计算事件AB发生的概率,即
n AB
P
B|A
n AB nA
n nA
P AB PA .
n
【典例训练】 1.(2011·辽宁高考)从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和 为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=( )
A1 B 1 C 2 D 1
8
4
5
2
n AB nA
1 4
.
2.由题意可得: AB {x | 1<x<1},
所以
P AB
又1 因 为1 2 4
1,
4
2
PA 1,
ห้องสมุดไป่ตู้
所以
14
2
P B|A
答案:
P AB PA
1 2
.
1
2
3.设A表示取得合格品,B表示取得一等品,
(1)∵100 件产品中有70件一等品,∴
PB 70 0.7.
(2)方法一:∵95 件合格品中有70 件一等品,且B⊆A, 100
2.任意向(0,1)区间上投掷一个点,用x表示该点的坐标,则
令事件A={x|0<x< },B1={x| <x<1},1则P(B|A)=_____. 3.设100 件产品中有70 件2一等品,25 件4二等品,规定一、
二等品为合格品.从中任取1件. (1)求取得一等品的概率; (2)已知取得的是合格品,求它是一等品的概率.
2.求解条件概率的两个注意事项 (1)在具体的题目中,必须弄清谁是事件A,谁是事件B,即在哪个事件发生的条件 下,求哪个事件的概率. (2)选择求解条件概率的计算法,以达到迅速计算的目的.
【典例训练】 1.一批同型号产品由甲、乙两厂生产,产品结构如下表: