条件概率
- 格式:ppt
- 大小:353.00 KB
- 文档页数:50
条件概率(conditional probability)就是事件A在另外一个事件B已经发生条件下的发生概率。
条件概率表示为P(A|B),读作“在B条件下A的概率”。
联合概率表示两个事件共同发生的概率。
A与B的联合概率表示为或者或者。
边缘概率是某个事件发生的概率。
边缘概率是这样得到的:在联合概率中,把最终结果中不需要的那些事件合并成其事件的全概率而消失(对离散随机变量用求和得全概率,对连续随机变量用积分得全概率)。
这称为边缘化(marginalization)。
A的边缘概率表示为P(A),B的边缘概率表示为P(B)。
需要注意的是,在这些定义中A与B之间不一定有因果或者时间序列关系。
A可能会先于B发生,也可能相反,也可能二者同时发生。
A可能会导致B的发生,也可能相反,也可能二者之间根本就没有因果关系。
例如考虑一些可能是新的信息的概率条件性可以通过贝叶斯定理实现。
换句话说,如果A与B是相互独立的,那么A在B这个前提下的条件概率就是A自身的概率;同样,B在A的前提下的条件概率就是B自身的概率。
考虑概率空间Ω(S, σ(S)),其中σ(S)是集S上的σ代数,Ω上对应于随机变量X的概率测度(可以理解为概率分布)为PX;又A ∈σ(S),PX(A)≥0(这里可以理解为事件A,A不是零测集)。
则∀E∈σ(S),可以定义集函数PX|A如下:PX|A(E)=PX(A∩E)/PX(E)。
易知PX|A也是Ω上的概率测度,此测度称为X在A下的条件测度(条件概率分布)。
独立性:设A,B∈σ(S),称A,B在概率测度P下为相互独立的,若P(A∩E)=P(A)P(E)。
若想分辨某些个体是否有重大疾病,以便早期治疗,我们可能会对一大群人进行检验。
虽然其益处明显可见,但同时,检验行为有一个地方引起争议,就是有检出假阳性的结果的可能:若有个未得疾病的人,却在初检时被误检为得病,他可能会感到苦恼烦闷,一直持续到更详细的检测显示他并未得病为止。
条件概率与全概率公式
条件概率是指在已知某一事件发生的情况下,另一事件发生的概率。
表示为P(A|B),读作“B发生下A的概率”。
其中,A和B都是事件。
全概率公式是指在多个互斥事件的情况下,求解某事件发生的概率。
表示为P(A)=∑P(Bi)P(A|Bi),其中,A和B1~Bn都是事件,且
B1~Bn互斥(即只能有一个事件发生)且构成全集(即所有事件的并集是样本空间)。
意思是将A发生的情况分别在B1到Bn分别发生下计算,再加起来就是A发生的概率。
例如,某次摇色子,摇出的数为1~6之一,设事件A为“得到奇数”,事件B为“得到4点以下的数”。
则P(A|B)表示在已知得到4以下的数的情况下,得到奇数的概率。
全概率公式中需要先考虑各个条件下得到4以下的数的概率,再乘以相应条件下得到奇数的概率,最后将得到奇数的结果相加,就可以得到最终的结果。
条件概率公式推导
条件概率是指在已知某一事件的前提下,另一事件发生的概率。
条件概率的计算需要用到条件概率公式。
下面就来推导一下条件概率公式。
假设有两个事件A和B,且B的概率不为0。
则,在已知B发生的前提下,A发生的概率为:
P(A|B) = P(AB) / P(B)
其中,P(AB)表示事件A和B同时发生的概率,即交集的概率。
P(B)表示事件B发生的概率,即B的概率。
由乘法公式可得:
P(AB) = P(A) * P(B|A)
其中,P(B|A)表示在已知事件A发生的前提下,事件B发生的概率。
即,B在A发生的条件下的概率。
将P(AB)代入条件概率公式中得:
P(A|B) = P(A) * P(B|A) / P(B)
这就是条件概率公式的推导过程。
通过条件概率公式,我们可以计算在已知某事件发生的前提下,另一事件发生的概率。
这对于概率论和统计学都有着重要的应用。
- 1 -。
条件概率与全概率公式
条件概率是指在一定条件下某事件发生的概率,例如,已知某人感染了疾病,求这个人的年龄在40岁以下的概率。
这里,已知某人感染了疾病就是条件,年龄在40岁以下是事件。
条件概率的公式为:P(A|B) = P(A∩B)/P(B),其中,P(A|B)表示在条件B下事件A发生的概率,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
全概率公式是指将一个事件拆分成多个互不重叠的子事件,并计算每个子事件的概率,然后将它们相加得到整个事件发生的概率。
例如,某医院有三个科室,分别是内科、外科和儿科,每个科室的病人比例为60%、30%和10%。
现在需要求这个医院的所有病人中,感染肺炎的比例。
这里,感染肺炎是整个事件,内科、外科和儿科是子事件。
全概率公式为:P(A) = Σ P(A|Bi) * P(Bi),其中,P(A)表示事件A的概率,P(A|Bi)表示在条件Bi下事件A发生的概率,P(Bi)表示事件Bi发生的概率,Σ表示对所有的i求和。
在这个例子中,感染肺炎的比例为:P(肺炎) = P(肺炎|内科) * P(内科) + P(肺炎|外科) * P(外科) + P(肺炎|儿科) * P(儿科)。
- 1 -。
条件概率知识点一、条件概率的定义。
1. 概念。
- 设A、B为两个事件,且P(A)>0,称P(BA)=(P(AB))/(P(A))为在事件A发生的条件下事件B发生的条件概率。
- 例如,扔一个骰子,事件A为“骰子的点数为偶数”,P(A)=(3)/(6)=(1)/(2),事件B为“骰子的点数小于4”,AB表示“骰子的点数为2”,P(AB)=(1)/(6)。
那么在A发生的条件下B发生的条件概率P(BA)=(P(AB))/(P(A))=(frac{1)/(6)}{(1)/(2)}=(1)/(3)。
2. 性质。
- 非负性:对于任意事件B,A(P(A)>0),有P(BA)≥slant0。
- 规范性:P(ΩA) = 1,这里Ω是样本空间。
- 可列可加性:如果B_1,B_2,·s是两两互不相容的事件,则P(bigcup_i =1^∞B_iA)=∑_i = 1^∞P(B_iA)。
二、条件概率的计算方法。
1. 公式法。
- 直接根据定义P(BA)=(P(AB))/(P(A))计算。
- 例如,有一批产品共100件,其中次品10件,从中不放回地抽取两次,每次取一件。
设事件A为“第一次取到次品”,P(A)=(10)/(100)=(1)/(10);事件B为“第二次取到次品”。
AB表示“第一次和第二次都取到次品”,P(AB)=(10)/(100)×(9)/(99)=(1)/(110)。
那么P(BA)=(P(AB))/(P(A))=(frac{1)/(110)}{(1)/(10)}=(1)/(11)。
2. 缩减样本空间法。
- 当直接计算P(AB)和P(A)比较复杂时,可以考虑缩减样本空间。
- 还是以上面抽取产品的例子,在A发生的条件下,即第一次已经取到了次品,此时样本空间就缩减为99件产品,其中次品还有9件,所以P(BA)=(9)/(99)=(1)/(11)。
三、条件概率的乘法公式。
1. 公式。
- 由P(BA)=(P(AB))/(P(A))可得P(AB)=P(A)P(BA)(P(A)>0)。
条件概率名词解释条件概率:在某一给定的置信度上,事件发生的可能性与其所含的基本事件个数之间的关系。
简言之,条件概率就是当n个观察结果中的至少有一个或多个为真时,那么真的观察结果个数占所有观察结果个数的比例。
条件概率在理论物理中,我们经常用到它,而在生活中它却不怎么被人所熟知,但实际上,我们却离不开它。
现举两例。
例1:一个电视台正播放“百家讲坛”节目,一个学生回答说世界上有ufo,并举了很多科学依据。
然后节目主持人又问观众:如果世界上有外星人,你愿意跟谁去?大多数观众都选择了自己的亲人,但也有几位观众明确表示想跟着外星人走。
为什么观众没有选择跟随电视台一起去呢?条件概率在不确定性理论和随机过程的教学中,这样的例子不胜枚举。
如果把其中某些随机事件看作是概率为0的事件,则概率为0的条件概率就是指该随机事件在任何情况下必然发生的概率,即P=0。
,这时的条件概率P0称为必然发生的条件概率;(2)条件概率P =S(A)=P(A)-P(B)(B不等于0)P(A)-P(B)= P(A)P(B)这时的条件概率P0称为肯定发生的条件概率。
,其中表示同样的事件在a和b两次试验中发生的次数之差; p 为第i次试验中的结果,称为频率,又称为概率或概数; n为取值于一组数据的变量个数; S是n个随机变量取值于各个分布的数字的期望值。
下面我们来介绍条件概率的三个性质:(1)对任意相等的a, b 和p,有P(a≤b)和P(a>b), P(a≤b)>P(a>b);(2)设X(t)表示事件A的发生的概率,则: P(X(t)>Y(t))且P(X(t)>Y(t))具有以下性质:(3) P(X(t)>Y(t))满足性质(1)和性质(2),这是关于条件概率的全概率公式。
5。
已知Z={{(x, y, z)}={(x, y), (x, z), (x, y, z)}},则Z的条件概率为《数理统计》期末试题一: 1、有一列三位数字,分别是: 1,7, 7, 1, 2, 7, 5, 10,请利用重点与难点进行命题。