二元一次方程应用题及答案
- 格式:doc
- 大小:235.50 KB
- 文档页数:8
二元一次方程组应用题经典题及答案实际问题与二元一次方程组题型归纳(练题答案)类型一:行程问题变式1:甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果XXX比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲、乙速度分别为x、y千米/时,依题意得:2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。
变式2:两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
解:设这艘轮船在静水中的速度x千米/小时,水流速度y 千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度是17千米/小时,水流速度是3千米/小时。
类型二:工程问题变式:XXX家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元。
若只选一个公司单独完成,从节约开支的角度考虑,XXX家应选甲公司还是乙公司?请说明理由。
解:略类型三:商品销售利润问题变式1:(2011湖南衡阳)XXX去年承包了10亩地种植甲、乙两种蔬菜,共获利元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,XXX去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=解得:x=6,y=4答:XXX去年甲、乙两种蔬菜各种植了6亩、4亩。
变式2:某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:进价(元/件) | 售价(元/件) |A。
| 1200.| 1380.|B。
| 1000.| 1200.|求该商场购进A、B两种商品各多少件。
最新人教版七年级上册数学二元一次方程应用题及答案汇总1. 问题:某商店购进了20件衣服,每件衣服成本为300元。
商店希望将成本与售价之间的差距控制在4000元以内。
请问商店至少应以多少元的售价出售每件衣服?解答:设每件衣服的售价为x元。
根据题意,售价与成本之间的差距控制在4000元以内,可列出方程:x - 300 ≤ 4000。
解这个不等式可得x ≤ 4000 + 300。
答案:商店至少应以4300元的售价出售每件衣服。
2. 问题:某公司在一年内生产了件产品,已知公司每个月的生产量是上个月生产量的1.5倍。
求这个公司每个月的生产量。
解答:设这个公司每个月的生产量为x件。
根据题意,每个月的生产量是上个月生产量的1.5倍,可列出方程:x = 1.5 * x。
答案:这个公司每个月的生产量为 / 12 = 1500件。
3. 问题:某地区的人口在过去的四年中呈等比增长,第一年的人口是人,第四年的人口是人。
求这个地区每年的人口增长率。
解答:设这个地区每年的人口增长率为r。
根据题意,人口在过去的四年中呈等比增长,可列出方程: * (1 + r)^3 = 。
解这个方程可得r ≈ 0.116。
答案:这个地区每年的人口增长率约为11.6%。
4. 问题:某书店在一次促销活动中卖出了400本书,减价幅度为x元每本,共收入元。
求减价幅度x。
解答:设减价幅度为x元每本。
根据题意,减价后的售价与初始售价之间的差距为x,可列出方程:400 * x = 。
答案:减价幅度为30元每本。
以上是最新人教版七年级上册数学二元一次方程应用题及答案的汇总。
二元一次方程组应用题经典题及答案一、商品销售问题例 1:某商店购进一批衬衫,成本价每件 40 元,按每件 50 元出售,一个月内可售出 500 件。
已知这种衬衫每件涨价 1 元,其销售量就减少 10 件。
为了在一个月内赚取 8000 元的利润,售价应定为每件多少元?解:设售价应定为每件 x 元,每件的利润为(x 40)元。
因为每件涨价 1 元,销售量就减少 10 件,所以销售量为500 10(x 50)件。
根据总利润=每件利润×销售量,可列方程:(x 40)500 10(x 50) = 8000(x 40)(500 10x + 500) = 8000(x 40)(1000 10x) = 80001000x 10x² 40000 + 400x = 8000-10x²+ 1400x 48000 = 0x² 140x + 4800 = 0(x 60)(x 80) = 0解得 x₁= 60,x₂= 80答:售价应定为每件 60 元或 80 元。
二、行程问题例 2:A、B 两地相距 18 千米,甲、乙两人分别从 A、B 两地同时相向而行,2 小时后在途中相遇;相遇后甲返回 A 地,乙继续向 A 地前进,甲回到 A 地时,乙离 A 地还有 2 千米。
求甲、乙两人的速度。
解:设甲的速度为 x 千米/小时,乙的速度为 y 千米/小时。
根据相遇问题的公式:路程=速度和×时间,可列方程:2(x + y) = 18甲返回 A 地所用的时间也为 2 小时,这 2 小时乙走的路程为 2y 千米。
因为甲回到 A 地时,乙离 A 地还有 2 千米,所以可列方程:18 2y = 2x将第一个方程变形为 x + y = 9,即 x = 9 y,代入第二个方程得:18 2y = 2(9 y)18 2y = 18 2y方程恒成立。
将 x = 9 y 代入第一个方程得:2(9 y + y) = 1818 = 18所以原方程组有无数组解。
完整版)二元一次方程组应用题经典题及答案实际问题与二元一次方程组题型归纳(练题答案)类型一:列二元一次方程组解决——行程问题变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲、乙速度分别为x、y千米/时,依题意得:2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。
变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时。
类型二:列二元一次方程组解决——工程问题变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元。
若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。
解:设甲、乙公司每周的工钱分别为x、y万元,依题意得:6(x+y)=5.24x+9y=4.8解得:x=0.8,y=0.4若只选一个公司单独完成,小明家应选择乙公司,因为乙公司每周工钱更少,从节约开支的角度考虑更优。
类型三:列二元一次方程组解决——商品销售利润问题变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩。
列二元一次方程组解应用题专项练习50题(有答案)ok1、已知某铁路桥长800m,火车从开始上桥到完全过桥共用45s,整列火车完全在桥上的时间是35s,求火车的速度和长度。
解:设火车的速度为v,长度为l,则有:l + 800 = vt (火车在桥上的时间)l = v(t-10) (火车在桥上外的时间)联立得:v = 80m/s,l = 2400m。
2、现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,一个盒身与两个盒底配成一个完整盒子,问:用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?解:设用x张铁皮制盒身,y张铁皮制盒底,则有:8x = 22y (每张铁皮做8个盒身或做22个盒底)x = 2y/7190 = 9x + 11y (总共用了190张铁皮)代入得:x = 60,y = 35.3、用白铁皮做水桶,每张铁皮能做1个桶身或8个桶底,一个桶身一个桶底正好配套做一个水桶,现在有63张这样的铁皮,则需要多少张做桶身,多少张做桶底正好配套?解:设用x张铁皮做桶身,y张铁皮做桶底,则有:x + y/8 = 63 (每张铁皮能做1个桶身或8个桶底)代入得:x = 35,y = 224.4、一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车的情况如下表:货车种类 | 货车辆数(辆) | 累计运货吨数(吨) |甲。
| 2.| 15.5.|乙。
| 5.| 35.|现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,则货主应付运费多少元?解:设甲、乙两种货车每辆运输的吨数分别为x、y,则有:2x + 5y = 50 (过去两次租用的情况)3x + 5y = 70 (现在租用的情况)联立得:x = 10,y = 8.应付运费为:(15.5+35) * 30 = 1650元。
5、某工厂第一季度生产甲、乙两种机器共480台,计划第二季度生产这两种机器共554台,其中甲种机器要比第一季度增产10%,乙种机器产量要比第一季度增产20%,该厂第一季度生产甲、乙两种机器各多少台?解:设第一季度甲、乙两种机器分别生产x、y台,则有:x + y = 4801.1x + 1.2y = 554 (第二季度计划生产的情况)联立得:x = 280,y = 200.6、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获纯利多少元?解:设种茄子的亩数为x,种西红柿的亩数为y,则有:x + y = 252600x + 2600y = - 1700x - 1800y (总花费为元)联立得:x = 10,y = 15.总获纯利为:2600 * 10 + 2600 * 15 = 元。
二元一次方程组应用题1.丽丽和家家去书店买书,他们同时喜欢上了一本书,最后丽丽用自己的钱的5分之3,家家用自己的钱的3分之2各买了一本,丽丽剩下的钱比家家剩下的钱多5块。
两人原来各有多少钱?书多少钱?设丽丽有x元钱家家有y元钱得出:3/5x=2/3y2/5x=1/3y+5 (丽丽剩下2/5 家家剩下1/3)解2元一次方程得x=50 y=45 即丽丽50元家家45元书30元一本2.一辆汽车每行8千米要耗油4/5千克,平均每千克汽油可行多少千米.行1千米路程要耗油多少千克?8除4/5=10(km/)4/5除8=0.1(kg)3.一辆摩托车1/2小时行30千米,他每小时行多少千米?他行1千米要多少小时?30÷1/2=60千米1÷60=1/60小时4.阅览室看书的同学中,男同学占七分之四,从阅览室走出5位男同学后,看书的同学中,女同学占二十三分之十二,原来阅览室一共有多少名同学在看书?原来有x名同学,女生数不变,所以(1-4/7)x=(x-5)*12/23 求出x=285.红,黄,蓝气球共有62只,其中红气球的五分之三等于黄气球的三分之二,蓝气球有24只,红气球和黄气球各有多少只?62-24=38(只)3/5红=2/3黄9红=10黄红:黄=10:938/(10+9)=2红:2*10=20黄:20*9=186.学校阅览室有36名学生看书,其中4/9是女学生.后又来了几名女学生,这时女学生人数占看书人数的3/5,后来了几名女生?原有女生:36×4/9=16(人)原有男生:36-16=20(人)后有总人数:20÷(1-3/5)=50(人)后有女生:50×3/5=30(人)来女生人数:30-16=14(人)7.水结成冰后,体积要比原来膨胀11分之1,2.16立方米的冰融化成水后,体积是多少?2.16/(1+1/11)=1.98(立方米)8.甲乙的粮食560吨,如果把甲的粮食运出2/9给乙,则甲乙的粮食正好相等.原来甲的粮食有多少吨?,乙的粮食有多少吨?现在甲乙各有560÷2=280吨原来甲有280÷(1-2/9)=360吨原来乙有560-360=200吨9.电视机降价200元.比原来便宜了2/11.现在这种电视机的价格是多少钱?原价是200÷2/11=2200元现价是2200-200=2000元10。
二元一次方程组应用题1、一名学生问老师:“您今年多大?”老师说:“我像你这样大时,你才出生;你到我这么大时,我已经37岁了。
”问:老师、学生今年多大了。
2、某长方形的周长是44cm,若宽的3倍比长多6cm,则该长方形的长和宽各是多少?3、已知梯形的高是7,面积是56cm2,又它的上底比下底的三分之一还多4cm,求该梯形的上底和下底的长度是多少?4、某校初一年级一班、二班共104人到博物馆参观,一班人数不足50人,二班人数超过50人,已知博物馆门票规定如下:1~50人购票,票价为每人13元;51~100人购票为每人11元,100人以上购票为每人9元((1)若分班购票,则共应付1240元,求两班各有多少名学生?(2)请您计算一下,若两班合起来购票,能节省多少元钱?(3)若两班人数均等,您认为是分班购票合算还是集体购票合算?5、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满。
已知45座客车每日租金每辆220元,60座客车每日租金为每辆300元。
(1)初一年级人数是多少?原计划租用45座汽车多少辆?(2)若租用同一种车,要使每个学生都有座位,怎样租用更合算?6、某酒店的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天 35元,一个50人的旅游团到了该酒店住宿,租了若干间客房,且每间客房恰好住满,一天共花去1510元,求两种客房各租了多少间?7、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小相同,安全检查中,对4道门进行了测试:当同时开启正门和两道侧门时,2分钟可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟可以通过800名学生。
(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况下时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问通过的这4道门是否符合安全规定?请说明理由。
实际问题与二元一次方程组题型归纳(练习题答案)一:列二元一次方程组解决 ------ 行程问题甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发 2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x, y千米/时,依题意得:(2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。
两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,二:列二元一次方程组解决——工程问题小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由解:设甲.乙两公司毎周完成工程的爼和^则1 L丄H X +得! 10故1 + 1=10(1)11^—= UH 』n ’ I 1 10 15即甲、乙完成这项工程分别需山周[沾周又设需忖甲、乙毎周的工犠分别为击元,右万元则出较知■从节约开支轴度考虑I选乙公司划宜三:列二元一次方程组解决一一商品销售利润问题李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:(注:获利=售价一进价)求该商场购进A、B两种商品各多少件; 解:设购进A的数量为x件、购进B的数量为y件,依据题意列方程组1200x+1000y=360000(1380-1200)x+(1200-1000)y=60000解得x=200,y=120答:略四:列二元一次方程组解决 ----- 银行储蓄问题小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息 2.25%;第二种,三年期整存整取,这种存款银行年利率为 2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元?解:设x为第一种存款的方式,Y第二种方式存款,则X + Y = 4000X * 2.25 % * 3 + Y * 2.7 % * 3 = 303.75解得:X = 1500,Y = 2500。
1:某校为同学们安排宿舍。
若每间宿舍住5人,则有4人住不下;若每间住6人,则有一间只住4人,且两间宿舍没人住。
求该年级同学人数和宿舍间数。
(解:设年级人数是x人,宿舍是y人)解:设年级人数是x人,宿舍是y人)5y-x=-46(y-2)-x=2解这个方程组得:y=18x=942:用A、B两种原料配制两种油漆,已知甲种油漆含A、B两种原料之比为5:4,每千克50元,乙种油漆含A、B两种原料之比为3:2,每千克48.6元,求A、B两种原料每千克的价格分别是多少元。
(解:设A种原料每千克x元,B种原料每千克y元)5÷9×x+4÷9×y=503÷5×x+2÷5×y=48.6化简方程组得:5x+4y=4503x+2y=243解这个方程组得:x=36y=67.53:甲、乙两地相距24千米,公共汽车和直达快车在8:45从甲、乙两地相向开出,这两辆车都在8:52到达中途A处。
有一次,直达快车晚开8分钟,两车则在8:58相遇途中B处,求这两车的速度。
(解:设直达快车每小时x千米,公共汽车每小时y千米)7÷60×x+7÷60×y=2413÷60×y+5÷60×x=244.要用含药30%和75%的两种防腐药水,配制含药50%的防腐药水18千克,两种药水各需取多少千克?(解:设含药30%的药水x千克,含药75%的药水y千克)x+y=1830%有效成分=x×30%75%有效成分=y×75%50%有效×成分=18×50%所以30%x+7×5%=18×50%0.3x+0.75y=9x+y=180.3x+0.3y=5.4所以0.75y-0.3y=9-5.40.45x=3.6x=8y=10所以30%取8千克,75%取10千克5.一列快车长70千米,慢车长80千米,若两车同时相向而行,快车从追上慢车到完全离开慢车为20秒,若两车相向而行,则两车从相遇到离开时间为4秒,求两车每小时各行多少千米。
利用二元一次方程组解简单的应用题1、李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税后可得利息43.92元。
已知这两种储蓄的年利率的和为3.24%,问这两种储蓄的年利率各是多少?(注:公民应交利息所得税=利息金额 20%2、某班学生参加义务劳动,男生全部挑土,女生全部抬土,这样安排恰需筐68个,扁担40根,问这个班男生、女生各有多少人?3、甲、乙两人做加法,甲将其中一个加数后面多写了一个0,所以得和是2342,乙将同一个加数后面少写了一个0,所得和是65,求原来的两个加数。
4、甲、乙2个工人同时接受一批任务,上午工作的4小时中,甲用了2.5小时改装机器以提高工效,因此,上午工作结束时,甲比乙少做40个零件;下午2人继续工作4小时后,全天总计甲反而比乙多做420个零件,问这一天甲、乙各做多少个零件?5、去年甲、乙两车间计划共完成税利150万元,由于技术革新,生产效率大幅度提高,结果甲车间超额完成税利110%,乙车间超额完成税利120%,两车间一共上缴税利323万元,问甲、乙车间实际上缴税利多少万元?6一列快车长168米,一列慢车长184米,如果两车相向而行,那么两车错车需4秒,如果同向而行,两车错车需16秒钟,求两车的速度。
7、甲、乙两人分别以均匀的速度在周长为600米的圆形轨道上运动,甲的速度较快,当两人反向运动时,每15秒钟相遇一次;当两人同向运动时,每1分钟相遇一次,求各人的速度。
8、某牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元。
该工厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片,每天可加工1吨,受人员限制,两种加工方式不可同时进行。
受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕。
为此,该厂设计了两种方案:方案一:尽可能多的制成奶片,其余直接销售鲜奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成。
你认为选择哪种方案获利最多,为什么?9、甲、乙两人不知其年龄,只知道甲像乙现在的年龄时,乙只有2岁,又知等乙长到甲现在这么大时,甲已经是38岁了,问甲、乙现在的年龄各是多少?10、某校为初一年级学生安排宿舍,若每间宿舍住5人,则有4人住不下;若每间住6人,则有一间只住了4人,且空两间宿舍,求该年级寄宿生人数及宿舍间数。
11、4辆小车和7辆大车一次运货38吨,5辆小车和6辆大车一次运货36.5吨,问一辆小车和一辆大车一次各运货多少吨?12、两地相距280千米,一艘轮船在其间航行,顺流用14小时,逆流用20小时,求这艘轮船在静水中的速度和水流速度。
13、某无线电厂原计划上月生产A型电视机和B型电视机共3600台,由于订货量增加,该厂挖掘生产潜力,上月A、B两种型号的电视机共生产4240台,其中A型电视机完成了原计划的116%,B型电视机完成了原计划的120%,问上月两种电视机各比原计划超额了多少台?14、有一只驳船,载重500吨,容积705立方米,现在要运生铁和棉花两种货物,生铁每吨体积0.3立方米,棉花每吨体积4立方米。
生铁和棉花各装多少吨才能充分利用船的载重量与容积?15、永盛电子有限公司向工商银行申请了甲乙两种贷款,共计68万元,每年需付出利息8.42万元。
甲种贷款每年的利息是12%,乙种贷款每年的利率是13%,求这两种贷款的数额各是多少?16、甲、乙两种商品,如果购买甲3件、乙7件共需27元,如果购买甲商品40件、乙商品50件,则可以按批发价计算,共需付189元,已知甲商品每件批发价比零售价低0.4元,乙商品每件批发价比零售价低0.5元。
问甲、乙两种商品的批发价各是多少元?17、两个商店以100元的相同价格进同一种商品。
甲店以30%的利润加价出售,乙店以20%的利润加价出售,结果乙店销售的件数是甲店的2倍,且总利润比甲店多4000元。
问甲、乙两店各售出多少件商品?18、一个三位数是一个两位数的3倍,把三位数放在两位数的左边得到一个五位数;再把三位数放在两位数的右边又得到一个五位数,并且较大的一个五位数比较小一个五位数的2倍多22456,求此三位数和两位数。
19、有一水库,在单位时间内有一定量的水流进,同时也向外放水,按现在的进出水量,水库中的水可使用40天,因最近在水源的地方降雨,流入水库的水量增加20%,如果放水量增加10%,则仍可使用40天,如果按原来的放水量放水,可使用多少天?20、甲骑摩托车每小时行40千米,乙骑机动脚踏车每小时行20千米,上午七时他们从相距140千米的A,B同时出发。
(1)相向而行,在什么时刻相距20千米?(2)同向而行,什么时刻他们相距20千米。
答案:1解:设存2000元的这种储蓄的年利率是x ,存1000元的这种储蓄的年利率是y ,根据题意得:⎩⎨⎧=-⨯+=+92.43%)201()10002000(%24.3y x y x 解这个方程组得:⎩⎨⎧==0099.00225.0y x 答:存2000元的这种储蓄的年利率是2.25%,存1000元的这种储蓄的年利率是0.99%。
2解:设这个班有男生x 人,女生y 人,根据题意得:⎪⎪⎩⎪⎪⎨⎧=+=+4026822y x y x 解这个方程组得:⎩⎨⎧==2428y x 答:这个班有男生28人,女生24人3解:设两个加数分别为x 和y ,其中两人都看错的加数为y ,根据题意得:⎪⎩⎪⎨⎧=+=+65101234210y x y x 解这个方程组得:⎩⎨⎧==23042y x 4解:设甲每小时加工x 个零件,乙每小时加工y 个零件,则甲一天做x )5.28(-个零件,乙一天做y 8个零件。
根据题意得:⎩⎨⎧+=-=+-4208)5.28(440)5.24(y x y x 解这个方程组得:⎩⎨⎧==85200y x 则 11000)5.28(=-x , 6808=y答:这一天甲做了11000个零件,乙做了680个零件。
5解:设去年甲车间计划完成税利x 万元,乙车间计划完成税利y 万元,则实际甲车间完成税利x %)1101(+万元,乙车间完成税利y %)1201(+万元。
根据题意得:⎩⎨⎧=+++=+323%)1201(%)1101(150y x y x 解这个方程组得:⎩⎨⎧==8070y x 则 147%)1101(=+x , 176%)1201(=+y6解:设快车的速度是x 米/秒,慢车的速度为y 米/秒,根据题意得:⎩⎨⎧+=-+=+184168161618416844y x y x 解这个方程组得:⎩⎨⎧==3355y x 答:快车的速度是55米/秒,慢车的速度为33米/秒。
7解:设甲的速度是x 米/秒,乙的速度是y 米/秒,根据题意得:⎩⎨⎧=-=+60060606001515y x y x 解这个方程组得:⎩⎨⎧==1525y x 答:甲的速度是25米/秒,乙的速度是15米/秒。
8解:方案一:总利润=10500500)49(20004=⨯-+⨯元。
方案二:设4天内加工酸奶x 吨,加工奶片y 吨,则总利润为y x 20001200+元,根据题意得:⎪⎩⎪⎨⎧=+=+4139y x y x 解这个方程组得:⎩⎨⎧==5.15.7y x 则 1200020001200=+y x因为方案一的总利润<方案二的总利润所以选择方案二获利更多。
答:选择方案二获利更多。
9解:设甲现在的年龄是x 岁,乙现在的年龄是y 岁,根据题意得:⎩⎨⎧-=--=-x y x y y x 382 ⎧=26x答:甲现在的年龄是26岁,乙现在的年龄是14岁。
10解:设该年级寄宿生x 人,宿舍y 间,根据题意得:⎩⎨⎧=+-=+xy x y 4)3(645 解这个方程组得:⎩⎨⎧==1894y x 答:该年级寄宿生94人,宿舍18间11、解:设一辆小车一次运货x 吨,一辆大车一次运货y 吨,根据题意得: ⎩⎨⎧=+=+5.36653874y x y x 解这个方程组得: ⎩⎨⎧==45.2y x 答:一辆小车一次运货2.5吨,一辆大车一次运货4吨。
12、解:设轮船在静水中的速度为x 千米/小时,水流速度为y 千米/小时,根据题意得: ⎩⎨⎧=-=+280)(20280)(14y x y x 解这个方程组得: ⎩⎨⎧==317y x 答:轮船在静水中的速度为17千米/小时,水流速度为3千米/小时。
13、解:设上月原计划A 型电视机生产x 台,B 型电视机生产y 台,则A 型电视机比原计划超额x )1%116(-台,B 型电视机比原计划超额y )1%120(-台。
根据题意得: ⎩⎨⎧=+=+4240%120%1163600y x y x 解这个方程组得: ⎩⎨⎧==16002000y x 则 320)1%116(=-x 320)1%120(=-y答:A 型电视机比原计划超额320台,B 型电视机比原计划超额320台。
14、解:设生铁x 吨,棉花y 吨,根据题意得: ⎩⎨⎧=+=+70543.0500y x y x ⎧=350x答:生铁350吨,棉花150吨。
15、解:设甲种贷款x 万元,乙种贷款y 万元,根据题意得: ⎩⎨⎧=+=+42.8%13%1268y x y x 解这个方程组得: ⎩⎨⎧==2642y x 答:甲种贷款42万元,乙种贷款26万元。
16、解:设甲商品的批发价为x 元,乙商品的批发价为y 元,根据题意得: ⎩⎨⎧=+=+++189504027)5.0(7)4.0(3y x y x 解这个方程组得: ⎩⎨⎧==5.26.1y x 答:甲商品的批发价为1.6元,乙商品的批发价为2.5元。
17、解:设甲店售出x 件商品,乙店售出y 件商品,根据题意得:⎩⎨⎧⨯=+⨯=y x x y 100%204000100%302 解这个方程组得: ⎩⎨⎧==800400y x 答:甲店售出400件商品,乙店售出800件商品。
18、解:设这个三位数是x ,两位数是y ,根据题意得: ⎩⎨⎧+=++=xy y x y x 100022456)100(23 解这个方程组得:⎩⎨⎧==56168y x 答:这个三位数是168,两位数是56。
19、解:设水库原来每天进水量为a 立方米,原来每天出水量为x 立方米,则水库原有存水)(40a x -立方米,按原放水量可用ax a x %)201()(40+--天。
根据题意得: ]%)201(%)101[(40)(40a x a x +-+=-则 a a x 40)(40=-50%)201()(40=+--ax a x 答:如果按原放水量放水,可使用50天。
20、解:(1)情况一:两人相遇前,还相距20千米, 设x 小时后,即y 时刻两人相距20千米, 根据题意得:⎩⎨⎧=+++=1402020407x x x y 解这个方程组得: ⎩⎨⎧==92y x 情况二:两人相遇后,又相距20千米, 根据题意得:⎩⎨⎧+=++=2014020407x x x y 解这个方程组得: ⎪⎪⎩⎪⎪⎨⎧==32938y x 答:上午9点或是上午9点40分两人相距20千米。