根与函数零点的关系,同时考查了数形结合的数学思想,属于中档题. 15.已知函数32()32f x x ax bx =-+在点1x =处有极小值1-. (1)求a 、b 的值;(2)求()f x 在[0,2]上的值域.【考点】利用导数研究函数的最值;利用导数研究函数的极值【分析】(1)依题意,得f (1)1=-,f '(1)0=,联立方程组,即可解得a 、b 的值; (2)可求得()(1)(31)f x x x '=-+,[0x ∈,2],分别解不等式()0f x '>和()0f x '<,可得函数()f x 的单调增区间与单调递减区间,从而可求得()f x 在[0,2]上的值域. 【解答】解:(1)函数32()32f x x ax bx =-+在点1x =处有极小值1-,2()362f x x ax b ∴'=-+,f '(1)3620a b =-+=,① 且f (1)1321a b =-+=-,② 联立①②得:13a =,12b =-;(2)由(1)得32()f x x x x =--,2()321(1)(31)f x x x x x ∴'=--=-+,[0x ∈,2], 由2()3210f x x x '=-->得12x <; 由2()3210f x x x '=--<得01x <,∴函数()f x 在区间[0,1)上单调递减,在区间(1,2]上单调递增;又(0)0f =,f (1)1=-,f (2)8422=--=, ()f x ∴在[0,2]上的值域为[1-,2].【点评】本题考查利用导数求函数的极值与最值,考查导数的几何意义,考查方程思想与转化化归思想的应用,考查运算求解能力,属于中档题. 16.已知函数2()x f x xe x ax =--. (1)当12a =时,求()f x 的单调区间; (2)当0x 时,()0f x ,求实数a 的取值范围.【考点】利用导数研究函数的最值;利用导数研究函数的单调性【分析】(1)对()f x 求导,利用导数与单调性的关系即可求解()f x 的单调区间; (2)()(1)x f x x e ax =--,令()1x g x e ax =--,求出()x g x e a '=-,对a 分类讨论,即可求解满足题意的a 的取值范围. 【解答】解:(1)当12a =时,21()(1)2x f x x e x =--,则()1(1)(1)x x x f x e xe x e x '=-+-=-+. 令()0f x '=,则1x =-或0,当(x ∈-∞,1)(0-⋃,)+∞时,()0f x '>;当(1,0)x ∈-时,()0f x '<; ()f x ∴的单调递增区间为(,1)-∞-,(0,)+∞,单调递减区间为(1,0)-.(2)由题设,()(1)x f x x e ax =--,令()1x g x e ax =--,则()x g x e a '=-. 若1a ,当(0,)x ∈+∞时,()0g x '>,()g x 为增函数,而(0)0g =,∴当0x 时,()0g x ,即()0f x .若1a >,当(0,)x lna ∈时,()0g x '<,()g x 为减函数,而(0)0g =,∴当(0,)x lna ∈时,()0g x <,即()0f x <,不符合题意.综上,实数a 的取值范围为(-∞,1].【点评】本题主要考查利用导数研究函数的单调性与最值,考查分类讨论思想与运算求解能力,属于中档题.17.已知函数32()3f x x ax a =-+,0a >.(1)求证:()y f x =在(1,f (1))处和(1-,(1))f -处的切线不平行; (2)讨论()f x 的零点个数.【考点】利用导数研究函数的极值;利用导数研究曲线上某点切线方程【分析】(1)依题意,若f '(1)(1)f ='-,则0a =,与0a >矛盾,从而证得结论成立; (2)由①知,()f x 在(,0)-∞,(2,)a +∞上单调递增,在(0,2)a 上单调递减,分102a <<,12a =时,12a >三类讨论,可得答案. 【解答】解:(1)证明:2()363(2)f x x ax x x a '=-=-,0a >,① 若()y f x =在(1,f (1))处和(1-,(1))f -处的切线平行, 则f '(1)(1)f ='-,即3636a a -=+, 解得0a =,与0a >矛盾,所以()y f x =在(1,f (1))处和(1-,(1))f -处的切线不平行; (2)(0)0f a =>,(1)120f a -=--<,0(1,0)x ∴∃∈-,使得0()0f x =;由①知,()f x 在(,0)-∞,(2,)a +∞上单调递增,在(0,2)a 上单调递减, ()f x ∴在(,0)-∞上有唯一零点0x ; 又311(2)44()()22f a a a a a a =-+=-+-,1∴︒当102a <<时,(2)0f a >,由单调性知()f x 有且仅有一个零点0x ; 2︒当12a =时,(2)0f a =,由单调性知()f x 有且仅有两个零点0x 和1; 3︒当12a >时,(2)0f a <,(3)0f a a =>, 1(0,2)x a ∴∃∈,使得1()0f x =;2(2,3)x a a ∈,2()0f x =,此时共有3个零点0x 、1x ,2x ; 综上,当102a <<时,()f x 有且仅有一个零点; 当12a =时,()f x 有且仅有两个零点; 当12a >时,()f x 有且仅有3个零点. 【点评】本题考查利用导数研究函数的极值,考查分类讨论思想、转化与化归思想的综合运用,考查逻辑推理能力与运算求解能力,属于难题. 18.已知函数2()((0,1))f x x xlna a =+∈,(0,1)x ∈.(1)当a e =时,求()()x g x e f x =在(0,(0))g 处的切线方程. (2)讨论函数()f x 的单调性;(3)若()x f x ae lnx >对(0,1)x ∀∈恒成立,求实数a 的取值范围.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;利用导数研究函数的最值【分析】(1)根据题意可得,当a e =时,2()()x g x e x x =+,求导得()g x ',由导数的几何意义可得()01k g ='=切,又(0)0g =,即可得出答案.(2)求导得()2f x lna x '=+,(0,1)x ∈,分两种情况:20a e -<,21e a -<<,讨论()f x '的正负,进而可得()f x 的单调区间.(3)由于2xae lnx x xlna <+,则()x x ln ae lnx ae x>对任意(0,1)x ∈恒成立,设()(0)lnxH x x e x=<<,求导分析()H x 的单调性,进而可得x x a e >对任意(0,1)x ∈恒成立,设()xxG x e =,(0,1)x ∈,只需()max a G x >,即可得出答案. 【解答】解:(1)当a e =时,22()()[]()x x x g x e f x e x xlne e x x ==+=+,22()()(21)(31)x x x g x e x x e x e x x '=+++=++, 所以()01k g ='=切, 又(0)0g =,所以()g x 在(0,(0))g 处的切线方程为01(0)y x -=-,即y x =. (2)因为2()f x x xlna =+,(0,1)x ∈, 所以()2f x lna x '=+,(0,1)x ∈, 若20a e -<,即2lna -,当(0,1)x ∈时,()0f x '<,()f x 单调递减, 若21e a -<<,即20lna -<<,012lna<-<,当02lnax <<-时,()0f x '<,函数()f x 单调递减, 当12lnax -<<时,()0f x '>,函数()f x 单调递增, 综上所述,当20a e -<时,函数()f x 在(0,1)x ∈上单调递减, 当21e a -<<时,函数()f x 在(0,)2lna x ∈-上单调递减,在(2lna-,1)上单调递增. (3)因为2x ae lnx x xlnx <+,所以()x x x lnx x lna ln ae x ae ae +<=, 即()x x ln ae lnx ae x>对任意(0,1)x ∈恒成立, 设()(0)lnxH x x e x=<<,则21()lnxH x x -'=, 当(0,)x e ∈时,()0H x '>,()H x 在(0,)e 上单调递增, 又(0,1)x ∈,(0,1)a ∈,所以(0,)x ae e ∈,由()()x H ae H x >得x ae x >对任意(0,1)x ∈恒成立,即x xa e>对任意(0,1)x ∈恒成立, 设()xxG x e =,(0,1)x ∈, 则1()0xxG x e -'=>, 所以()G x 在(0,1)上单调递增, 所以()G x G <(1)1e =,所以a 的取值范围为1[e,1).【点评】本题考查导数的综合应用,解题中需要理清思路,属于中档题. 19.已知函数212()log (1)f x ax x =-+.(1)若2a =-,求函数()f x 的单调区间; (2)若函数()f x 的定义域为R ,求实数a 范围; (3)若函数()f x 的值域为R ,求实数a 范围;(4)若函数()f x 在区间(1,1)-上是增函数,求实数a 的取值范围. 【考点】函数的定义域及其求法;利用导数研究函数的单调性【分析】(1)2a =时,212()log (21)f x x x =--+,利用符合函数的单调性可求函数的单调区间;(2)因为()f x 的定义域为R ,所以210ax x -+>对x R ∀∈恒成立,转化为含参数的一元二次不等式恒成立问题求解;(3)由函数()f x 的值域为R ,则21t ax x =-+可取所有大于0的实数,分析可知0a =和0a >时均有符合条件的a ,解不等式可得a 的取值范围;(4)由符合函数的单调性可转化为21t ax x =-+在(1,1)-上为减函数,且0t >,分三种情况求解即可.【解答】解:(1)2a =时,212()log (21)f x x x =--+,由2210x x --+>,解得1(1,)2x ∈-,故函数定义域为1(1,)2x ∈-,令221t x x =--+,则12log y t =,因为()t x 在1(1,)4--单调递增,在1(4-,1)2单调递减,而12log y t =在0t >时单调递减,由复合函数的单调性可知,()f x 在1(1,)4--单调递减,在11(,)42-单调递增,故()f x 的单调递增区间为11(,)42-,单调递减区间为1(1,)4--;(2)因为()f x 的定义域为R , 所以210ax x -+>对x R ∀∈恒成立,当0a =时,10x -+>,所以1x <-,不合题意;当0a <时,21y ax x =-+开口向下,必有0y <的部分,不合题意; 当0a >时,由△0<得,140a -<,解得14a >, 综上,a 的取值范围是1(4,)+∞;(3)若函数()f x 的值域为R , 21t ax x =-+可取所有大于0的实数,当0a =时,1t x =-+,符合题意;当00a >⎧⎨⎩时,即0140a a >⎧⎨-⎩,104a <时符合题意,综上,a 的取值范围是[0,1]4;(4)令221t x x =--+,则12log y t =,因为12log y t =在0t >时单调递减,由复合函数的单调性可知,要满足若函数()f x 在区间(1,1)-上是增函数, 则21t ax x =-+在(1,1)-上为减函数,且0t >, ①当0a >时,需112(1)110a t a -⎧-⎪⎨⎪=-+⎩,解得102a <;②当0a =时,1t x =-+,只需t (1)110=-+即可,即00,成立,故0a =符合题意; ③当0a <时,需112(1)110a t a -⎧--⎪⎨⎪=-+⎩即1120a a ⎧-⎪⎨⎪⎩,结合0a <可知此情况无解;综上,实数a 的取值范围是[0,1]2.【点评】本题考查了符合函数的单调性,以及利用符合函数单调性求解参数范围的问题,属于中档题.20.已知函数2()()f x xlnx ax x a R =-+∈. (1)当0a =时,求()f x 的单调区间;(2)若()f x 有两个零点1x ,2x ,且122x x >,证明:1228x x e >. 【考点】利用导数研究函数的最值;利用导数研究函数的单调性【分析】(1)当0a =时,求得()2f x lnx '=+,即可求得()f x 的单调区间; (2)依题意,得12112211lnx lnx a x x x x =+=+,结合式子的特点构造函数,求导,利用函数的导数与函数单调性的关系即可证明结论成立.【解答】解:(1)当0a =时,()(0)f x xlnx x x =+>, ()2f x lnx '∴=+,令()0f x '>,得21x e >,令()0f x '<,得210x e<<, ()f x ∴的单调增区间是21(,)e +∞,单调减区间是21(0,)e ; (2)证明:若()f x 有两个零点1x ,2x ,则22111122220,0x lnx ax x x lnx ax x -+=-+=, ∴12112211lnx lnx a x x x x =+=+. 由122x x >,令211()2x tx t =<,则111111()11lnx ln tx x x tx tx +=+, ∴111lnt lnx t =--,∴211()11tlntlnx ln tx lnt lnx t ==+=--, ∴1212(1)()112111lnt tlnt t lntln x x lnx lnx t t t +=+=-+-=----. 令(1)()2(2)1t lnth t t t +=->-,则212()(1)lnt t t h t t -+-'=-,令1()2(2)t lnt t t tϕ=-+->,则22221(1)()10t t t t t ϕ-'=-++=>,()t ϕ∴在(2,)+∞上单调递增,∴3()(2)2202t ln ϕϕ>=->, ∴2()()0(1)t h t t ϕ'=>-,则()h t 在(2,)+∞上单调递增,∴28()(2)322h t h ln ln e >=-=,即1228()ln x x ln e>, ∴1228x x e >. 【点评】本题主要考查了利用导数研究函数的单调性与最值,考查分离参数法与构造函数法的综合运用,考查转化与化归思想及逻辑推理能力、综合运算能力、抽象思维能力,属于难题.21.已知函数21()2()2f x x ax lnx a R =-+∈. (1)当53a =时,求函数()f x 的单调区间;(2)设函数21()()22g x f x x =-+,若()g x 有两个不同的零点1x ,2x ,求证:122x x e +>.【考点】利用导数研究函数的最值;利用导数研究函数的单调性 【分析】(1)由题意,代入53a =,对函数求导,再求单调区间即可,(2)由题意,()g x 有两个零点,可利用分离参数法,将两个根转化为关于t 的函数,再证明结论即可.【解答】解:(1)当53a =时,2110(),023f x x x lnx x =-+>,21103103(31)(3)()333x x x x f x x x x x-+--'∴=+-==⋅由()0f x '>,得()f x 的单调增区间为1(0,),(3,)3+∞;由()0f x '<,得()f x 的单调减区间为1(,3)3.证明:(2)由题意.得()220g x lnx ax =-+=有两个根122,2lnx x x a x+⇔=有两个根1x ,2x . 令221()(0),()lnx lnx m x x m x x x+--'=>=. 由11()0,()0m x x m x x e e''>⇒<<⇒>.()m x ∴在1(0,)e上单调递增,在1(,)e +∞上单调递减.()g x 有两个不同的零点1x ,2.x 不妨设12x x <.∴1210x x e<<< 要证明:122x x e+>,需证:2e>. 需证:1221x x e>.(※) 又1221121221122242lnx lnx lnx lnx lnx lnx a x x x x x x ++-++====-+. ∴22221111122211()(1)()41x x x x x lnln x x x ln x x x x x x +++==--. 今211x t x =>,且(1)()1t lnth t t +--, 得212()(1)t lnt t h t t --'=-. 令1()2r t t lnt t=--,得2221221()10t t r t t t t -+'=+-=>.()r t ∴在(1,)+∞上单调递增,()r t r >(1)0=,即()0h t '>.()h t ∴在(1,)+∞上单调递增,()h t h >(1)2,∴12121221()42()2ln x x ln x x x x e +>⇒>-⇒>, ∴(※)式成立.【点评】本题考查导数的综合应用,考查学生的综合能力,属于难题. 22.已知函数2()(1)(1)f x x lnx x m x =--+-,m R ∈. (1)讨论()f x 极值点的个数.(2)若()f x 有两个极值点1x ,2x ,且12x x <,证明:12()()24f x f x m +>-. 【考点】利用导数研究函数的极值;利用导数研究函数的最值【分析】(1)先求导,根据导数和函数的单调性的关系即可判断函数的极值点;(2)构造函数()()(2)h x f x f x =+-,利用导数和函数单调性和最值的关系,可得要证12()()24f x f x m +>-,即可证明122x x +,再根据导数和极值的关系去证明2121122lnx lnx x x x x ->-+,再利用换元法,再构造导数,利用导数和函数的最值的关系即可证明. 【解答】解:(1)2()(1)(1)f x x lnx x m x =--+-,函数()f x 的定义域为(0,)+∞, 1()2f x lnx x m x∴'=--+, 令1()2g x lnx x m x=--+, 222222112121(21)(1)()2x x x x x x g x x x x x x -++--+-∴'=+-==-=-, 当()0g x '=时,解得1x =,当01x <<时,()0g x '>,函数()g x 得到递增, 当1x >时,()0g x '<,函数()g x 得到递减, ()max g x g ∴=(1)3m =-,①当3m 时,()()0f x g x '=恒成立,∴函数()f x 在(0,)+∞上单调递减, ∴函数()f x 无极值点,②当3m >时,1103m <<,g (1)0>,112()0g ln m m m =-<,1()0g m lnm m lnm m m =--<-<,∴存在11(x m∈,1),2(1,)x ∈+∞,则12()()0g x g x ==,即12()()0f x f x '='=,故()f x 有2个极值点,综上所述当3m 时,无极值点,当3m >时,有2个极值点. (2)证明:22()()(2)(1)(1)(1)(2)(2)(1)(2)h x f x f x x lnx x m x x ln x x m x =+-=--+-+----+--,01x <<,则11()(2)442h x lnx ln x x x x'=----++-, 则11()(2)442x lnx ln x x x xϕ=----++-, 2211111111()4(2)(1)(2)(1)2(2)22x x x x x x x x xϕ∴'=+-++=+--+-----,01x <<,∴11102x x>>>-, ∴112202x x +>+>-,221122222(1)1x x x x x +==>--+--+, ∴111102x x->->-, ()0x ϕ∴'>,()x ϕ∴在(0,1)上单调递增,则()x ϕϕ<(1)0=,即()0h x '<, ()h x ∴在(0,1)上单调递减,则()h x h >(1)24m =-, 101x <<,111()()(2)24h x f x f x m ∴=+->-,要证12()()24f x f x m +>-, 只需证21()(2)f x f x -, 121x ->,21x >,112x x ->,()f x ∴在1(x ,2)x 上是增函数,∴只需要证112x x -,即证122x x +, 由111120lnx x m x --+=,222120lnx x m x --+=, 两式相减可得212121122()0x x lnx lnx x x x x ----+=, 即212112120lnx lnx x x x x -+-=-,12x x +>,∴2121214()x x x x >+, 下面证明2121122lnx lnx x x x x ->-+, 即证2212112(1)1x x x ln x x x ->+,令211x t x =>, 即证2201t lnt t -->+, 令22()01t p t lnt t -=->+,0t >, 则22214(1)()0(1)(1)t p t t t t t -'=-=>++,()p t ∴在(1,)+∞上单调递增, ()p t p ∴>(1)0=,∴2121122lnx lnx x x x x ->-+, 又21221121212124022()lnx lnx x x x x x x x x -=+->+--++,212121212()()2(2)(1)0x x x x x x x x ∴+-+-=+-++>, 122x x ∴+>,问题得以证明.【点评】本题考查了函数的单调性,最值问题,考查导数的应用以及函数恒成立问题,考查转化思想,分类讨论思想,是难题.23.设函数()()x f x x ae a R =-∈. (Ⅰ)求函数()f x 的极值:(Ⅱ)若()f x ax 在[0x ∈,)+∞时恒成立,求a 的取值范围. 【考点】利用导数研究函数的极值;利用导数研究函数的最值【分析】(Ⅰ)求出()f x ',分两种情况讨论a 的范围,在定义域内,分别令()0f x '>求得x 的范围,可得函数()f x 增区间,()0f x '<求得x 的范围,可得函数()f x 的减区间;根据单调性即可求得()f x 的极值⋅(Ⅱ)参变分离,将问题转化为用导数求函数的最值问题⋅ 【解答】解:(Ⅰ)由题可知()1x f x ae '=-,①当0a ,()0f x ',()f x 在R 上单调递增,()f x ∴没有极值; ②当0a >,()0f x '=时,1x ln a=.当1(,)x ln a ∈-∞时,()0f x '>,()f x 单调递增;当1(,)x ln a ∈+∞时,()0f x '<,()f x 单调递减;()f x ∴在1x ln a =时取得极大值11ln a-,没有极小值⋅综上所述,当0a 时,()f x 无极值;当0a >时,()f x 有极大值11ln a-,无极小值;(Ⅱ)()f x ax x ax a ⇒+()x x e x a x e ⇒+ [0x ∈,)+∞,∴xxax e +, 令(),0xxg x x x e =+,则原问题()max a g x ⇔,[0x ∈,)+∞,22(1)(1)()()()x x x x x x e x e e x g x x e x e +-+-'==++,101x x ->⇒<, [0x ∴∈,1),()0g x '>,()g x 单调递增;(1,)x ∈+∞,()0g x '<,()g x 单调递减;∴1()(1)1max g x g e ==+,∴11a e⋅+ a ∴的取值范围为1[1e+,)+∞.【点评】本题主要考查利用导数研究函数的极值,利用导数研究不等式恒成立问题等知识,属于中等题.。
2021-2022年高考数学专题03 导数与应用分项试题(含解析)理一、选择题1.【xx河南省南阳一中三模】关于函数,下列说法错误的是()A. 是的极小值点B. 函数有且只有1个零点C. 存在正实数,使得恒成立D. 对任意两个正实数,且,若,则【答案】C∴函数y=f(x)﹣x有且只有1个零点,即B正确;f(x)>kx,可得k< + ,令g(x)= +则g′(x)令h(x)=﹣4+x﹣xlnx,则h′(x)=﹣lnx,∴(0,1)上,函数单调递增,(1,+∞)上函数单调递减,∴h(x)≤h(1)<0,∴g′(x)<0,∴g(x)= +在(0,+∞)上函数单调递减,函数无最小值,∴不存在正实数k,使得f(x)>kx恒成立,即C不正确;对任意两个正实数x1,x2,且x2>x1,(0,2)上,函数单调递减,(2,+∞)上函数单调递增,若f(x1)=f(x2),则x1+x2>4,正确.故选:C.2.【xx河南省洛阳市尖子生联考】已知函数有三个不同的零点,,(其中),则的值为()A. B. C. D.【答案】D当x∈(0,1)时,g′(x)<0;当x∈(1,e)时,g′(x)>0;当x∈(e,+∞)时,g′(x)<0.即g(x)在(0,1),(e,+∞)上为减函数,在(1,e)上为增函数.∴0<x1<1<x2<e<x3,a==,令μ=,则a=﹣μ,即μ2+(a﹣1)μ+1﹣a=0,μ1+μ2=1﹣a<0,μ1μ2=1﹣a<0,对于μ=,μ′=则当0<x<e时,μ′>0;当x>e时,μ′<0.而当x>e时,μ恒大于0.画其简图,点睛:先分离变量得到a=,令g(x)=.求导后得其极值点,求得函数极值,则使g(x)恰有三个零点的实数a的取值范围由g(x)==,再令μ=,转化为关于μ的方程后由根与系数关系得到μ1+μ2=1﹣a<0,μ1μ2=1﹣a<0,再结合着μ=的图象可得到(1﹣)2(1﹣)(1﹣)=1.3.【xx浙江省温州市一模】已知函数的导函数的图象如图所示,则函数的图象可能是()A. B. C. D.【答案】C4.【xx 吉林省百校联盟九月联考】已知当时,关于的方程有唯一实数解,则距离最近的整数为( )A. 2B. 3C. 4D. 5 【答案】B【解析】由可得: , 令,则, 令,则,由可得,函数h(x)单调递增,函数h(x)的最小值为()()()31ln30,42ln40, 3.5 1.5ln3.50h h h =-=-=->, 则存在满足h(x)=0,据此可得:距离最近的整数为3. 本题选择B 选项.点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.关键是分离参数k ,把所求问题转化为求函数的最小值问题.(2)若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.5.【xx 辽宁省大连八中模拟】设函数在上存在导函数,对任意的实数都有,当时, .若()()3132f m f m m +≤-++,则实数的取值范围是( )A. B. C. D. 【答案】A6.【xx 辽宁省辽南协作校一模】已知函数在上满足()()22288f x f x x x =--+-,则曲线在点处的切线方程是( ) A. B. C. D. 【答案】D【解析】由()()22288f x f x x x =--+-可得()()()222288f x f x x x -=--+-,即()()22244f x f x x x -=--+代入()()22288f x f x x x =--+-可得()()22488288f x f x x x x x =+---+-,即,故,则切线的斜率,因为,所以切线方程为,即,应选答案D 。
第3讲函数与导数小题一、多选题1.(2021·全国高三专题练习)已知函数()sin 2xxf x e ex -=--,若()()12f x f x >,则()A .2212x x >B .121x x e ->C .12ln ln x x >D .1122x x x x >2.(2021·山东高三专题练习)函数ln ()xf x x=,则下列说法正确的是()A .(2)(3)f f >B .ln π>C .若()f x m =有两个不相等的实根12x x 、,则212x x e < D .若25,x y x y =、均为正数,则25x y <3.(2021·广东深圳市·高三一模)已知函数3()3x f x x =+,若01m n <<<,则下列不等式一定成立的有()A .(1)(1)f m f n -<-B .()f f m n <+C .()()log log m n f n f m <D .()()nmf mf n <4.(2021·广东湛江市·高三一模)已知函数f (x )=x 3-3ln x -1,则() A .f (x )的极大值为0 B .曲线y =f (x )在(1,f (1))处的切线为x 轴 C .f (x )的最小值为0D .f (x )在定义域内单调5.(2021·河北邯郸市·高三一模)已知函数()22,21ln 1,1x x f x x x e+-≤≤⎧=⎨-<≤⎩,若关于x 的方程()f x m =恰有两个不同解()1212,x x x x <,则()212)x x f x -(的取值可能是() A .3-B .1-C .0D .26.(2021·全国高三专题练习)已知函数()2tan f x x x =+,其导函数为()'f x ,设()()cos g x f x x '=,则()A .()f x 的图象关于原点对称B .()f x 在R 上单调递增C .2π是()g x 的一个周期D .()g x 在0,2π⎛⎫⎪⎝⎭上的最小值为7.(2021·全国高三专题练习(理))已知函数()sin sin xxf x e e=+,以下结论正确的是()A .()f x 是偶函数B .()f x 最小值为2C .()f x 在区间,2ππ⎛⎫--⎪⎝⎭上单调递减D .()()2g x f x x π=-的零点个数为58.(2021·江苏高三专题练习)若定义在R 上的函数()f x 满足()01f =-,其导函数()f x '满足()1f x m '>>,则下列成立的有()A .11mf m m -⎛⎫>⎪⎝⎭B .11f m ⎛⎫<-⎪⎝⎭ C .1111f m m ⎛⎫>⎪--⎝⎭ D .101f m ⎛⎫<⎪-⎝⎭9.(2021·全国高三专题练习)设函数cos2cos2()22xx f x -=-,则() A .()f x 在0,2π⎛⎫⎪⎝⎭单调递增B .()f x 的值域为33,22⎡⎤-⎢⎥⎣⎦C .()f x 的一个周期为πD .4f x π⎛⎫+ ⎪⎝⎭的图像关于点,04π⎛⎫ ⎪⎝⎭对称二、单选题10.(2021·广东广州市·高三一模)已知e 2.71828≈是自然对数的底数,设21323,2,eln 2e ea b c -=-=-=-,则()A .a b c <<B .b a c <<C .b c a <<D .c a b <<11.(2021·全国高三专题练习)已知函数()()1ln 12xf x e x =+-,若41log 5a f ⎫⎛= ⎪⎝⎭,()5log 6b f =,()6log 4c f =,则a ,b ,c 的大小关系正确的是()A .b a c >>B .a b c >>C .c b a >>D .c a b >>12.(2021·全国高三专题练习)已知函数2()22x xf x x -=++,若不等式()2(1)2f ax f x-<+对任意x ∈R 恒成立,则实数a 的取值范围是()A.()-B.(-C.(-D .(2,2)-13.(2021·江苏常州市·高三一模)若()316,00,0x x f x xx ⎧-≠⎪=⎨⎪=⎩则满足(10)xf x -≥的x 的取值范围是() A .[)1,1][3,-+∞ B .(,1][0,1][3,)-∞-⋃⋃+∞ C .[1,0][1,)-⋃+∞D .(,3][1,0][1,)-∞-⋃-⋃+∞14.(2021·辽宁铁岭市·高三一模)若a ∈R ,“3a >”是“函数()()xf x x a e =-在()0,∞+上有极值”的(). A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件15.(2021·全国高三专题练习)下列函数中,既是奇函数,又在()0,1上单调递减的是() A .()()()ln ln xx xxf x e eee --=+--B .()1sin sin f x x x=+ C .()()()ln 1ln 1f x x x =+--D .()1 xxf x e e =-16.(2021·湖南岳阳市·高三一模)对于函数()y f x =,若存在0x ,使00()()f x f x =--,则点00(,())x f x 与点00(,())x f x --均称为函数()f x 的“先享点”已知函数316,0(),6,0ax x f x x x x ->⎧=⎨-≤⎩且函数()f x 存在5个“先享点”,则实数a 的取值范围为() A .(6,)+∞B .(,6)-∞C .(0,6)D .(3,)+∞17.(2020·山东高三专题练习)已知函数39,0(),0x x x f x xe x ⎧-≥=⎨<⎩( 2.718e =为自然对数的底数),若()f x 的零点为α,极值点为β,则αβ+=() A .1- B .0 C .1 D .2三、填空题18.(2021·广东韶关市·高三一模)若曲线()21:0C y ax a =>与曲线2:x C y e =存在公共切线,则a 的取值范围为__________.19.(2021·全国高二课时练习(理))设曲线xy e =在点(0,1)处的切线与曲线1(0)y x x=>上点P 处的切线垂直,则P 的坐标为_____.20.(2021·辽宁铁岭市·高三一模)已知函数()f x 是定义在R 上的奇函数,当0x <时,()221ax x f x =-+,且曲线()y f x =在点()()1,1f 处的切线斜率为4,则a =______. 21.(2021·河北邯郸市·高三一模)已知函数()2ln f x ax x =+满足0(1)(12)lim23x f f x x∆→--∆=∆,则曲线()y f x =在点11,22f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线斜率为___________.22.(2021·湖南衡阳市·高三一模)定义在R 上的函数()f x 满足()()21f x f x +-=,()f x 的导函数()f x ',则()()20192021f f '--'=___________.第3讲函数与导数小题一、多选题1.(2021·全国高三专题练习)已知函数()sin 2xxf x e ex -=--,若()()12f x f x >,则()A .2212x x >B .121x x e ->C .12ln ln x x >D .1122x x x x >【答案】BD 【分析】先分析得到()f x 在R 上单调递增,得到12x x >,由于二次函数2yx 不是单调函数,2212x x >不一定成立,所以选项A 错误;121x x e->,所以选项B 正确;由于函数ln()0ln ln 0x x y x x x -<⎧==⎨>⎩,不是单调函数,所以12ln ln x x >不一定成立.所以选项C 错误;因为函数2200x x y x x x x ⎧-<==⎨≥⎩,函数在R 上单调递增,所以选项D 正确. 【详解】因为()2cos222cos20xxf x e ex x -'=+-≥-≥,所以()f x 在R 上单调递增,由()()12f x f x >可得12x x >,所以121x x e ->,所以选项B 正确;又因为函数220x x y x x x x ⎧-<==⎨≥⎩,函数在R 上单调递增,所以1122x x x x >,所以选项D 正确;由于二次函数2yx 不是单调函数,所以当12x x >时,2212x x >不一定成立,所以选项A 错误;由于函数ln()0ln ln 0x x y x x x -<⎧==⎨>⎩,不是单调函数,所以当12x x >时,12ln ln x x >不一定成立.所以选项C 错误. 故选:BD 【点睛】关键点睛:解答本题的关键是想到利用导数分析得到函数的单调性,研究函数的问题,一般先要通过探究函数的奇偶性、单调性和周期性等,再求解函数问题.2.(2021·山东高三专题练习)函数ln ()xf x x=,则下列说法正确的是()A .(2)(3)f f >B .ln π>C .若()f x m =有两个不相等的实根12x x 、,则212x x e < D .若25,x y x y =、均为正数,则25x y <【答案】BD 【分析】求出导函数,由导数确定函数日单调性,极值,函数的变化趋势,然后根据函数的性质判断各选项. 由对数函数的单调性及指数函数单调性判断A ,由函数()f x 性质判断BC ,设25x y k ==,且,x y 均为正数,求得252ln ,5ln ln 2ln 5x k y k ==,再由函数()f x 性质判断D . 【详解】 由ln (),0x f x x x =>得:21ln ()xf x x -'=令()0f x '=得,x e =当x 变化时,(),()f x f x '变化如下表:故,()f x x=在(0,)e 上递增,在(,)e +∞上递减,()f e e =是极大值也是最大值,x e >时,x →+∞时,()0f x →,且x e >时()0f x >,01x <<时,()0f x <,(1)0f =,A .1132ln 2(2)ln 2,(3)ln 32f f ===66111133223232(3)(2)f f ⎛⎫⎛⎫>∴>∴> ⎪ ⎪⎝⎭⎝⎭,故A 错B .e e π<<,且()f x 在(0,)e 单调递增ln f fe ππ∴<<<∴>,故:B 正确 C .()f x m =有两个不相等的零点()()1212,x x f x f x m ∴==不妨设120x e x <<<要证:212x x e <,即要证:221222,()e e x x e ef x x x<>∴<在(0,)e 单调递增,∴只需证:()212e f x f x ⎛⎫< ⎪⎝⎭即:()222e f x f x ⎛⎫<⎪⎝⎭只需证:()2220e f x f x ⎛⎫-< ⎪⎝⎭……① 令2()(),()e g x f x f x e x ⎛⎫=-> ⎪⎝⎭,则2211()(ln 1)g x x e x '⎛⎫=-- ⎪⎝⎭当x e >时,2211ln 1,()0()x g x g x e x'>>∴>∴在(,)e +∞单调递增 ()22()0x e g x g e >∴>=,即:()2220e f x f x ⎛⎫-> ⎪⎝⎭这与①矛盾,故C 错D .设25x y k ==,且,x y 均为正数,则25ln ln log ,log ln 2ln 5k kx k y k ====252ln ,5ln ln 2ln 5x k y k ∴== 1152ln 2ln 5ln 2,ln 525==且1010111153222525⎛⎫⎛⎫⎛⎫ ⎪>> ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ln 2ln 52502525ln 2ln 5x y ∴>>∴<∴<,故D 正确.故选:BD . 【点睛】关键点点睛:本题考查用导数研究函数的单调性、极值,函数零点等性质,解题关键是由导数确定函数()f x 的性质.其中函数值的大小比较需利用单调性,函数的零点问题中有两个变量12,x x ,关键是进行转化,利用零点的关系转化为一个变量,然后引入新函数进行证明.3.(2021·广东深圳市·高三一模)已知函数3()3x f x x =+,若01m n <<<,则下列不等式一定成立的有()A .(1)(1)f m f n -<-B .()f f m n <+C .()()log log m n f n f m <D .()()nmf mf n <【答案】BD 【分析】确定函数是增函数,然后比较自变量的大小后可得正确选项. 【详解】易知3()3xf x x =+是R 上的增函数,01m n <<<时,m n +>1n m m n <<成立,BD 一定成立; 1m -与1n -的大小关系不确定,A 不一定成立;同样log m n 与log m n 的大小关系也不确定,如1m n=时,log log 1m n n m ==-,C 也不一定成立. 故选:BD .4.(2021·广东湛江市·高三一模)已知函数f (x )=x 3-3ln x -1,则() A .f (x )的极大值为0 B .曲线y =f (x )在(1,f (1))处的切线为x 轴 C .f (x )的最小值为0 D .f (x )在定义域内单调【答案】BC 【分析】直接对f (x )=x 3-3ln x -1,求出导函数,利用列表法可以验证A 、C 、D;对于B:直接求出切线方程进行验证即可. 【详解】f (x )=x 3-3ln x -1的定义域为()0+∞,,()()23333=1f x x x x x'=-- 令()()23333=1=0f x x x x x'=--,得1x =, 列表得:所以f (x )的极小值,也是最小值为f (1)=0,无极大值,在定义域内不单调;故C 正确,A 、D 错误; 对于B:由f (1)=0及()10f '=,所以y =f (x )在(1,f (1))处的切线方程()001y x -=-,即0y =.故B 正确. 故选:BC 【点睛】导数的应用主要有:(1)利用导函数几何意义求切线方程;(2)利用导数研究原函数的单调性,求极值(最值); (3)利用导数求参数的取值范围.5.(2021·河北邯郸市·高三一模)已知函数()22,21ln 1,1x x f x x x e+-≤≤⎧=⎨-<≤⎩,若关于x 的方程()f x m =恰有两个不同解()1212,x x x x <,则()212)x x f x -(的取值可能是() A .3- B .1-C .0D .2【答案】BC 【分析】利用函数的单调性以及已知条件得到1122,e ,(1,0]2m m x x m +-==∈-,代入()212)x x f x -(,令121(),(1,0]2x g x xe x x x +=-+∈-,求导,利用导函数的单调性分析原函数的单调性,即可求出取值范围. 【详解】因为()f x m =的两根为()1212,x x x x <, 所以1122,e ,(1,0]2m m x x m +-==∈-, 从而()()211212222m m m m x x f x e m me m ++-⎛⎫-=-=-+ ⎪⎝⎭. 令121(),(1,0]2x g x xex x x +=-+∈-, 则1()(1)1x g x x e x +'=+-+,(1,0]x ∈-.因为(1,0]x ∈-,所以1010,1,10x x e e x ++>>=-+>, 所以()0g x '>在(1,0]-上恒成立, 从而()g x 在(1,0]-上单调递增. 又5(0)0,(1)2g g =-=-, 所以5(),02g x ⎛⎤∈-⎥⎝⎦, 即()()212x x f x -⋅的取值范围是5,02⎛⎤-⎥⎝⎦,故选:BC . 【点睛】关键点睛:本题考查利用导数解决函数的范围问题.构造函数121(),(1,0]2x g x xe x x x +=-+∈-,利用导数求取值范围是解决本题的关键.6.(2021·全国高三专题练习)已知函数()2tan f x x x =+,其导函数为()'f x ,设()()cos g x f x x '=,则()A .()f x 的图象关于原点对称B .()f x 在R 上单调递增C .2π是()g x 的一个周期D .()g x 在0,2π⎛⎫⎪⎝⎭上的最小值为【答案】AC 【分析】对A :求出()f x 的定义域,再利用奇偶性的定义判断即可; 对B :利用()f x 的导数可判断;对C :计算(2)g x π+,看是否等于()g x 即可; 对D :设cos t x =,根据对勾函数的单调性可得最值. 【详解】()2tan f x x x =+的定义域是,2xx k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭∣,其定义域关于坐标原点对称, 且()2tan()2tan (2tan )()f x x x x x x x f x -=-+-=--=-+=-, 所以()f x 是奇函数,所以()f x 的图象关于原点对称,故A 项正确;由()2tan f x x x =+,得22()1cos f x x '=+,则2()()cos cos cos g x f x x x x'==+. 22()10cos f x x '=+>恒成立,所以()f x 在,()22k k k Z ππππ⎛⎫-++∈ ⎪⎝⎭上单调递增,并不是在R 上单调递增,故B 项错误; 由2()cos cos g x x x =+,得函数()g x 的定义域是,2xx k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭∣22(2)cos(2)cos ()cos(2)cos g x x x g x x xπππ+=++=+=+,故C 项正确;设cos t x =,当0,2x π⎛⎫∈ ⎪⎝⎭时,(0,1)t ∈, 此时()2()h t g x t t==+,(0,1)t ∈,根据对勾函数的单调性,()h t 在(0,1)上单调递减, ()()13g x h ∴>=,故D 项错误.故选:AC .7.(2021·全国高三专题练习(理))已知函数()sin sin xxf x e e=+,以下结论正确的是()A .()f x 是偶函数B .()f x 最小值为2C .()f x 在区间,2ππ⎛⎫-- ⎪⎝⎭上单调递减D .()()2g x f x x π=-的零点个数为5【答案】ABD 【分析】去掉绝对值,由函数的奇偶性及周期性,对函数分段研究,利用导数再得到函数的单调性,再对选项进行判断. 【详解】∵x ∈R ,()()f x f x -=,∴()f x 是偶函数,A 正确;因为()()2f x f x π+=,由函数的奇偶性与周期性,只须研究()f x 在[]0,2π上图像变化情况.()sin sin sin 2,01,2x x x e x f x e x e πππ⎧≤≤⎪=⎨+<≤⎪⎩, 当0x π≤≤,()sin 2cos xf x xe'=,则()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上单调递增,在,2ππ⎡⎤⎢⎥⎣⎦上单调递减,此时()[]2,2f x e ∈;当2x ππ≤≤时,()()sin sin cos xx f x x ee -'=-,则()f x 在3,2x ππ⎡⎤∈⎢⎥⎣⎦上单调递增,在3,22x ππ⎡⎤∈⎢⎥⎣⎦上单调递减,此时()12,f x e e⎡⎤∈+⎢⎥⎣⎦,故当02x π≤≤时,()min 2f x =,B 正确.因()f x 在,2x ππ⎛⎫∈⎪⎝⎭上单调递减,又()f x 是偶函数,故()f x 在,2ππ⎛⎫-- ⎪⎝⎭上单调递增,故C 错误.对于D ,转化为()2f x x π=根的个数问题.因()f x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,在,2ππ⎛⎫⎪⎝⎭上单调递减,在3,2ππ⎛⎫ ⎪⎝⎭上单调递增,在3,22ππ⎛⎫⎪⎝⎭上单调递减.当(),x π∈-∞时,()2f x ≥,22x π<,()2f x x π=无实根.()3,x π∈+∞时,()max 262x e f x π>>=,()2f x x π=无实根,3,2x ππ⎡⎤∈⎢⎥⎣⎦,显然x π=为方程之根.()sin sin xx f x ee -=+,()()sin sin cos 0x xf x x e e -'=->,3123322f e e πππ⎛⎫=+>⨯=⎪⎝⎭,单独就这段图象,()302f f ππ⎛⎫'='=⎪⎝⎭,()f x 在3,2ππ⎡⎤⎢⎥⎣⎦上变化趋势为先快扣慢,故()g x 在3,2ππ⎛⎫⎪⎝⎭内有1个零点,由图像知()g x 在3,32ππ⎛⎫⎪⎝⎭内有3个零点,又5252f e π⎛⎫=> ⎪⎝⎭,结合图象,知D 正确.故选:ABD. 【点睛】方法点睛:研究函数性质往往从以下方面入手: (1)分析单调性、奇偶性、周期性以及对称性;(2)数形结合法:先对解析式变形,进而构造两个容易画出图象的函数,将两个函数的图象画在同一个平面直角坐标系中,利用数形结合的方法求解.8.(2021·江苏高三专题练习)若定义在R 上的函数()f x 满足()01f =-,其导函数()f x '满足()1f x m '>>,则下列成立的有()A .11mf m m -⎛⎫>⎪⎝⎭B .11f m ⎛⎫<-⎪⎝⎭ C .1111f m m ⎛⎫>⎪--⎝⎭D .101f m ⎛⎫<⎪-⎝⎭【答案】AC 【分析】构造函数()()g x f x mx =-,由已知可得()g x 在R 上单调递增,利用单调性对各个选项进行分析判断即可. 【详解】根据题意设()()g x f x mx =-,其导数为()()g x f x m ''=-, 由()1f x m '>>知()g x 在R 上单调递增,对于A, 1,1,10m m <<>由函数单调性得1(0)g g m ⎛⎫> ⎪⎝⎭即11(0)f m f m m ⎛⎫-⨯> ⎪⎝⎭,即111f m ⎛⎫->- ⎪⎝⎭,即10f m ⎛⎫>⎪⎝⎭,又由1m ,则10m m -<,必有11mf m m -⎛⎫> ⎪⎝⎭,故A 正确,B 错误;对于C, 1m ,则101m >-,则有1(0)1g g m ⎛⎫> ⎪-⎝⎭,即1(0)111m f f m m ⎛⎫->=- ⎪--⎝⎭,即1110111m f m m m ⎛⎫>-=> ⎪---⎝⎭,故C 正确,D 错误; 故选:AC 【点睛】本题考查利用导数研究函数的单调性,常用解题方法构造新函数,考查学生推理能力和计算能力,属于中档题.9.(2021·全国高三专题练习)设函数cos2cos2()22xx f x -=-,则() A .()f x 在0,2π⎛⎫⎪⎝⎭单调递增B .()f x 的值域为33,22⎡⎤-⎢⎥⎣⎦ C .()f x 的一个周期为π D .4f x π⎛⎫+ ⎪⎝⎭的图像关于点,04π⎛⎫ ⎪⎝⎭对称【答案】BC【分析】根据余弦函数及指数函数的单调性,分析复合函数的单调区间及值域,根据周期定义检验所给周期,利用函数的对称性判断对称中心即可求解. 【详解】令cos2t x =,则12222tttt y -=-=-,显然函数12222t t tty -=-=-为增函数, 当0,2x π⎛⎫∈ ⎪⎝⎭时,cos2t x =为减函数, 根据复合函数单调性可知,()f x 在0,2π⎛⎫⎪⎝⎭单调递减, 因为cos2[1,1]t x =∈-, 所以增函数12222tttt y -=-=-在cos2[1,1]t x =∈-时,3322y -≤≤, 即()f x 的值域为33,22⎡⎤-⎢⎥⎣⎦; 因为cos2()cos2(cos2c )os222)(2()2x x x x x x f f πππ+-+-=-=+-=,所以()f x 的一个周期为π,因为sin 2sin 2224x x f x π-⎛⎫+=- ⎪⎝⎭,令sin 2sin 22(2)xx h x --=, 设(,)P x y 为sin 2sin 22(2)xx h x --=上任意一点,则(,)2P x y π'--为(,)P x y 关于,04π⎛⎫⎪⎝⎭对称的点, 而sin 2(sin 2())22sin 2sin 2()22222x x x x h y x y πππ-----=-==≠--,知点(,)2P x y π'--不在函数图象上,故()h x 的图象不关于点,04π⎛⎫⎪⎝⎭对称,即4f x π⎛⎫+ ⎪⎝⎭的图像不关于点,04π⎛⎫ ⎪⎝⎭对称.故选:BC 【点睛】本题主要考查了余弦函数的性质,指数函数的性质,复合函数的单调性,考查了函数的周期性,值域,对称中心,属于难题.二、单选题10.(2021·广东广州市·高三一模)已知e 2.71828≈是自然对数的底数,设21323,2,eln 2e ea b c -=-=-=-,则()A .a b c <<B .b a c <<C .b c a <<D .c a b <<【答案】A 【分析】 首先设()xf x x e=-,利用导数判断函数的单调性,比较,a b 的大小,设利用导数判断1x e x ≥+,放缩2ln 2c >-,再设函数()ln xg x x e=-,利用导数判断单调性,得()20g >,再比较,b c 的大小,即可得到结果. 【详解】设()x f x x e=-,()112f x e x '=-, 当204e x ≤<时,()0f x '>,函数单调递增,当24ex >时,()0f x '<,函数单调递减,()()3,2a f b f ==,2234e <<时,()()32f f <,即a b <,设1xy e x =--,1xy e '=-,(),0-∞时,0y '<,函数单调递减,()0,∞+时,0y '>,函数单调递增,所以当0x =时,函数取得最小值,()00f =,即1x e x ≥+恒成立, 即212e->,令()ln x g x x e =-,()11g x e x'=-,()0,x e ∈时,()0g x '<,()g x 单调递减,(),x e ∈+∞时,()0g x '>,()g x 单调递增,x e =时,函数取得最小值()0g e =,即()20g >,得:2ln 2e >222ln 2e<, 即212ln 22ln 22ee->>,即b c <, 综上可知a b c <<.故选:A 【点睛】关键点点睛:本题考查构造函数,利用导数判断函数的单调,比较大小,本题的关键是:根据1x e x ≥+,放缩ln 2c >,从而构造函数()ln xg x x e=-,比较大小. 11.(2021·全国高三专题练习)已知函数()()1ln 12xf x e x =+-,若41log 5a f ⎫⎛= ⎪⎝⎭,()5log 6b f =,()6log 4c f =,则a ,b ,c 的大小关系正确的是()A .b a c >>B .a b c >>C .c b a >>D .c a b >>【答案】B 【分析】先求出函数的定义域,判断函数()f x 为偶函数,再对函数求导判断出函数()f x 在0,上单调递增,然后作差比较45log 5,log 6的大小,可得456log 5log 61log 40>>>>,从而可比较出a ,b ,c 的大小 【详解】由题可知:()f x 的定义域为R ,且()()1ln 12xf x e x --=++()111ln ln 122x x x e x e x e +=+=+-,则()f x 为偶函数,()112x x e e f x =-+'()()2112121x x xx xe e e e e ---==++,当0x >时,0f x,()f x 在0,上单调递增.又由45551log 5log 6log 6log 4-=-5551log 4log 6log 4-⋅=2555log 4log 612log 4+⎫⎛- ⎪⎝⎭≥255log 25120log 4⎫⎛- ⎪⎝⎭>= 所以456log 5log 61log 40>>>>,41log 5a f ⎫⎛= ⎪⎝⎭()()44log 5log 5f f =-=,故a b c >>. 故选:B 【点睛】关键点点睛:此题考查利用函数的单调性比较大小,考查导数的应用,考查对数运算性质的应用,考查了基本不等式的应用,解题的关键是判断函数的奇偶性,再利用导数判断函数的单调性,然后利用单调性比较大小,属于中档题12.(2021·全国高三专题练习)已知函数2()22x x f x x -=++,若不等式()2(1)2f ax f x -<+对任意x ∈R恒成立,则实数a 的取值范围是()A .()- B .(-C .(-D .(2,2)-【答案】D 【分析】先利用定义确定函数()f x 为偶函数,再利用单调性证明()f x 在[)0,+∞上为增函数,所以不等式()2(1)2f ax f x -<+化简为212ax x -<+,转化为22212x ax x --<-<+在R 上恒成立,求出a 的取值范围. 【详解】函数2()22x xf x x -=++的定义域为R ,且2()22()xx f x x f x -=-=++,所以()f x 为偶函数.又当0x ≥时, 2()g x x =是增函数,任取[)12,0,x x ∈+∞,且12x x >,()112212()()2222x x x xh x h x ---=++-()()121212121212121112122221222222x x x x x x x x x x x x x x +++⎛⎫-⎛⎫+-= ⎪ ⎪⎝⎭⎝=-=--⎭- 120x x >>,12120,22210x x x x +∴-->>,12()()0h x h x ∴->所以()22-=+x xh x 在[)0,+∞上是增函数,即()y f x =在[)0,+∞上是增函数.所以不等式()2(1)2f ax f x-<+对任意x ∈R 恒成立,转化为212ax x-<+,即22212x ax x --<-<+,从而转化为210x ax ++>和230x ax -+>在R 上恒成立①若210x ax ++>在R 上恒成立,则240a ∆=-<,解得22a -<<;②若230x ax -+>在R 上恒成立,,则2120a ∆=-<,解得a -<< 综上所述,实数a 的取值范围是(2,2)-. 故选:D.方法点睛:本题考查了解抽象不等式,要设法把隐性划归为显性的不等式求解,方法是: (1)把不等式转化为[][]()()f g x f h x >的模型;(2)判断函数()f x 的单调性,再根据函数的单调性将不等式的函数符号“f ”脱掉,得到具体的不等式(组)来求解,但要注意奇偶函数的区别.13.(2021·江苏常州市·高三一模)若()316,00,0x x f x xx ⎧-≠⎪=⎨⎪=⎩则满足(10)xf x -≥的x 的取值范围是() A .[)1,1][3,-+∞ B .(,1][0,1][3,)-∞-⋃⋃+∞ C .[1,0][1,)-⋃+∞ D .(,3][1,0][1,)-∞-⋃-⋃+∞【答案】B 【分析】按1x =或0,0x <,1x >和01x <<四种情况,分别化简解出不等式,可得x 的取值范围. 【详解】①当1x =或0时,(1)0xf x -=成立;②当0x <时,()3(1601)11x x xf x x ⎡⎤=--⎢⎥-⎣⎦-≥,可有()31611x x -≤-,解得1x ≤-; ③当0x >且1x ≠时,()3(1601)11x x xf x x ⎡⎤=--⎢⎥-⎣⎦-≥ 若1x >,则()4116x -≥,解得3x ≥ 若01x <<,则()4116x -≤,解得01x << 所以(,1][0,1][3,)x ∈-∞-⋃⋃+∞则原不等式的解为(,1][0,1][3,)x ∈-∞-⋃⋃+∞, 故选:B14.(2021·辽宁铁岭市·高三一模)若a ∈R ,“3a >”是“函数()()xf x x a e =-在()0,∞+上有极值”的().A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A求得函数的导数,利用导数求得函数的单调性与极值,结合充分条件、必要条件的判定,即可求解. 【详解】由题意,函数()()xf x x a e =-,则()()1xf x x a e '=-+,令()0f x '=,可得1x a =-,当1x a <-时,()0f x '<;当1x a >-时,()0f x '>, 所以函数()y f x =在1x a =-处取得极小值,若函数()y f x =在()0,∞+上有极值,则10a ->,解得1a >.因此“3a >”是“函数()()xf x x a e =-在()0,∞+上有极值”的充分不必要条件.故选:A .15.(2021·全国高三专题练习)下列函数中,既是奇函数,又在()0,1上单调递减的是() A .()()()ln ln xx xxf x e eee --=+--B .()1sin sin f x x x=+ C .()()()ln 1ln 1f x x x =+-- D .()1 xxf x e e =-【答案】B 【分析】利用函数奇偶性的定义判断各选项中函数的奇偶性,利用导数法判断各选项中函数在区间()0,1上的单调性,由此可得出合适的选项. 【详解】对于A 选项,由0x x x xe e e e --⎧+>⎨->⎩,解得0x >, 所以,函数()()()ln ln xx xxf x e eee --=+--的定义域为()0,∞+,该函数为非奇非偶函数,A 选项不满足条件;对于B 选项,由sin 0x ≠,可得()x k k Z π≠∈,即函数()1sin sin f x x x=+的定义域为{},x x k k Z π≠∈. ()()()()11sin sin sin sin f x x x f x x x-=-+=--=--,该函数为奇函数,当()0,1x ∈时,()322cos cos cos 0sin sin x xf x x x x-'=-=<, 所以,函数()1sin sin f x x x=+在()0,1上单调递减,B 选项满足条件; 对于C 选项,由1010x x +>⎧⎨->⎩,解得11x -<<,所以,函数()()()ln 1ln 1f x x x =+--的定义域为()1,1-,()()()()ln 1ln 1f x x x f x -=--+=-,该函数为奇函数,当()0,1x ∈时,()21120111f x x x x '=+=>+--,该函数在()0,1上为增函数,C 选项不满足条件; 对于D 选项,函数()1xx f x e e=-的定义域为R ,()()11x x x x f x e e f x e e---=-=-=-,该函数为奇函数,当()0,1x ∈时,()10xx f x e e'=+>,该函数在()0,1上为增函数,D 选项不满足条件.故选:B. 【点睛】方法点睛:函数单调性的判定方法与策略:(1)定义法:一般步骤:设元→作差→变形→判断符号→得出结论;(2)图象法:如果函数()f x 是以图象的形式给出或者函数()f x 的图象易作出,结合图象可得出函数的单调区间;(3)导数法:先求出函数的导数,利用导数值的正负确定函数的单调区间;(4)复合函数法:先将函数()y f g x ⎡⎤=⎣⎦分解为内层函数()u g x =和外层函数()y f u =,再讨论这两个函数的单调性,然后根据复合函数法“同增异减”的规则进行判定.16.(2021·湖南岳阳市·高三一模)对于函数()y f x =,若存在0x ,使00()()f x f x =--,则点00(,())x f x 与点00(,())x f x --均称为函数()f x 的“先享点”已知函数316,0(),6,0ax x f x x x x ->⎧=⎨-≤⎩且函数()f x 存在5个“先享点”,则实数a 的取值范围为() A .(6,)+∞ B .(,6)-∞C .(0,6)D .(3,)+∞【答案】A 【分析】首先根据题中所给的条件,判断出“先享点”的特征,之后根据()f x 存在5个“先享点”,等价于函数32()6(0)f x x x x =-≤关于原点对称的图象恰好与函数1()16(0)f x ax x =->有两个交点,构造函数利用导数求得结果.【详解】依题意,()f x 存在5个“先享点”,原点是一个,其余还有两对,即函数32()6(0)f x x x x =-≤关于原点对称的图象恰好与函数1()16(0)f x ax x =->有两个交点,而函数32()6(0)f x x x x =-≤关于原点对称的函数为32()6(0)f x x x x =-≥,即3166ax x x -=-有两个正根,32166166x x a x x x-+==+-, 令()2166(0)h x x x x=+->, 322162(8)'()2x h x x x x -=-=, 所以当02x <<时,'()0h x <,当2x >时,'()0h x >,所以()h x 在(0,2)上单调递减,在(2,)+∞上单调递增,且(2)4866h =+-=,并且当0x →和x →+∞时,()f x →+∞,所以实数a 的取值范围为(6,)+∞,故选:A.【点睛】该题考查的是有关新定义问题,结合题意,分析问题,利用等价结果,利用导数研究函数的性质,属于较难题目.17.(2020·山东高三专题练习)已知函数39,0(),0x x x f x xe x ⎧-≥=⎨<⎩( 2.718e =为自然对数的底数),若()f x 的零点为α,极值点为β,则αβ+=()A .1-B .0C .1D .2 【答案】C【分析】令()0f x =可求得其零点,即α的值,再利用导数可求得其极值点,即β的值,从而可得答案.【详解】解:39,0(),0x x x f x xe x ⎧-=⎨<⎩,当0x 时,()0f x =,即390x -=,解得2x =;当0x <时,()0x f x xe =<恒成立,()f x ∴的零点为2α=.又当0x 时,()39x f x =-为增函数,故在[0,)+∞上无极值点;当0x <时,()x f x xe =,()(1)x f x x e '=+,当1x <-时,()0f x '<,当1x >-时,()0f x '>,1x ∴=-时,()f x 取到极小值,即()f x 的极值点1β=-,211αβ∴+=-=.故选:C .【点睛】本题考查利用导数研究函数的极值,考查函数的零点,考查分段函数的应用,突出分析运算能力的考查,属于中档题.三、填空题18.(2021·广东韶关市·高三一模)若曲线()21:0C y axa =>与曲线2:x C y e =存在公共切线,则a 的取值范围为__________. 【答案】2,4e ⎡⎫+∞⎪⎢⎣⎭【解析】解:由y =ax 2(a >0),得y ′=2ax ,由y =e x ,得y ′=e x ,曲线C 1:y =ax 2(a >0)与曲线C 2:y =e x 存在公共切线,设公切线与曲线C 1切于点(x 1,ax 12),与曲线C 2切于点()22,x x e ,则22211212x x e ax ax e x x -==-, 可得2x 2=x 1+2,∴11212x e a x +=,记()122x e f x x +=,则()()1222'4x e x f x x +-=,当x ∈(0,2)时,f ′(x )<0,f (x )递减;当x ∈(2,+∞)时,f ′(x )>0,f (x )递增.∴当x =2时,()2min 4e f x =. ∴a 的范围是2,4e ⎡⎫+∞⎪⎢⎣⎭. 19.(2021·全国高二课时练习(理))设曲线x y e =在点(0,1)处的切线与曲线1(0)y x x=>上点P 处的切线垂直,则P 的坐标为_____.【答案】【详解】设00(,)P x y .对y =e x 求导得y ′=e x ,令x =0,得曲线y =e x 在点(0,1)处的切线斜率为1,故曲线1(0)y x x =>上点P 处的切线斜率为-1,由02011x x y x ==-=-',得01x =,则01y =,所以P 的坐标为(1,1). 考点:导数的几何意义.20.(2021·辽宁铁岭市·高三一模)已知函数()f x 是定义在R 上的奇函数,当0x <时,()221ax x f x =-+,且曲线()y f x =在点()()1,1f 处的切线斜率为4,则a =______.【答案】3-【分析】利用奇函数性质,求在0x >时()f x 的解析式,根据导数的几何意义有()14f '=,即可求参数a 的值.【详解】当0x >时,则0x -<,∴()()()222121a x x ax x f x =⋅--⋅-+=++-,此时()()221f x f x ax x =--=---. 所以,当0x >时,()22f x ax '=--,则()1224a f '=--=,解得3a =-.故答案为:3-.21.(2021·河北邯郸市·高三一模)已知函数()2ln f x ax x =+满足0(1)(12)lim 23x f f x x∆→--∆=∆,则曲线()y f x =在点11,22f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线斜率为___________. 【答案】3【分析】根据极限形式和求导公式得(1)213f a '=+=,进而得1a =,计算12f ⎛⎫'⎪⎝⎭得解. 【详解】 由0(1)(12)lim23x f f x x ∆→--∆=∆,可得0(12)(1)lim 32x f x f x∆→-∆-=-∆. 因为1()2f x ax x '=+,所以(1)213f a '=+=,即1a =,则2()ln f x x x =+, 所以1()2f x x x '=+,132f ⎛⎫'= ⎪⎝⎭. 故答案为:3.22.(2021·湖南衡阳市·高三一模)定义在R 上的函数()f x 满足()()21f x f x +-=,()f x 的导函数()f x ',则()()20192021f f '--'=___________.【答案】0【分析】对()()21f x f x +-=两边同时求导得()()20x x f f '-'-=,进而得答案.【详解】因为()()21f x f x +-=,两边同时求导可得:()()20x x f f '-'-=,故()()201902021f f '-='.故答案为:0【点睛】本题考查复合函数导数问题,解题的关键在于根据已知对函数求导,考查运算求解能力,是中档题.。