2010年黑龙江省牡丹江市中考数学试题及答案
- 格式:doc
- 大小:523.00 KB
- 文档页数:10
:2016年牡丹江中考数学试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
初中数学变式教学研究-----------10道变式题1:平面直角坐标系中,已知A(4,0),B (0,3),点C 是坐标轴上的点,并且△ABC 为直角三角形,请求出满足要求的所有点C 的坐标 .答案(0,0)(49-,0)(0,316-) 变式1:平面直角坐标系中,已知A(6,3),B (1,3),点C 是坐标轴上的点,并且△ABC 为直角三角形,请求出满足要求的所有点C 的坐标 .答案(1,0)(6,0)变式2:平面直角坐标系中,已知A(0,2),B (5, 2),点C 是x 轴上的点,并且△ABC 为直角三角形,请求出满足要求的所有点C 的坐标 .答案(0,0)(1,0)(4,0)(5,0)变式3:平面直角坐标系中,已知A(2,2),B (-2,2),点C 是坐标轴上的点,若△ABC 为直角三角形,则满足要求的所有点C 有 个.答案 8个2.平面直角坐标系中,已知A(4,0),B (0,3),点C 是坐标轴上的点,并且△ABC 为直角三角形,请求出满足要求的所有点C 的坐标 .答案(0,0)(49-,0)(0,316-) 变式1:平面直角坐标系中,已知A(1,0),B (5, 0),点C 是直线2y x =-上的点,若△ABC 为直角三角形,则点C 的坐标为 .答案(1,-1)(5,3)(275-,271-)(275+,271+) 变式2:平面直角坐标系中,已知A(-2,0),B (2, 0),点C 是双曲线 上的点,若△ABC 为直角三角形,则满足要求的点C 的个数为 个.答案 3变式3:平面直角坐标系中,已知A(3,0),B (0, 4),点C 是抛物线 的对称轴上的点,若△ABC 为直角三角形,则点C 的坐标为 .答案(4,2)(4,7)(4, )3.平面直角坐标系中,已知A(4,0),B (0,3),点C 是坐标轴上的点,并且△ABC 为直x y 2=1682+-=x x y 43角三角形,请求出满足要求的所有点C 的坐标 .答案(0,0)(49-,0)(0,316-)变式1:平面直角坐标系中,已知A(4,0),B (0,3),点C 是坐标轴上的点,点D 在平面直角坐标系内,使 A 、B 、C 、D 为矩形,则点C 的坐标为 .答案(0,0)(49-,0)(0,316-) 变式2:平面直角坐标系中,已知A(0,2),B (5, 2),点C 是x 轴上的点,点D 在第一象限内,使 A 、B 、C 、D 为矩形,则点D 的坐标为 .答案(1,4)(4,4)变式3:平面直角坐标系中,已知A(1,0),B (5, 0),点C 是直线2y x =-上的点,点C 是坐标轴上的点,点D 在平面内,使 A 、B 、C 、D 为顶点的四边形为矩形,则点C 的坐标为 .答案(1,-1)(5,3)(275-,271-)(275+,271+)4:直角梯形ABCD 中,AD=1, BC=4 , DC =4。
2012年中考数学(黑龙江牡丹江卷)(本试卷满分120分,考试时间120分钟)一、填空题(每小题3分,满分27分)1.太阳半径约为696000千米,用科学记数法表示这个数,记为 ▲ . 【答案】6.96×105。
2.如图.点D 、E 在△ABC 的边BC 上,AB=AC ,AD=AE .请写出图中的全等三角形 ▲ (写出一对即可).【答案】△ABD ≌△ACE (答案不唯一)。
3.在函数y=x 2−中,自变量x 的取值范围是 ▲ 【答案】x 2≥。
4.一组数据2,5,1,6,2,x ,3中唯一的众数是x ,这组数据的平均数和中位数的差是 ▲ 【答案】1。
5.在△ABC 中,点D 、E 、F 分别是AB 、BC 、CA 的中点.若△ABC 的面积是l6,则△DEF 的面积为 ▲ .【答案】4。
6.观察下列数:23451111,,,x x x x −−,…,按此规律排列,第十个数为▲ . 【答案】111x−。
7.若抛物线2y ax bx c =++经过点(-1,10),则a b c −+= ▲ . 【答案】10。
8.⊙O 的半径为5cm ,弦AB ∥CD ,且AB=8 cm ,CD=6cm ,则AB 与CD 的距离为 ▲ 【答案】1 cm 或7 c m 。
9.矩形AB CD 中,AB=10,BC=3,E 为AB 边的中点,P 为CD 边上的点,且△AEP 是腰长为5的等腰三角形,则DP= ▲ 【答案】4或1或9。
二、选择题(每小题3分,满分33分) 10.下列计算中,正确的是【 】A . 236a a a ⋅= B . 2212a 2a−=C . 2242(3a b)6a b −=D . 5322a a a 2a ÷+= 【答案】D 。
11.下列图形中,既是轴对称图形,又是中心对称图形的是【 】. A .等腰三角形 B .平行四边形 C .正方形 D .等腰梯形 【答案】C 。
黑龙江省牡丹江市中考数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) -2的绝对值是()A .B .C . -2D . 22. (2分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.A . AB . BC . CD . D3. (2分)(2017·莱芜) 对于实数a,b,定义符号min{a,b},其意义为:当a≥b时,min{a,b}=b;当a <b时,min{a,b}=a.例如:min={2,﹣1}=﹣1,若关于x的函数y=min{2x﹣1,﹣x+3},则该函数的最大值为()A .B . 1C .D .4. (2分)在下列所给出的4个图形中,对角线一定互相垂直的是()A . 长方形B . 平行四边形C . 菱形D . 直角梯形5. (2分)(2020·阜阳模拟) 如图是北京2017年3月1日﹣7日的浓度(单位:)和空气质量指数(简称)的统计图,当不大于50时称空气质量为“优”,由统计图得到下列说法:①3月4日的浓度最高②这七天的浓度的平均数是③这七天中有5天的空气质量为“优”④空气质量指数与浓度有关其中说法正确的是()A . ②④B . ①③④C . ①③D . ①④6. (2分) (2016七下·玉州期末) 不等式组的解是()A . ﹣3<x≤5B . x≥﹣3C . ﹣3≤x<57. (2分)圆柱的底面半径为1,高为2,则该圆柱体的表面积为()A . πB . 2πC . 4πD . 6π8. (2分)下列说法中①一个角的两边分别垂直于另一个角的两边,则这两个角相等②数据5,2,7,1,2,4的中位数是3,众数是2③等腰梯形既是中心对称图形,又是轴对称图形④Rt△ABC中,∠C=90°,两直角边a,b分别是方程x2-7x+7=0的两个根,则AB边上的中线长为。
AB CACDEB2010年牡丹江市初中毕业学业考试数学试题一、填空题(每小题3分,满分27分)1.上海世博会场是当今世界最大的太阳能应用场所,装有460000亿瓦的太阳能光伏并网发电装置,460000亿瓦用科学记数法表示为亿瓦.2.函数y=1x-2中,自变量x的取值范围是.3.如图,点B在∠CAD的平分线上,请添加一个适当的条件:,使△ABC≌△ABD(只填一个即可).4.如图,⊙A、⊙B、⊙C两两不相交,且半径都是2cm,则图中三个扇形(阴影部分)的面积之和是cm2.5.一组数据3、4、9、x的平均数比它的唯一众数大1,则x=.6.观察下表,请推测第5个图形共有根火柴棍.序号 1 2 3 …图形…7.若关于x的分式方程2x+2-ax+2=1的解为负数,则a的取值范围是.8.开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则如下:购物每满100元,返购物券50元,此购物券在本商场通用,且用购物券购买商品不再返券.小明只购买了单价分别为60元、80元和120元的书包、T恤、运动鞋,在使用购物券参与购买的情况下,他的实际花费为元.9.如果将腰长为6cm、底边长为5cm的等腰三角形废料加工成菱形工件,菱形的一个内角恰好是这个三角形的一个内角,菱形的其它顶点均在三角形的边上,那么这个菱形的边长是cm.二、选择题(每小题3分,满分33分)10.下列计算中,正确的是()A.2a2·3b3=6a5B.(-2a)2=-4a2C.(a5)2=a7D.x-2=1x211.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()12.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25;如果再往盒中放进3颗黑色棋子,取得白色棋子的概率是14,则原来盒中有白色棋子()A.1颗B.2颗C.3颗D.4颗13.如图,在平面直角坐标系中,把△ABC沿y轴对折后得到△A1B1C1,再将△A1B1C1向下平移4个单位长度得到△A2B2C2,则△AB1C2的形状是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形14.如图,⊙O的直径AB=10cm,弦CD⊥AB于P.若OP∶OB=3∶5,则CD=()A B C DA BCDEA .6cmB .4cmC .8cmD .91cm15.如图,利用四边形的不稳定性改变矩形ABCD 的形状得到□A 1BCD 1,若□A 1BCD 1的面积是矩形ABCD面积一半,则∠A 1BC =( ) A .15º B .30º C .45º D .60º16.如图,均匀地向此容器注水,直到把容器注满.在注水的过程中,下列图象能大致反映水面高度h 随时间t 变化规律的是( )17.用12个大小相同的小正方体搭成的几何体如图所示,标有正确小正方体个数的俯视图是( )18.如图,反比例函数与正比例函数的图象交于A 、B 两点,过点A 作AC ⊥x 轴于点C .若△ABC 的面积是4,则这个反比例函数的解析 式是( )A .y = 2 xB .y = 4 xC .y = 8 xD .y = 16x19.已知关于x 的一元二次方程ax 2-3bx -5=0,则4a -6b 的值是( A .4 B .5 C .8 D .10 20.在锐角△ABC 中,∠BAC =60º,BD 、CE 为高,F 为BC 的中点,连接DE 、DF 、EF ,则结论:①DF =EF ;②AD ∶AB =AE ∶AC ; ③△DEF 是等边三角形;④BE +CD =BC ;⑤当∠ABC =45º时, BE =2DE 中,一定正确的有( )A .2个B .3个C .4个D .5个三、解答题(满分60分)21.(5分)化简求值:a -b a ÷⎝⎛⎭⎫a -2ab -b 2 a ,其中a =2010,b =2009.22.(6分)如图,二次函数y =-x 2+bx +c 的图象经过坐标原点,与x 轴交于点A (-2,0).(1)求此二次函数的解析式及点B 的坐标;A D C BOP AB C DD 1A 1(2)在抛物线上有一点P,满足S△AOP=3,请直接写出点P的坐标.23.(6分)综合实践活动课上,老师让同学们在一张足够大的纸板上裁出符合如下要求的梯形,即“梯形ABCD,AD∥BC,AD=2分米,AB=5分米,CD=22分米,梯形的高是2分米”.请你计算裁得的梯形ABCD中BC边的长度.24.(7分)去年,某校开展了主题为“健康上网,绿色上网”的系列活动.经过一年的努力,取得了一定的成效.为了解具体情况,学校随机抽样调查了初二某班全体学生每周上网所用时间,同时调查了使用网络的学生上网的最主要目的,并用得到的数据绘制了以下两幅统计图.请你根据图中提供的信息,回答下列问题:(1)在这次调查中,初二该班共有学生多少人?(2)如果该校初二有660名学生,请你估计每周上网时间超过4小时的初二学生大约有多少人?(2)请将图2空缺部分补充完整,并计算这个班级上网的学生中,每周利用网络查找学习资料的学生有多少人?(注:每组数据只含最大值,不含最小值)图1 图2(25.(8分)运动会前夕,小明和小亮相约晨练跑步.小明比小亮早1分钟离开家门,3分钟后迎面遇到从家跑来的小亮,两人沿滨江路跑了2分钟后,决定进行长跑比赛,比赛时小明的速度始终是180米/分,小亮的速度始终是220米/分.下图是两人之间的距离y (米)与小明离开家的时间x (分)之间的函数图象,请根据图象回答下列问题:(1)请直接写出小明和小亮比赛前的速度;(2)请在图中的括号内填上正确的值,并求两人比赛过程中y 与x 之间的函数关系式(不用写自变量x 的取值范围);(3)若小亮从家出门跑了14分钟后,按原路以比赛时的速度返回,则再经过多少分钟两人相遇?26.(8分)在平面内有一等腰直角三角板(∠ACB =90º)和直线l .过点C 作CE ⊥l 于点E ,过点B 作BF ⊥l于点F .当点E 与点A 重合时(图①),易证:AF +BF =2CE .当三角板绕点A 顺时针旋转至图②、图③的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,请直接写出线段AF 、BF 、CE 之间的数量关系的猜想(不需证明).A AA(E )l llCBFCBEFCBE F 图1图2图327.(10分)在“老年节”前夕,某旅行社组织了一个“夕阳红”旅行团,共有253名老人报名参加.旅行前,旅行社承诺每车保证有一名随团医生,并为此次旅行请了7名医生.现打算选租甲、乙两种客车,其中甲种客车每辆载客40人,乙种客车载每辆载客30人.(1)请帮助旅行社设计租车方案.(2)若甲种客车租金为350元/辆,乙种客车租金为280元/辆,旅行社按哪种方案租车最省钱?此时租金是多少?(3)旅行社在充分考虑团内老人的年龄结构特点后,为更好的照顾游客,决定同时租45座和30座的大小两种客车,大客车上至少配两名随团医生,小客车上至少配一名随团医生,为此旅行社又请了4名医生.出发时,旅行社先安排游客坐满大客车,再依次坐满小客车,最后一辆小客车即使坐不满也至少要有20座上座率.请直接写出旅行社的租车方案.28.(10分)如图,矩形OABC在平面直角坐标系中,并且OA、OC的长满足:|OA-2|+(OC-23)2=0.(1)求B、C两点的坐标.(2)把△ABC沿AC对折,点B落在点B1处,AB1线段与x轴交于点D,求直线BB1的解析式.(3)在直线BB1上是否存在点P使△ADP为直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.。
黑龙江省牡丹江市2011年中考数学试卷一、填空题1、(2011•牡丹江)今年参加牡丹江市初中毕业学业考试的考生约有l7 000人,请将数17 000用科学记数法表示为 1.7×104.考点:科学记数法—表示较大的数。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将l7 000用科学记数法表示为1.7×104.故答案为:1.7×104.点评:此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2、(2010•楚雄州)函数y=的自变量x取值范围是x≤3.考点:函数自变量的取值范围。
分析:根据二次根式的性质,被开方数大于等于0可知:3﹣x≥0,解得x的范围.解答:解:根据题意得:3﹣x≥0,解得:x≤3.点评:本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.3、(2011•牡丹江)如图,△ABC的高BD、CE相交于点0.请你添加一对相等的线段或一对相等的角的条件,使BD=CE.你所添加的条件是∠DBC=∠ECB或∠EBC=∠DCB 或AB=AC或AE=AD等.考点:全等三角形的判定与性质。
专题:开放型。
分析:由△ABC的高BD、CE相交于点0,可得∠BEC=∠CDB=90°,又由要使BD=CE,只需△BCE≌△CBD,根据全等三角形的判定定理与性质,即可求得答案.解答:解:此题答案不唯一,如∠DBC=∠ECB或∠EBC=∠DCB 或AB=AC或AE=AD等.∵△ABC的高BD、CE相交于点0.∴∠BEC=∠CDB=90°,∵BC=CB,要使BD=CE,只需△BCE≌△CBD,当BE=CD时,利用HL即可证得△BCE≌△CBD;当∠ABC=∠ACB时,利用AAS即可证得△BCE≌△CBD;同理:当∠DBC=∠ECB也可证得△BCE≌△CBD;当AB=AC时,∠ABC=∠ACB,∴当AB=AC时,也可证得△BCE≌△CBD等.故答案为:∠DBC=∠ECB或∠EBC=∠DCB 或AB=AC或AE=AD等.点评:此题考查了全等三角形的判定与性质,此题属于开放题.解题的关键是理解题意,掌握全等三角形的判定定理.4、(2011•牡丹江)一组数据1,2,a的平均数为2,另一组数据﹣l,a,1,2,b的唯一众数为﹣l,则数据﹣1,a,1,2,b的中位数为1.考点:中位数;算术平均数;众数。
黑龙江省牡丹江市中考数学试卷一、选择题(每小题3分,满分27分)..x的取值范围是()2.(3分)(2014•牡丹江)在函数y=中,自变量(4.(3分)(2014•牡丹江)由一些大小相同的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方体的个数最少是()5.(3分)(2014•牡丹江)将抛物线y=(x﹣1)2+3向左平移1个单位,得到的抛物线与y6.(3分)(2014•牡丹江)若x:y=1:3,2y=3z,则的值是()==7.(3分)(2014•牡丹江)如图,⊙O的直径AB=2,弦AC=1,点D在⊙O上,则∠D的度数是(),8.(3分)(2014•牡丹江)如图,点P是菱形ABCD边上一动点,若∠A=60°,AB=4,点P 从点A出发,以每秒1个单位长的速度沿A→B→C→D的路线运动,当点P运动到点D时停止运动,那么△APD的面积S与点P运动的时间t之间的函数关系的图象是().C D×,×t=t=4×(﹣t+129.(3分)(2014•牡丹江)如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四边形EBFD是菱形;④MB:OE=3:2.其中正确结论的个数是()MB=OM/MB=OM/,,二、填空题(每小题3分,满分33分)10.(3分)(2014•牡丹江)2014年我国农村义务教育保障资金约为87900000000元,请将数87900000000用科学记数法表示为8.79×1010.11.(3分)(2014•牡丹江)如图,点B、E、C、F在一条直线上,AB∥DE,BE=CF,请添加一个条件AB=DE(答案不唯一),使△ABC≌△DEF.12.(3分)(2014•牡丹江)某种商品每件的标价为240元,按标价的八折销售时,每件仍能获利20%,则这种商品每件的进价为160元.13.(3分)(2014•牡丹江)一组数据2,3,x,y,12中,唯一的众数是12,平均数是6,这组数据的中位数是3.14.(3分)(2014•牡丹江)⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为1或3.,点,,即(15.(3分)(2014•牡丹江)在一个不透明的口袋中有3个完全相同的小球,把它们分别标号为1,2,3,随机地取出一个小球然后放回,再随机地取出一个小球,则两次取出小球的标号的和是3的倍数的概率是.16.(3分)(2014•牡丹江)如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为n2+2.17.(3分)(2014•牡丹江)如图,在△ABC中,AC=BC=8,∠C=90°,点D为BC中点,将△ABC绕点D逆时针旋转45°,得到△A′B′C′,B′C′与AB交于点E,则S四边形ACDE=28.BE=DE=2218.(3分)(2014•牡丹江)抛物线y=ax2+bx+c经过点A(﹣3,0),对称轴是直线x=﹣1,则a+b+c=0.19.(3分)(2014•牡丹江)如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y 轴正半轴于点C,则直线BC的解析式为y=﹣x+.=5)代入得,解得20.(3分)(2014•牡丹江)矩形ABCD中,AB=2,BC=1,点P是直线BD上一点,且DP=DA,直线AP与直线BC交于点E,则CE=﹣2或+2.﹣+2故答案为:﹣+2三、解答题(满分60分)21.(5分)(2014•牡丹江)先化简,再求值:(x﹣)÷,其中x=cos60°.÷•,=22.(6分)(2014•牡丹江)如图,抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),请解答下列问题:(1)求抛物线的解析式;(2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,).,解得:==223.(6分)(2014•牡丹江)在△ABC中,AB=AC=5,BC=6,以AC为一边作正方形ACDE,过点D作DF⊥BC交直线BC于点F,连接AF,请你画出图形,直接写出AF的长,并画出体现解法的辅助线.=,=.24.(7分)(2014•牡丹江)某校为了了解本校九年级学生的视力情况(视力情况分为:不近视,轻度近视,中度近视,重度近视),随机对九年级的部分学生进行了抽样调查,将调查结果进行整理后,绘制了如下不完整的统计图,其中不近视与重度近视人数的和是中度近视人数的2倍.请你根据以上信息解答下列问题:(1)求本次调查的学生人数;(2)补全条形统计图,在扇形统计图中,“不近视”对应扇形的圆心角度数是144度;(3)若该校九年级学生有1050人,请你估计该校九年级近视(包括轻度近视,中度近视,重度近视)的学生大约有多少人.××=63025.(8分)(2014•牡丹江)快、慢两车分别从相距480千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留1小时,然后以原速继续向甲地行驶,到达甲地后停止行驶;快车到达乙地后,立即按原路原速返回甲地(快车掉头的时间忽略不计),快、慢两车距乙地的路程y(千米)与所用时间x(小时)之间的函数图象如图,请结合图象信息解答下列问题:(1)直接写出慢车的行驶速度和a的值;(2)快车与慢车第一次相遇时,距离甲地的路程是多少千米?(3)两车出发后几小时相距的路程为200千米?请直接写出答案.,解得:,解得:解得:解得:综上所述:两车出发小时、小时或26.(8分)(2014•牡丹江)如图,在等边△ABC中,点D在直线BC上,连接AD,作∠ADN=60°,直线DN交射线AB于点E,过点C作CF∥AB交直线DN于点F.(1)当点D在线段BC上,∠NDB为锐角时,如图①,求证:CF+BE=CD;(提示:过点F作FM∥BC交射线AB于点M.)(2)当点D在线段BC的延长线上,∠NDB为锐角时,如图②;当点D在线段CB的延长线上,∠NDB为钝角时,如图③,请分别写出线段CF,BE,CD之间的数量关系,不需要证明;(3)在(2)的条件下,若∠ADC=30°,S△ABC=4,则BE=8,CD=4或8.27.(10分)(2014•牡丹江)某工厂有甲种原料69千克,乙种原料52千克,现计划用这两种原料生产A,B两种型号的产品共80件,已知每件A型号产品需要甲种原料0.6千克,乙种原料0.9千克;每件B型号产品需要甲种原料1.1千克,乙种原料0.4千克.请解答下列问题:(1)该工厂有哪几种生产方案?(2)在这批产品全部售出的条件下,若1件A型号产品获利35元,1件B型号产品获利25元,(1)中哪种方案获利最大?最大利润是多少?(3)在(2)的条件下,工厂决定将所有利润的25%全部用于再次购进甲、乙两种原料,要求每种原料至少购进4千克,且购进每种原料的数量均为整数.若甲种原料每千克40元,乙种原料每千克60元,请直接写出购买甲、乙两种原料之和最多的方案.28.(10分)(2014•牡丹江)如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A,B,直线CD与x轴、y轴分别交于点C,D,AB与CD相交于点E,线段OA,OC 的长是一元二次方程x2﹣18x+72=0的两根(OA>OC),BE=5,tan∠ABO=.(1)求点A,C的坐标;(2)若反比例函数y=的图象经过点E,求k的值;(3)若点P在坐标轴上,在平面内是否存在一点Q,使以点C,E,P,Q为顶点的四边形是矩形?若存在,请写出满足条件的点Q的个数,并直接写出位于x轴下方的点Q的坐标;若不存在,请说明理由.==20,,3PH=3﹣)。
二○○八年牡丹江市初中毕业学业考试数 学 试 卷考生注意:1.考试时间120分钟2.全卷共三道大题,总分120分一、填空题(每空3分,满分33分)1.在抗震救灾过程中,共产党员充分发挥了先锋模范作用,截止5月28日17时,全国党员已缴纳特殊党费26.84亿元,用科学记数法表示为 元(结果保留两个有效数字). 2.函数31xy x -=-中,自变量x 的取值范围是 . 3.如图,BAC ABD ∠=∠,请你添加一个条件: ,使OC OD =(只添一个即可).4.如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm ,弧长是6πcm ,那么围成的圆锥的高度是 cm . 5.如图,某商场正在热销2008年北京奥运会的纪念品,小华买了一盒福娃和一枚奥运徽章,已知一盒福娃的价格比一枚奥运徽章的价格贵120元,则一盒福娃价格是 元.6.有一个正十二面体,12个面上分别写有1~12这12个整数,投掷这个正十二面体一次,向上一面的数字是3的倍数或4的倍数的概率是 . 7.在半径为5cm 的圆中,两条平行弦的长度分别为6cm 和8cm ,则这两条弦之间的距离为 .8.一幅图案.在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是 .9.下列各图中, 不是正方体的展开图(填序号).① ② ③ ④第9题图D OC B A 第3题图 O B A 第4题图 5cm2 3 4 1 6 5第6题图 一共花了170元 第5题图10.三角形的每条边的长都是方程2680x x -+=的根,则三角形的周长是.11.如图,菱形111AB C D 的边长为1,160B ∠=;作211AD B C ⊥于点2D ,以2AD 为一边,做第二个菱形222AB C D ,使260B ∠=;作322AD B C ⊥于点3D ,以3AD 为一边做第三个菱形333AB C D ,使360B ∠=;依此类推,这样做的第n个菱形n n n AB C D 的边n AD 的长是 . 二、选择题(每题3分,满分27分)12.下列各运算中,错误的个数是( )①01333-+=- ②523-= ③235(2)8a a = ④844a a a -÷=-A .1B .2C .3D .413.用电器的输出功率P 与通过的电流I 、用电器的电阻R 之间的关系是2P I R =,下面说法正确的是( ) A .P 为定值,I 与R 成反比例 B .P 为定值,2I 与R 成反比例 C .P 为定值,I 与R 成正比例D .P 为定值,2I 与R 成正比例14.为紧急安置100名地震灾民,需要同时搭建可容纳6人和4人的两种帐篷,则搭建方案共有( ) A .8种 B .9种 C .16种 D .17种 15.对于抛物线21(5)33y x =--+,下列说法正确的是( ) A .开口向下,顶点坐标(53), B .开口向上,顶点坐标(53), C .开口向下,顶点坐标(53)-,D .开口向上,顶点坐标(53)-,16.下列图案中是中心对称图形的是( )17.关于x 的分式方程15mx =-,下列说法正确的是( ) A .方程的解是5x m =+ B .5m >-时,方程的解是正数1D B 3第11题图AC 2B 2C 3D 3 B 1D 2C 1 A . B . C .D .第16题图C .5m <-时,方程的解为负数D .无法确定18.5月23日8时40分,哈尔滨铁路局一列满载着2400吨“爱心”大米的专列向四川灾区进发,途中除3次因更换车头等原因必须停车外,一路快速行驶,经过80小时到达成都.描述上述过程的大致图象是( )第18题图 19.已知5个正数12345a a a a a ,,,,的平均数是a ,且12345a a a a a >>>>,则数据123450a a a a a ,,,,,的平均数和中位数是( )A .3a a ,B .342a a a +, C .23562a a a +,D .34562a a a +,20.如图,将ABC △沿DE 折叠,使点A 与BC 边的中点F 重合,下列结论中:①EF AB∥且12EF AB =;②BAF CAF ∠=∠; ③12ADFE S AF DE =四边形;④2BDF FEC BAC ∠+∠=∠,正确的个数是( )A .1B .2C .3D .4三、解答题(满分60分) 21.(本小题满分5分)先化简:224226926a a a a a --÷++++,再任选一个你喜欢的数代入求值. 22.(本小题满分6分)如图,方格纸中每个小正方形的边长都是单位1.(1)平移已知直角三角形,使直角顶点与点O 重合,画出平移后的三角形. (2)将平移后的三角形绕点O 逆时针旋转90,画出旋转后的图形.第20题图t B. C . D .(3)在方格纸中任作一条直线作为对称轴,画出(1)和(2)所画图形的轴对称图形,得到一个美丽的图案.23.(本小题满分6分) 有一底角为60的直角梯形,上底长为10cm ,与底垂直的腰长为10cm ,以上底或与底垂直的腰为一边作三角形,使三角形的另一边长为15cm ,第三个顶点落在下底上.请计算所作的三角形的面积. 24.(本小题满分7分)A B C ,,三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表一和图一: 表一(1)请将表一和图一中的空缺部分补充完整.(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图二(没有弃权票,每名学生只能推荐一个),请计算每人的得票数.(3)若每票计1分,系里将笔试、口试、得票三项测试得分按4:3:3的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.图二 9590 8580 7570 分数/分 图一竞选人 A B C武警战士乘一冲锋舟从A 地逆流而上,前往C 地营救受困群众,途经B 地时,由所携带的救生艇将B 地受困群众运回A 地,冲锋舟继续前进,到C 地接到群众后立刻返回A 地,途中曾与救生艇相遇.冲锋舟和救生艇距A 地的距离y (千米)和冲锋舟出发后所用时间x (分)之间的函数图象如图所示.假设营救群众的时间忽略不计,水流速度和冲锋舟在静水中的速度不变.(1)请直接写出冲锋舟从A 地到C 地所用的时间. (2)求水流的速度.(3)冲锋舟将C 地群众安全送到A 地后,又立即去接应救生艇.已知救生艇与A 地的距离y (千米)和冲锋舟出发后所用时间x (分)之间的函数关系式为11112y x =-+,假设群众上下船的时间不计,求冲锋舟在距离A 地多远处与救生艇第二次相遇?26.(本小题满分8分)已知:正方形ABCD 中,45MAN ∠=,MAN ∠绕点A 顺时针旋转,它的两边分别交CB DC ,(或它们的延长线)于点M N ,. 当MAN ∠绕点A 旋转到BM DN =时(如图1),易证BM DN MN +=. (1)当MAN ∠绕点A 旋转到BM DN ≠时(如图2),线段BM DN ,和MN 之间有怎样的数量关系?写出猜想,并加以证明.(2)当MAN ∠绕点A 旋转到如图3的位置时,线段BM DN ,和MN 之间又有怎样的数量关系?请直接写出你的猜想.BBMBCNCNCNM 图1图2图3A A A D D D x (分)某工厂计划为震区生产A B ,两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A 型桌椅(一桌两椅)需木料30.5m ,一套B 型桌椅(一桌三椅)需木料30.7m ,工厂现有库存木料3302m . (1)有多少种生产方案?(2)现要把生产的全部桌椅运往震区,已知每套A 型桌椅的生产成本为100元,运费2元;每套B 型桌椅的生产成本为120元,运费4元,求总费用y (元)与生产A 型桌椅x (套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费) (3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由. 28.(本小题满分10分) 如图,在平面直角坐标系中,点(30)C -,,点A B ,分别在x 轴,y轴的正半轴上,且满足10OA -=.(1)求点A ,点B 的坐标.(2)若点P 从C 点出发,以每秒1个单位的速度沿射线CB 运动,连结AP .设ABP △的面积为S ,点P 的运动时间为t 秒,求S 与t 的函数关系式,并写出自变量的取值范围. (3)在(2)的条件下,是否存在点P ,使以点A B P ,,为顶点的三角形与AOB △相似?若存在,请直接写出点P 的坐标;若不存在,请说明理由.x二○○八年黑龙江省牡丹江市初中毕业学业考试数学试卷参考答案及评分标准一、填空题,每空3分,满分33分(多答案题全对得3分,否则不得分) 1.92.710⨯2.3x ≤且1x ≠3.C D ∠=∠或ABC BAD ∠=∠或AC BD =或OAD OBC ∠=∠ 4.45.1456.127.1cm 或7cm 8.12 9.③10.6或10或1211.1n -⎝⎭二、选择题,每题3分,满分27分.12.C 13.B 14.A 15.A 16.B 17.C 18.D 19.D 20.B三、解答题,满分60分.21.解:224226926a a a a a --÷++++ 2(2)(2)2(3)2(3)2a a a a a +-+=++- ····································································· (1分) 242633a a a a ++=-+++ ·················································································· (2分) 23a =+ ·································································································· (3分) n 取3-和2以外的任何数,计算正确都可给分. ············································ (5分) 22.平移正确,给2分;旋转正确,给2分;轴对称正确,给2分,计6分.23.解:当15BE =cm 时,ABE △的面积是250cm ; 当15CF =cm 时,BCF △的面积是275cm ;当15BE =cm 时,BCE △的面积是2cm .(每种情况,图给1分,计算结果正确1分,共6分) 24.解:(1)90;补充后的图如下(每项1分,计2分)(2)A :30035105⨯=% B :30040120⨯=% C :3002575⨯=%(方法对1分,计算结果全部正确1分,计2分)(3)A :854903105392.5433⨯+⨯+⨯=++(分)B :954803120398433⨯+⨯+⨯=++(分)C :90485375384433⨯+⨯+⨯=++(分)B 当选(方法对1分,计算结果全部正确1分,判断正确1分,计3分) 25.解:(1)24分钟 ················································································· (1分) (2)设水流速度为a 千米/分,冲锋舟速度为b 千米/分,根据题意得24()20(4424)()20b a a b -=⎧⎨-+=⎩·············································································· (3分) 解得1121112a b ⎧=⎪⎪⎨⎪=⎪⎩答:水流速度是112千米/分. ······································································ (4分) (3)如图,因为冲锋舟和水流的速度不变,所以设线段a 所在直线的函数解析式为B95 90 85 80 7570分数/分竞选人A B C56y x b =+ ····························································································· (5分) 把(440),代入,得1103b =-∴线段a 所在直线的函数解析式为511063y x =- ············································ (6分)由11112511063y x y x ⎧=-+⎪⎪⎨⎪=-⎪⎩求出20523⎛⎫ ⎪⎝⎭,这一点的坐标 ·············································· (7分)∴冲锋舟在距离A 地203千米处与救生艇第二次相遇. ···································· (8分) 26.解:(1)BM DN MN +=成立. ························································· (2分)如图,把AND △绕点A 顺时针90,得到ABE △,则可证得E B M ,,三点共线(图形画正确) ···· (3分) 证明过程中,证得:EAM NAM ∠=∠ ···························· (4分)证得:AEM ANM △≌△ ························ (5分)ME MN ∴= ME BE BM DN BM =+=+DN BM MN ∴+= ·················································································· (6分) (2)DN BM MN -= ············································································· (8分) 27.解:(1)设生产A 型桌椅x 套,则生产B 型桌椅(500)x -套,由题意得0.50.7(500)30223(500)1250x x x x +⨯-⎧⎨+⨯-⎩≤≥ ···································································· (2分) 解得240250x ≤≤ ················································································· (3分) 因为x 是整数,所以有11种生产方案. ························································ (4分) (2)(1002)(1204)(500)2262000y x x x =+++⨯-=-+ ····························· (6分)220-<,y 随x 的增大而减少.∴当250x =时,y 有最小值. ··································································· (7分) ∴当生产A 型桌椅250套、B 型桌椅250套时,总费用最少.x (分)B ME A C N D此时min 222506200056500y =-⨯+=(元) ··············································· (8分) (3)有剩余木料,最多还可以解决8名同学的桌椅问题. ······························ (10分) 28.解:(1)2310OB OA --=230OB ∴-=,10OA -= ······································································· (1分) OB ∴=,1OA =点A ,点B 分别在x 轴,y 轴的正半轴上(10)(0A B ∴,, ·················································································· (2分)(2)求得90ABC ∠= ············································································· (3分)(0(t t S t t ⎧<⎪=⎨->⎪⎩ ≤(每个解析式各1分,两个取值范围共1分) ················································ (6分)(3)1(30)P -,;21P ⎛-⎝;31P ⎛⎝;4(3P (每个1分,计4分) ··········································································································· (10分)注:本卷中所有题目,若由其它方法得出正确结论,酌情给分.。
黑龙江省牡丹江市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)下列各式运算结果为正数的是()A . -24×5B . (1-4)4×5C . (1-24)×5D . 1-(3×5)62. (2分) (2016七下·岑溪期中) 下列运算中,正确的是()A . 3a﹣2a=aB . (a2)3=a5C . a2•a3=a6D . a10÷a5=a23. (2分) (2017七上·和平期中) 下列图形的名称按从左到右的顺序依次是()A . 圆柱、圆锥、正方体、长方体B . 圆柱、球、正方体、长方体C . 棱柱、球、正方体、长方体D . 棱柱、圆锥、四棱柱、长方体4. (2分) (2017七下·柳州期末) 估算的值介于()A . 5到6之间B . 6到7之间C . 7到8之间D . 8到9之间5. (2分)若有意义,则a是一个()。A . 正实数B . 负实数C . 非正实数D . 非负实数6. (2分)如图,在平面直角坐标系中,以O(0,0)、A(1,-1)、B(2,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形第四个顶点坐标的是()A . (3,-1)B . (-1,-1)C . (1,1)D . (-2,-1)二、填空题 (共10题;共10分)7. (1分)实数a、b在数轴上位置如图所示,则|a|、|b|的大小关系是________.8. (1分)(2017·长春模拟) 一个正常人的心跳平均每分70次,一天大约跳100800次,将100800用科学记数法表示为________.9. (1分) (2019八下·长沙期中) 函数中自变量 x 的取值范围是________;10. (1分) (2017八下·鞍山期末) 化简:( +2)(﹣2)=________.11. (1分)(2011·海南) 方程的解是________.12. (1分)(2017·樊城模拟) 若x=3是方程x2﹣9x+6m=0的一个根,则另一个根是________.13. (1分)(2018·重庆) 某企业对一工人在五个工作日里生产零件的数量进行调查,并绘制了如图所示的折线统计图,则在这五天里该工人每天生产零件的平均数是________个.14. (1分)(2019·南平模拟) 一个多边形的每个外角都等于72°,则这个多边形的边数为________.15. (1分) AB是圆O的直径,点C,D都在圆O上,连接CA,CB,DC,DB.已知∠D=30°,BC=3,则AC的长是________ .16. (1分) (2018八上·太原期中) 在函数y=2x中,y的值随x值的增大而________.(填“增大”或“减小”)三、解答题 (共11题;共111分)17. (10分)计算:(1)÷ + ;(2)(2m2n﹣2)2•3m﹣3n3.18. (20分)解下列不等式(组),并把解集在数轴上表示出来:(1) 3x﹣1<2x+1;(2) +1>x﹣3;(3);(4).19. (5分) (2019八下·康巴什新期中) 已知:如图,,是平行四边形的对角线所在直线上的两点,且.求证:四边形是平行四边形.20. (10分)学校举行广播操比赛,八年级三个班的各项得分及三项得分的平均数如下(单位:分).服装统一进退场有序动作规范三项得分平均分一班80848884二班97788085三班90788484根据表中信息回答下列问题:(1)学校将“服装统一”、“队形整齐”、“动作规范”三项按2:3:5的比例计算各班成绩,求八年级三个班的成绩;(2)由表中三项得分的平均数可知二班排名第一,在(1)的条件下,二班成绩的排名发生了变化,请你说明二班成绩排名发生变化的原因.21. (10分) (2019九上·武汉月考) 一个不透明的布袋里装有4个大小、质地均相同的兵乓球,球上分别标有数字1、2、3、4(1)随机从布袋中摸出一个兵乓球,记下数字后放回布袋里,再随机从布袋中摸出一个兵乓球,请用列表或画树状图的方式列出有可能的结果,并求出“两个兵乓球上的数字之和不小于4”的概率.(2)随机从布袋中一次摸出两个兵乓球,直接写出“两个兵乓球上的数字至少有一个是奇数”的概率.22. (5分) (2016八上·临泽开学考) 如图,已知∠α和∠β,线段c,用直尺和圆规作出△ABC,使∠A=∠α,∠B=∠β,AB=c(要求画出图形,并保留作图痕迹,不必写出作法)23. (15分) (2017八下·桂林期末) 甲,乙两辆汽车分别从A,B两地同时出发,沿同一条公路相向而行,已知甲车匀速行驶;乙车出发2h后休息,与甲车相遇后继续行驶,结果同时分别到达B,A两地.设甲、乙两车与B地的距离分别为y甲(km),y乙(km),甲车行驶的时间为x(h),y甲, y乙与x之间的函数图象如图所示,结合图象解答下列问题:(1)当0<x<2时,求乙车的速度;(2)求乙车与甲车相遇后y乙与x的关系式;(3)当两车相距20km时,直接写出x的值.24. (10分) (2020九上·景县期末) 如图,AB是⊙O的弦,半径OE⊥AB,P为AB的延长线上一点,PC与⊙O 相切于点C,CE与AB交于点F.(1)求证:PC=PF;(2)连接OB,BC,若OB∥PC,BC=3 ,tanP= ,求FB的长。
2010年中考数学复习试题汇编之27---猜想、探索规律型一、选择题---1.(2009年四川省内江市)如图,小陈从O 点出发,前进5米后向右转20O , 再前进5米后又向右转20O ,……,这样一直走下去, 他第一次回到出发点O 时一共走了( )A .60米B .100米C .90米D .120米【答案】C.2.(2009进行发芽试验;第1组取3组前一组增加2A 、12+nB【关键词】探索规律型【答案】A 3.(2009年江苏省)第1个数:11122-⎛⎫-+ ⎪⎝⎭; 第2个数:111132⎛-⎛⎫-+ ⎪⎝⎭⎝第3个数:1111⎛-⎛⎫-+ ⎪2321(1)(1)(1)111342n n -⎫⎛⎫⎛⎫---+++⎪⎪ ⎪⎭⎝⎭⎝⎭.12个数、第13个数中,最大的数是( )A 11个数 C .第12个数 D .第13个数4.(2009年孝感)对于每个非零自然数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于A n 、B n 两点,以n n A B 表示这两点间的距离,则112220092009A B A B A B +++ 的值是 A .20092008 B .20082009C .20102009D .20092010【答案】DO 20o20o5.(2009年重庆)观察下列图形,则第n 个图形中三角形的个数是( )A .22n +B .44n +C .44n -D .4n【答案】D ., )1C 1,.3.(2009年泸州)如图1,已知Rt △ABC 中,AC=3,BC= 4,过直角顶点C 作CA 1⊥A B ,垂足为A 1,再过A 1作A 1C 1⊥BC ,垂足为C 1,过C 1作C 1A 2⊥AB ,垂足为A 2,再过A 2作……第1个 第2个第3个A 2C 2⊥BC ,垂足为C 2,…,这样一直做下去,得到了一组线段CA 1,A 1C 1,12C A ,…,则CA 1= ,=5554C A A C 【答案】512,45.4.(2009年桂林市、百色市)如图,在△ABC 中,∠A =α.∠ABC 与∠ACD 的 平分线交于点A 1,得∠A 1;∠A 1BC 与∠A 1CD 的平分线相 交于点A 2,得∠A 2; ……;∠A 2008BC 与∠A 2008CD 的平 分线相交于点A 2009,得∠A 2009 .则∠A 2009= .1个图形有6个第3个图形有16个小圆,第4个图形有24个小圆,……,个图形有 个小圆.【答案】46 6.(2009重庆綦江)观察下列等式:221.4135-=⨯; 222.5237-=⨯;第1个图形第2个图形第3个图形第4个图形…图1223.6339-=⨯ 224.74311-=⨯;…………则第n (n 是正整数)个等式为________.【答案】22(3)3(23)n n n +-=⨯+7.(2009成都)已知1(123...)a n ==,,,,记2(1)b a =-,2(1)(1)b a a =--,…,b (8S9.(2009年娄底)王婧同学用火柴棒摆成如下的三个“中”字形图案,依此规律,第n 个“中”字形图案需 根火柴棒.【答案】6n +3或9+6(n -1)10(2009丽水市)如图,图①是一块边长为1,周长记为P 1的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的21)后,得图③,④,…,记第n (n ≥3) 块纸板的周长为P n ,则P n -P n-1= ▲ .【答案】420第五行 15 20 2523 2221……… 图813.(2009年牡丹江市)有一列数1234251017--,,,,…,那么第7个数是 . 【答案】750-14.(2009年广州市)如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n2【答案】12117.(2009年宜宾)如图,菱形ABCD 的对角线长分别为b a 、,以菱形ABCD 各边的中点为第1个第2个第3个顶点作矩形A1B1C1D1,然后再以矩形A1B1C1D1的中点为顶点作菱形A2B2C2D2,……,如此下去,a、的代数式表示为.得到四边形A2009B2009C2009D2009的面积用含b第20题图3≠0)n20.(2009年广西梧州)图(3)是用火柴棍摆成的边长分别是1,2,3 根火柴棍时的正方形.当边长为n根火柴棍时,设摆出的正方形所用的火柴棍的根数为s,则s=★.(用n的代数式表示s)【答案】2(1)n n +1)【答案】()211n +23.(2009年咸宁市)如图所示的运算程序中,若开始输入的x 值为48,我们发现第1次输E 1 E 2 E 3……n =1 n =2n =3出的结果为24,第2次输出的结果为12,……第2009次输出的结果为___________. 【答案】3【答案】23+n27.(2009 黑龙江大兴安岭)如图,边长为1的菱形ABCD 中,︒=∠60DAB .连结对角线AC ,以AC 为边作第二个菱形11D ACC ,使 ︒=∠601AC D ;连结1AC ,再以1AC 为边作第三个菱形221D C AC ,使 ︒=∠6012AC D ;……,按此规律所作的第n 个菱形的边长为 . 【关键词】菱形的性质与判定 【答案】()13-n(第14题)个第 个图形中“△”的个数是“○”的个数的5倍. 【答案】2030.(2009年绵阳市)将正整数依次按下表规律排成四列,则根据表中的排列规律,数2009应排的位置是第 行第 列.D 1那么这一组数的第k 个数是 .【答案】kk 212- 34.(2009年抚顺市)观察下列图形(每幅图中最小..的三角形都是全等的),请写出第n 个图中最小..的三角形的个数有 个.35. (2009年梅州市)如图5,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有 个,第n 幅图中共有 个.三、解答题 1.(2009仙桃)如图所示,在△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC ,如图①,然后将△ADE 绕A 点顺时针旋转一定角度,得到图②,然后将BD 、CE 分别延长至M 、N ,使DM =21BD ,EN =21CE ,得到图③,请解答下列问题: (1)若AB =AC ,请探究下列数量关系:①在图②中,BD 与CE 的数量关系是________________;②在图③中,猜想AM 与AN 的数量关系、∠MAN 与∠BAC 的数量关系,并证明你的猜想; (2)若AB =k ·AC(k >1),按上述操作方法,得到图④,请继续探究:AM 与AN 的数量关系、∠MAN 与∠BAC 的数量关系,直接写出你的猜想,不必证明.【答案】解:(1)①BD=CE ;②AM=AN ,∠MAN=∠BAC. (2)AM=k AN ,∠MAN=∠BAC. 2.(2009年台州市)将正整数1,2,3,…从小到大按下面规律排列.若第4行第2列的数… … 第1幅 第2幅 第3幅 第n 幅 图5为32,则①n = ;②第i 行第j 列的数为 (用i ,j 表示).第1列第2列第3列… 第n 列第1行 1 2 3 … n第2行 1+n 2+n 3+n … n 2 第3行 12+n22+n32+n… n 3………………【答案】10,1010-+j i (第一空2分,第二空3分;答j i +-)1(10给3分,答j i n +-)1(给2分) 3.(2009年杭州市)F 分别在AD 、DC (1)求证:AF =BE ;(2)请你猜测∠BPF 【答案】(1)BE=AF ;(2)猜想∠BPF=120° .4.(2009恩施市)【答案】解: 留下的矩形5.(2009白银市)29.本试卷第19题为:若20072008a =,20082009b =,试不用..将分数化小数的方法比较a 、b 的大小.观察本题中数a 、b 的特征,以及你比较大小的过程,直接写出你发现的一个一般结论.【答案】29.解:学生可能写出不同程度的一般的结论,由一般化程度不同得不同分.若m 、n 是任意正整数,且m >n ,则11n n m m +<+. 若m 、n 是任意正实数,且m >n ,则11n n m m +<+.若m 、n 、r 是任意正整数,且m >n ;或m 、n 是任意正整数,r 是任意正实数,且m >n ,则n n r m m r+<+. 若m 、n 是任意正实数,r 是任意正整数,且m >n ;或m 、n 、r 是任意正实数,且m >n ,D C E图9则n n rm m r+<+.6.(2009年衢州)如图,AD是⊙O的直径.(1)如图①,垂直于AD的两条弦B1C1,B2C2把圆周4等分,则∠B1的度数是,∠B2的度数是;(2)如图②,垂直于AD的三条弦B1C1,B2C2,B3C3把圆周6等分,分别求∠B1,∠B2,∠B3的度数;(3)如图③,垂直于AD的n条弦B1C1,B2C2,B3 C3,…,B n C n把圆周2n等分,请你,(1)若d=26,则该纹饰要231个菱形图案,求纹饰的长度L;(2)当d=20时,若保持(1)中纹饰长度不变,则需要多少个这样的菱形图案?【答案】(1)6010 cm(2)需300个这样的菱形图案.。
A
C D
E B
2010年牡丹江市初中毕业学业考试
数学试题
一、填空题(每小题3分,满分27分)
1.上海世博会场是当今世界最大的太阳能应用场所,装有460000亿瓦的太阳能光伏并网发
电装置,460000亿瓦用科学记数法表示为 亿瓦. 2.函数y =
1
x -2
中,自变量x 的取值范围是 . 3.如图,点B 在∠CAD 的平分线上,请添加一个适当的条件: ,使△ABC ≌△ABD (只填一个即可). 4.如图,⊙A 、⊙B 、⊙C 两两不相交,且半径都是2cm ,则图中 三个扇形(阴影部分)的面积之和是 cm 2.
5.一组数据3、4、9、x 的平均数比它的唯一众数大1,则x = . 6
7.若关于x 的分式方程
2 x +2 -a x +2
=1的解为负数,则a 的取值范围是 . 8.开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则如下:购物每
满100元,返购物券50元,此购物券在本商场通用,且用购物券购买商品不再返券.小明只购买了单价分别为60元、80元和120元的书包、T 恤、运动鞋,在使用购物券参与购买的情况下,他的实际花费为 元.
9.如果将腰长为6cm 、底边长为5cm 的等腰三角形废料加工成菱形工件,菱形的一个内角恰好是这个三角形的一个内角,菱形的其它顶点均在三角形的边上,那么这个菱形的边长是 cm .
二、选择题(每小题3分,满分33分)
10.下列计算中,正确的是( )
A
.
2a 2·3b 3=6a 5 B .(-2a )2=-4a 2 C .(a 5)2=a 7 D .x -2=1 x 2
11.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )
12.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子
的概率是
2 5 ;如果再往盒中放进3颗黑色棋子,取得白色棋子的概率是1
4
,则原来盒中有白色棋子( )
A B C D
A
B
C
D E F
A .1颗
B .2颗
C .3颗
D .4颗
13.如图,在平面直角坐标系中,把△ABC 沿y 轴对折后得到△A 1B 1C 1,再将△A 1B 1C 1向下
平移4个单位长度得到△A 2B 2C 2,则△AB 1C 2的形状是( )
A .等腰三角形
B .等边三角形
C .直角三角形
D .等腰直角三角形 14.如图,⊙O 的直径AB =10cm ,弦CD ⊥AB 于P .若OP ∶OB =3∶5,则CD =( )
A .6cm
B .4cm
C .8cm
D .91cm
15.如图,利用四边形的不稳定性改变矩形ABCD 的形状得到□A 1BCD 1,若□A 1BCD 1的面
积是矩形ABCD 面积一半,则∠A 1BC =( ) A .15º B .30º C .45º D .60º
16.如图,均匀地向此容器注水,直到把容器注满.在注水的过程中,下列图象能大致反映
水面高度h 随时间t 变化规律的是( )
17.用12个大小相同的小正方体搭成的几何体如图所示,标有正确小正方体个数的俯视图
是( )
18.如图,反比例函数与正比例函数的图象交于A 、B 两点,过点A 作
AC ⊥x 轴于点C .若△ABC 的面积是4,则这个反比例函数的解析 式是( )
A .y =
2 x B .y = 4 x C .y = 8 x D .y = 16
x
19.已知关于x 的一元二次方程ax 2-3bx -5=0,则4a -6b 的值是( A .4 B .5 C .8 D .10 20.在锐角△ABC 中,∠BAC =60º,BD 、CE 为高,F 为BC 的中点,
连接DE 、DF 、EF ,则结论:①DF =EF ;②AD ∶AB =AE ∶AC ;
③△DEF 是等边三角形;④BE +CD =BC ;⑤当∠ABC =45º时, BE =2DE 中,一定正确的有( ) A .2个 B .3个 C .4个 D .5个
三、解答题(满分60分)
A D C B
O
P A
B C D
D 1
A 1
21.(5分)化简求值:
a -
b a ÷⎝⎛⎭⎫
a -
2ab -b 2 a ,其中a =2010,b =2009.
22.(6分)如图,二次函数y =-x 2+bx +c 的图象经过坐标原点,与x 轴交于点A (-2,0).
(1)求此二次函数的解析式及点B 的坐标;
(2)在抛物线上有一点P ,满足S △AOP =3,请直接写出点P
23.(6分)综合实践活动课上,老师让同学们在一张足够大的纸板上裁出符合如下要求的梯
形,即“梯形ABCD ,AD ∥BC ,AD =2分米,AB =5分米,CD =22分米,梯形的高是2分米”.请你计算裁得的梯形ABCD 中BC 边的长度.
24.(7分)去年,某校开展了主题为“健康上网,绿色上网”的系列活动.经过一年的努力,
取得了一定的成效.为了解具体情况,学校随机抽样调查了初二某班全体学生每周上网所用时间,同时调查了使用网络的学生上网的最主要目的,并用得到的数据绘制了以下两幅统计图.请你根据图中提供的信息,回答下列问题: (1)在这次调查中,初二该班共有学生多少人?
(2)如果该校初二有660名学生,请你估计每周上网时间超过4小时的初二学生大约有多少人?
(2)请将图2空缺部分补充完整,并计算这个班级上网的学生中,每周利用网络查找学习资料的学生有多少人?
(
25.(8分)运动会前夕,小明和小亮相约晨练跑步.小明比小亮早1分钟离开家门,3分钟
后迎面遇到从家跑来的小亮,两人沿滨江路跑了2分钟后,决定进行长跑比赛,比赛时小明的速度始终是180米/分,小亮的速度始终是220米/分.下图是两人之间的距离y (米)与小明离开家的时间x (分)之间的函数图象,请根据图象回答下列问题: (1)请直接写出小明和小亮比赛前的速度; (2)请在图中的括号内填上正确的值,并求两人比赛过程中y 与x 之间的函数关系式(不用写自变量x 的取值范围); (3)若小亮从家出门跑了14分钟后,按原路以比赛时的速度返回,则再经过多少分钟两
人相遇?
(注:每组数据只含最大值,不含最小值)
图1
图2
26.(8分)在平面内有一等腰直角三角板(∠ACB =90º)和直线l .过点C 作CE ⊥l 于点E ,
过点B 作BF ⊥l 于点F .当点E 与点A 重合时(图①),易证:AF +BF =2CE .当三角板绕点A 顺时针旋转至图②、图③的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,请直接写出线段AF 、BF 、CE 之间的数量关系的猜想(不需证明).
27.(10分)在“老年节”前夕,某旅行社组织了一个“夕阳红”旅行团,共有253名老人
报名参加.旅行前,旅行社承诺每车保证有一名随团医生,并为此次旅行请了7名医生.现打算选租甲、乙两种客车,其中甲种客车每辆载客40人,乙种客车载每辆载客30人.
(1)请帮助旅行社设计租车方案.
(2)若甲种客车租金为350元/辆,乙种客车租金为280元/辆,旅行社按哪种方案租车最省钱?此时租金是多少?
(3)旅行社在充分考虑团内老人的年龄结构特点后,为更好的照顾游客,决定同时租45座和30座的大小两种客车,大客车上至少配两名随团医生,小客车上至少配一名随团医生,为此旅行社又请了4名医生.出发时,旅行社先安排游客坐满大客车,再依次坐满小客车,最后一辆小客车即使坐不满也至少要有20座上座率.请直接写出旅行社的租车方案.
A A
A
(E )
l l l
C
B
F
C
B
E
F
C
B
E F
图1
图2
图3
28.(10分)如图,矩形OABC 在平面直角坐标系中,并且OA 、OC 的长满足:
|OA -2|+(OC -23)2=0. (1)求B 、C 两点的坐标.
(2)把△ABC 沿AC 对折,点B 落在点B 1处,AB 1线段与x 轴交于点D ,求直线BB 1的解析式.
(3)在直线BB 1上是否存在点P 使△ADP 为直角三角形?若存在,请直接写出点P 的坐
标;若不存在,请说明理由.。