人工神经网络模型算法和应用的综述
- 格式:docx
- 大小:37.54 KB
- 文档页数:3
综述人工神经网络在地基沉降预测中的应用摘要:人工神经网络在近几年来发展迅速,在岩土工程界得到了广泛的应用,尤其在地基沉降预测方面取得了突出了成绩,本文将结合现有的一些工程实例来简单地综述一下人工神经网络在地基沉降预测方面的优越性。
关键词:人工神经网络地基沉降随着我国经济的发展,高速公路,高层建筑等作为基础建设的一部分,也得到了迅猛地发展。
这些基础建设中最首要的任务就是地基处理,因此对地基沉降预测就成了工程建设者需要解决的首要问题之一。
目前,对地基沉降预测的方法很多,除了传统的计算方法以外,还有可靠度分析法、沉降差法、FLAC有限差分法等。
近几年,随着人工神经网络方法在岩土工程界的应用,利用人工神经网络方法来预测地基的沉降已取得的比较显著的成绩,本文将结合前人的一些工程实例来综述人工神经网络在地基沉降预测中的优越性。
1人工神经网络的简介人工神经网络(Artificial Neural Network,简称ANN)[1]是集多种现代科学技术为一体的一门新兴实用科学技术。
神经网络反映了人脑功能的基本特性,是人脑的抽象、简化,模拟它的信息处理是由神经元之间的相互作用来实现的;知识与信息的存储表现为网络元件互连间分布式的物理联系;学习和识别取决于各神经元连接权值的动态变化过程。
人工神经网络正是在人类对其大脑神经网络认识理解的基础上人工构造的能够实瑰某种功能的神经网络。
它是理论化的人脑神经网络的数学模型,是基于模仿大脑神经网络结构和功能而建立的一种信息处理系统。
它实际上是由大量简单元件相互连接而成的复杂网络,具有高度的非线性,能够进行复杂的逻辑操作和非线性关系实现的系统。
2BP建模的基本思路2.1 BP神经网络原理[2]BP神经网络(Error Back – Propagation,简称EBP或BP神经网络模型)是一种具有三层或三层以上阶层结构的、采用多层前馈神经网络的误差逆传模型。
层间各神经元实现全连接,即下层的每一个单元与上层的每个单元都实现权连接,而每层神经元之间不连接。
文献综述电气工程及自动化BP神经网络研究综述摘要:现代信息化技术的发展,神经网络的应用范围越来越广,尤其基于BP算法的神经网络在预测以及识别方面有很多优势。
本文对前人有关BP神经网络用于识别和预测方面的应用进行归纳和总结,并且提出几点思考方向以作为以后研究此类问题的思路。
关键词:神经网络;数字字母识别;神经网络的脑式智能信息处理特征与能力使其应用领域日益扩大,潜力日趋明显。
作为一种新型智能信息处理系统,其应用贯穿信息的获取、传输、接收与加工各个环节。
具有大家所熟悉的模式识别功能,静态识别例如有手写字的识别等,动态识别有语音识别等,现在市场上这些产品已经有很多。
本文查阅了中国期刊网几年来的相关文献包括相关英文文献,就是对前人在BP神经网络上的应用成果进行分析说明,综述如下:(一)B P神经网络的基本原理BP网络是一种按误差逆向传播算法训练的多层前馈网络它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阀值,使网络的误差平方最小。
BP网络能学习和存贮大量的输入- 输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程.BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer),如图上图。
其基本思想是通过调节网络的权值和阈值使网络输出层的误差平方和达到最小,也就是使输出值尽可能接近期望值。
(二)对BP网络算法的应用领域的优势和其它神经网络相比,BP神经网络具有模式顺向传播,误差逆向传播,记忆训练,学习收敛的特点,主要用于:(1)函数逼近:用输入向量和相应的输出向量训练一个网络以逼近一个函数;(2)模式识别:用一个待定的输出向量将它与输入向量联系起来;(3)数据压缩:减少输出向量维数以便于传输或存储;(4)分类:把输入向量所定义的合适方式进行分类;]9[BP网络实质上实现了一个从输入到输出的映射功能,,而数学理论已证明它具有实现任何复杂非线性映射的功能。
人工神经网络在机械工程领域中的研究与应用摘要:人工神经网络在机械工程领域中的研究与应用日益受到重视。
对于故障诊断与预测,人工神经网络可以通过学习和识别机械系统中的故障特征模式来准确地诊断故障并预测故障发生的可能性。
在智能控制与优化方面,人工神经网络能够根据输入数据的变化进行实时调整,并优化机械系统的性能。
此外,人工神经网络还可用于机器视觉与图像处理、设备状态监测与维护以及运动规划与路径优化等领域。
关键词:人工神经网络;机械工程领域;研究与应用引言人工神经网络是一种模拟大脑神经元连接方式的计算模型,拥有学习和适应能力。
随着人工智能技术的发展,人工神经网络在机械工程领域中被广泛研究和应用。
本论文将对人工神经网络在机械工程领域中的研究和应用进行综述,并探讨其未来的发展趋势。
1.人工神经网络概述人工神经网络(Artificial Neural Networks,ANN)是一种受到生物神经元系统启发的计算模型。
它由多个人工神经元节点组成,并通过节点之间的连接进行信息传递与处理。
人工神经网络具有学习和适应能力,能够通过从输入-输出数据对的训练中自动调整连接权重,从而实现对模式识别、分类、函数逼近等任务的解决。
人工神经网络的结构可以分为三层:输入层、隐藏层和输出层。
输入层接收外部数据作为模型的输入,隐藏层是一个或多个包含若干节点的中间层,用于提取和组合输入数据的特征。
输出层产生最终的输出结果。
节点之间的连接具有权重,用来调节信号的传递效果。
节点根据输入信号和连接的权重,通过激活函数进行处理,并传递给下一层的节点。
2.人工神经网络在机械工程中的优势与挑战2.1优势人工神经网络能够处理非线性关系,对于复杂的机械系统行为可以提供更准确的建模和预测。
机械工程涉及到许多非线性问题,例如材料的非线性特性、结构的非线性响应等,传统的线性模型可能无法完全描述这些情况,而人工神经网络能够较好地应对非线性问题。
人工神经网络具有自适应和学习能力,能够从大量的数据中进行模式识别和知识提取。
bp神经网络的应用综述近年来,人工神经网络(ANN)作为一种神经网络形式在不断发展,因其计算能力强,对现实世界较好地识别和适应能力,已得到越来越广泛的应用,其中,BP神经网络是最典型的人工神经网络之一。
BP神经网络是指以马尔可夫随机过程为基础的反向传播算法,具有自组织学习、泛化、模糊推理的特点,具有非常广泛的应用场景。
它可以用来解决实际问题。
首先,BP神经网络可以用来解决分类问题。
它可以根据给定的输入向量和输出向量,训练模型以分类相关的输入特征。
这种模型可以用来解决工业控制问题、专家系统任务等。
例如,BP神经网络可以用来识别照片中的面孔,帮助改进自动门的判断等。
此外,BP神经网络还可以用于计算机视觉,即以计算机图像识别的形式进行图像处理。
通常,计算机视觉技术需要两个步骤,即识别和分析。
在识别步骤中,BP神经网络可以被用来识别图片中的特征,例如物体的形状、大小、颜色等;在分析步骤中,BP神经网络可以用来分析和判断图片中的特征是否满足要求。
此外,BP神经网络还可以用于机器人技术。
它可以用来识别机器人环境中的物体,从而帮助机器人做出正确的动作。
例如,利用BP神经网络,机器人可以识别障碍物并做出正确的行动。
最后,BP神经网络还可以用于未来的驾驶辅助系统中。
这种系统可以利用各种传感器和摄像机,搜集周围环境的信息,经过BP神经网络分析,判断当前环境的安全程度,及时采取措施,以达到更好的安全驾驶作用。
综上所述,BP神经网络具有自组织学习、泛化、模糊推理的特点,拥有非常广泛的应用场景,可以用于分类问题、计算机视觉、机器人技术和驾驶辅助系统等。
然而,BP神经网络也存在一些问题,例如训练时间长,需要大量的训练数据,容易受到噪声攻击等。
因此,研究人员正在积极改进BP神经网络,使其能够更好地解决各种问题。
经典人工智能算法综述一、专家系统专家系统是人工智能领域最早的知识工程技术之一,该技术首次在20世纪70年代末提出。
专家系统利用专家知识来解决特定问题,主要包括知识表示、知识推理和知识获取等方面。
专家系统常常包括知识库、推理机、用户接口等组成部分,通过模拟专家的经验和知识,来完成推理和决策。
专家系统在医疗、金融、制造等领域得到了广泛的应用,例如Dendral系统是一个专家系统,用于分析气相色谱质谱仪的输出数据以确定化合物的结构。
二、遗传算法遗传算法是一种模仿自然进化过程的搜索优化算法,它通过模拟自然选择、交叉和变异等进化过程来搜索问题的最优解。
遗传算法最早是由美国的约翰·霍兰德于20世纪60年代提出的。
遗传算法主要包括编码、选择、交叉、变异等操作,通过不断进化生成适应度更高的解,从而找到问题的最优解。
遗传算法在优化问题、机器学习、数据挖掘等领域得到了广泛的应用,例如在大规模旅行商问题、神经网络权值优化等问题上展现出了优势。
三、模糊逻辑模糊逻辑是一种用于表示不确定性、模糊性信息的逻辑系统,它在20世纪70年代被提出。
模糊逻辑将传统的逻辑二元关系扩展到了模糊的多值逻辑关系,使得不确定性、模糊性信息能够得到有效的处理。
模糊逻辑主要包括模糊集合理论、模糊关系、模糊推理等内容,被广泛应用于人工智能、控制系统、信息检索等领域。
例如在智能控制系统中,模糊逻辑被用于建模、推理,实现了对复杂系统的精确控制。
四、人工神经网络人工神经网络是一种模仿生物神经网络结构和功能的计算模型,它借鉴了大脑中的神经元和突触结构。
人工神经网络可以通过学习来自动地调整网络的连接权值,从而实现对信息的处理和识别。
人工神经网络于20世纪50年代被提出,并在之后得到了不断的改进和发展。
人工神经网络在模式识别、控制系统、金融预测等领域展现出了优势,例如AlphaGo就是基于深度神经网络的围棋程序,击败了世界冠军。
五、规则学习规则学习是指利用训练数据自动学习出数据中的规则并进行预测和决策的技术。
《基于深度学习的人体行为识别算法综述》篇一一、引言随着深度学习技术的快速发展,人体行为识别在智能监控、人机交互、医疗康复等领域的应用越来越广泛。
基于深度学习的人体行为识别算法已成为研究热点,其准确性和效率不断提高。
本文旨在综述基于深度学习的人体行为识别算法的最新进展,分析其优缺点,为相关研究提供参考。
二、深度学习在人体行为识别中的应用深度学习通过模拟人脑神经网络的工作方式,从大量数据中自动提取特征,具有强大的特征学习和表示能力。
在人体行为识别中,深度学习主要应用于视频序列的图像处理和特征提取。
1. 卷积神经网络(CNN)卷积神经网络是一种常用的深度学习模型,广泛应用于图像处理和视频分析。
在人体行为识别中,CNN可以自动提取视频中的时空特征,如骨骼序列、关节角度等。
通过训练,CNN可以学习到不同行为之间的差异,从而实现行为识别。
2. 循环神经网络(RNN)循环神经网络可以处理具有时序依赖性的数据,如视频序列。
在人体行为识别中,RNN可以通过捕捉时间序列上的上下文信息,提取更丰富的行为特征。
同时,RNN还可以根据视频中的人体姿态、动作等变化预测未来行为。
3. 长短期记忆网络(LSTM)长短期记忆网络是一种特殊的循环神经网络,能够解决RNN 在处理长序列时的梯度消失和梯度爆炸问题。
在人体行为识别中,LSTM可以捕捉到视频中长时间的行为模式和上下文信息,提高识别的准确性和稳定性。
三、基于深度学习的人体行为识别算法综述基于深度学习的人体行为识别算法主要包括基于单一模型的方法和基于多模型融合的方法。
1. 基于单一模型的方法基于单一模型的方法主要采用CNN、RNN或LSTM等单一模型进行人体行为识别。
其中,CNN主要用于提取时空特征,RNN和LSTM则用于捕捉时序信息。
这些方法具有计算效率高、模型简单的优点,但可能存在特征提取不全面、易受外界干扰等问题。
2. 基于多模型融合的方法基于多模型融合的方法采用多种模型进行人体行为识别,通过融合不同模型的特征或结果提高识别的准确性和鲁棒性。
人工神经网络历史发展及应用综述1、引言人类为了生存在改造探索自然的过程中,学会利用机械拓展自身的体力,随着对自然认识的不断深入,创造语言,符号,算盘、计算工具等来强化自身脑力。
复杂的数字计算原本是靠人脑来完成的,为了摆脱这种脑力束缚发明了计算机。
其数字计算能力比人脑更强,更快、更准。
计算机的出现,人类开始真正有了一个可以模拟人类思维的工具,期盼可以实现人工智能,构造人脑替代人类完成相应工作。
要模拟人脑的活动,就要研究人脑是如何工作的,要怎样模拟人脑的神经元。
人脑的信息处理具有大规模并行处理、强容错性和自适应能力、善于联想、概括、类比和推广的特点,多少年以来,人们从生物学、医学、生理学、哲学、信息学、计算机科学、认知学、组织协同学等各个角度企图获悉人脑的工作奥秘,寻求神经元的模拟方法。
在寻找上述问题答案的研究过程中,从20世纪40年代开始逐渐形成了一个新兴的边缘性交叉学科,称之为“神经网络”,是人工智能、认知科学、神经生理学、非线性动力学、信息科学、和数理科学的“热点”。
关于神经网络的研究包含众多学科领域,涉及数学、计算机、人工智能、微电子学、自动化、生物学、生理学、解剖学、认知科学等学科,这些领域彼此结合、渗透,相互推动神经网络研究和应用的发展。
2、定义思维学普遍认为,人类大脑的思维有三种基本方式,分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维。
逻辑性的思维是根据逻辑规则进行推理的过程,这一过程可以写成指令,让计算机执行,获得结果。
而直观性(形象)的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。
这种思维方式的有以下两个特点:一是信息通过神经元上的兴奋模式分布储在网络上;二是信息处理通过神经元之间同时相互作用的动态过程来完成的。
人工神经网络就是模拟第二种人类思维方式。
人工神经网络是由大量具备简单功能的人工神经元相互联接而成的自适应非线性动态系统。
虽然单个神经元的结构和功能比较简单,但大量神经元连接构成的网络系统行为却异常复杂。
《深度学习相关研究综述》篇一一、引言深度学习作为人工智能领域的一个重要分支,近年来在学术界和工业界引起了广泛的关注。
它通过模拟人脑神经网络的运作方式,实现对复杂数据的处理和识别,从而在计算机视觉、自然语言处理、语音识别等多个领域取得了显著的成果。
本文将对深度学习的基本原理、发展历程、主要应用以及当前研究热点进行综述。
二、深度学习的基本原理与发展历程深度学习是机器学习的一个分支,其核心思想是通过构建多层神经网络来模拟人脑神经网络的运作方式。
它通过大量的训练数据,使模型学习到数据的内在规律和表示方法,从而实现更加精准的预测和分类。
自深度学习概念提出以来,其发展经历了几个重要阶段。
早期的神经网络由于计算能力的限制,模型深度较浅,无法充分挖掘数据的内在规律。
随着计算能力的不断提升,尤其是GPU等硬件设备的普及,深度学习的模型深度逐渐增加,取得了显著的成果。
同时,随着数据量的不断增长和大数据技术的不断发展,深度学习的应用领域也在不断扩大。
三、深度学习的主要应用1. 计算机视觉:深度学习在计算机视觉领域的应用非常广泛,包括图像分类、目标检测、人脸识别等。
通过深度神经网络,可以实现图像的自动识别和分类,从而在安防、医疗、自动驾驶等领域发挥重要作用。
2. 自然语言处理:深度学习在自然语言处理领域也取得了显著的成果,包括语音识别、文本分类、机器翻译等。
通过深度神经网络,可以实现对人类语言的自动理解和生成,从而在智能问答、智能助手等领域发挥重要作用。
3. 语音识别:深度学习在语音识别领域也具有广泛的应用,如语音合成、语音识别等。
通过训练深度神经网络模型,可以实现高质量的语音合成和准确的语音识别。
4. 其他领域:除了上述应用外,深度学习还在推荐系统、医疗影像分析、无人驾驶等领域发挥了重要作用。
四、当前研究热点1. 模型优化:针对深度学习模型的优化是当前研究的热点之一。
研究者们通过改进模型结构、优化算法等方式,提高模型的性能和计算效率。
人工神经网络的最新发展综述摘要:人工神经网络是指模拟人脑神经系统的结构和功能,运用大量的处理部件,由人工方式建立起来的网络系统。
该文首先介绍了神经网络研究动向,然后介绍了近年来几种新型神经网络的基本模型及典型应用,包括模糊神经网络、神经网络与遗传算法的结合、进化神经网络、混沌神经网络和神经网络与小波分析的结合。
最后,根据这几种新型神经网络的特点,展望了它们今后的发展前景。
关键词:模糊神经网络;神经网络与遗传算法的结合;进化神经网络;混沌神经网络;神经网络与小波分析。
The review of the latest developments in artificial neuralnetworksAbstract:Artificial neural network is the system that simulates the human brain’s structure and function, and uses a large number of processing elements, and is manually established by the network system. This paper firstly introduces the research trends of the neural network, and then introduces several new basic models of neural networks and typical applications in recent years, including of fuzzy neural network, the combine of neural network and genetic algorithm, evolutionary neural networks, chaotic neural networks and the combine of neural networks and wavelet analysis. Finally, their future prospects are predicted based on the characteristics of these new neural networks in the paper.Key words: Fuzzy neural network; Neural network and genetic algorithm; Evolutionary neural networks; Chaotic neural networks; Neural networks and wavelet analysis1 引言人工神经网络的研究始于20世纪40年代初。
《深度强化学习综述》篇一一、引言深度强化学习(Deep Reinforcement Learning, DRL)是人工智能领域中的一项重要技术,它结合了深度学习和强化学习的优势,使得机器能够通过学习来自主地做出决策,并从经验中不断优化自身行为。
近年来,深度强化学习在众多领域取得了显著的成果,如游戏、机器人控制、自动驾驶等。
本文旨在综述深度强化学习的基本原理、研究现状、应用领域以及未来发展趋势。
二、深度强化学习基本原理深度强化学习是一种通过深度神经网络和强化学习算法结合的方式,让机器能够自主学习和决策的技术。
其基本原理包括两个部分:深度学习和强化学习。
1. 深度学习:深度学习是一种通过神经网络模型对大量数据进行学习和预测的技术。
在深度强化学习中,深度学习模型通常用于提取和表示环境中的信息,以便于后续的决策过程。
2. 强化学习:强化学习是一种通过试错的方式来学习最优策略的技术。
在深度强化学习中,强化学习算法根据当前状态和动作的反馈来调整策略,以最大化累积奖励。
三、研究现状自深度强化学习技术问世以来,其在各个领域的应用和研究成果不断涌现。
目前,深度强化学习的研究主要集中在以下几个方面:1. 算法优化:针对不同的任务和应用场景,研究者们不断提出新的算法和模型来提高深度强化学习的性能和效率。
如基于策略梯度的算法、基于值函数的算法等。
2. 模型改进:为了更好地提取和表示环境中的信息,研究者们不断改进深度神经网络的模型结构,如卷积神经网络、循环神经网络等。
3. 硬件加速:随着硬件技术的不断发展,研究者们开始利用GPU、TPU等硬件设备来加速深度强化学习的训练过程,以提高训练速度和性能。
四、应用领域深度强化学习在各个领域都取得了显著的成果,如游戏、机器人控制、自动驾驶等。
1. 游戏领域:深度强化学习在游戏领域的应用非常广泛,如围棋、象棋等棋类游戏以及电子游戏等。
在这些游戏中,深度强化学习算法可以自主地学习和优化策略,以达到最佳的游戏表现。
人工神经网络模型算法和应用的综述人工神经网络(Artificial Neural Network,ANN)是一种模仿生物神经网络的计算模型,由许多人工神经元节点组成。
它通过模拟人类神经系统的工作方式,实现对信息的处理和学习能力。
随着计算机科学和人工智能领域的发展,人工神经网络模型算法和应用得到了广泛的研究和应用。
本文将对人工神经网络模型算法以及其在各个领域中的应用进行综述。
一、人工神经网络模型算法
1. 感知器模型
感知器模型是最早应用于人工神经网络中的一种模型。
它由多个输入节点和一个输出节点组成,通过对输入节点和权重的线性组合,利用激活函数将结果转化为输出。
感知器模型的简单结构和快速训练特性使得它在二分类问题中得到广泛应用。
2. 多层前馈神经网络(Feedforward Neural Network,FNN)
多层前馈神经网络是一种典型的人工神经网络模型。
它由多个神经元层组成,每一层的神经元与上一层的神经元全连接。
信息在网络中只向前传递,从输入层经过隐藏层最终到达输出层。
多层前馈神经网络通过反向传播算法进行训练,可以应用于各种复杂的非线性问题。
3. 循环神经网络(Recurrent Neural Network,RNN)
循环神经网络是一种具有反馈环的神经网络模型。
它在网络中引入
了记忆机制,使得信息可以在网络中进行循环传播。
循环神经网络适
用于序列数据的处理,如自然语言处理和时间序列预测等任务。
4. 卷积神经网络(Convolutional Neural Network,CNN)
卷积神经网络是一种专门用于图像识别和处理的人工神经网络模型。
它通过卷积层、池化层和全连接层等组件,实现对图像中特征的提取
和分类。
卷积神经网络在计算机视觉领域中具有重要的应用,如图像
分类、目标检测和语义分割等任务。
二、人工神经网络的应用
1. 自然语言处理
人工神经网络在自然语言处理中具有广泛的应用。
例如,利用循环
神经网络可以实现语言模型和机器翻译等任务;利用卷积神经网络可
以进行文本分类和情感分析等任务。
通过对大量文本数据的学习和训练,人工神经网络可以自动提取文本中的语义和情感信息。
2. 图像识别
人工神经网络在图像识别领域表现出了很高的性能。
借助卷积神经
网络的卓越特性,可以实现对图像中物体的识别和分类。
这在人脸识别、车牌识别和智能驾驶等领域有着广泛的应用。
3. 金融预测
人工神经网络在金融领域的应用也十分重要。
通过对历史金融数据
的建模和分析,可以利用人工神经网络进行股票价格预测、风险评估
和交易决策等任务。
人工神经网络能够发现金融数据中的非线性关系,提高预测的准确性和稳定性。
4. 医学诊断
人工神经网络在医学诊断中的应用为临床医生提供了很大的帮助。
通过对患者的病例进行学习和分析,可以利用人工神经网络进行疾病
的诊断和预测。
例如,利用人工神经网络可以对医学影像进行自动分
析和判断,提高疾病的早期诊断率。
综上所述,人工神经网络模型算法和应用的研究已经取得了很大的
进展。
不同类型的人工神经网络模型在各个领域中发挥着重要的作用,极大地推动了科学技术的发展和人类生活的改善。
随着人工智能的不
断发展,相信人工神经网络的研究将会取得更大的突破和应用。