2016-2017学年重庆市丰都县八年级第一学期期末数学试卷带答案
- 格式:doc
- 大小:448.50 KB
- 文档页数:28
2016-2017学年八年级(上)期末数学试卷两套合集一附答案解析2016-2017学年八年级(上)期末数学试卷一、填空题1.如图,△ABC≌△DEF,EB=8,AE=2,则DE= .2.分式无意义的条件是x= .3.化简:÷= .4.若方程无解,则m= .5.已知a+b=2,则a2﹣b2+4b的值为.6.已知:如图,∠ACB=∠DBC,要使△ABC≌△DCB,只需增加的一个条件是(只需填写一个你认为适合的条件).7.如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC= .8.如图,∠1=∠2=30°,∠3=∠4,∠A=80°,则x= 度,y= 度.二、选择题9.下列长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.1,2,3 D.5,6,1010.下列计算正确的是()A.(x3)3=x6B.a6•a4=a24C.(﹣mn)4÷(﹣mn)2=m2n2D.3a+2a=5a211.在如图的网格中,在网格上找到点C,使△ABC为等腰三角形,这样的点有几个()A.8 B.9 C.10 D.1112.计算(18x4﹣48x3+6x)÷6x的结果为()A.3x3﹣13x2 B.3x3﹣8x2C.3x3﹣8x2+6x D.3x3﹣8x2+113.如图,在△ABC中,∠ACB=90°,∠A=20°,若将△ABC沿CD折叠,使点B落在AC边上的点E 处,则∠CED的度数是()A.30° B.40° C.50° D.70°14.如图所示,l是四边形ABCD的对称轴,AD∥BC,现给出下列结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC.其中正确的结论有()A.1个B.2个C.3个D.4个三、计算与作图题(本大题共4小题,每小题6分,共24分)15.分解因式:3x2y+12xy2+12y3.16.先化简,再求值:,其中m=9.17.解方程: =﹣1.18.请在下列三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画的三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)四、(本大题共3小题,每小题8分,共24分)19.如图所示,点B、F、C、E在同一条直线上,AB∥DF,AC∥DE,AC=DE,FC与BE相等吗?请说明理由.20.如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E,A在直线DC的同侧,连接AE.(1)求证:△ACE≌△BCD;(2)线段AE与BC有什么位置关系?请说明理由.21.千年古镇赵化开发的鑫城小区的内坝是一块长为(3a+b)米,宽为(2a+b)米的长方形地,物业部门计划将内坝进行绿化(如图阴影部分),中间部分将修建一仿古小景点(如图中间的正方形),则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.五、(本大题共2小题,每小题9分,共18分)22.在△ABC中,∠BAC=90°,∠B=45°,D为BC上一点,BD=AB,DE⊥BC,交AC于点E.(1)求证:△ADE是等腰三角形;(2)图中除△ADE是等腰三角形外,还有没有等腰三角形?若有,请一一写出来(不要求证明);若没有,请说明理由.23.为庆祝2015年元旦的到来,学校决定举行“庆元旦迎新年”文艺演出,根据演出需要,用700元购进甲、乙两种花束共260朵,其中甲种花束比乙种花束少用100元,已知甲种花束单价比乙种花束单价高20%,乙种花束的单价是多少元?甲、乙两种花束各购买了多少朵?六、(本大题共1小题,共12分)24.小敏与同桌小颖在课下学习中遇到这样一道数学题:“如图(1),在等边三角形ABC中,点E 在AB上,点D在CB的延长线上,且ED=EC,试确定线段AE与DB的大小关系,并说明理由”.小敏与小颖讨论后,进行了如下解答:(1)取特殊情况,探索讨论:当点E为AB的中点时,如图(2),确定线段AE与DB的大小关系,请你写出结论:AE DB(填“>”,“<”或“=”),并说明理由.(2)特例启发,解答题目:解:题目中,AE与DB的大小关系是:AE=DB(填“>”,“<”或“=”).理由如下:如图(3),过点E作EF∥BC,交AC于点F.(请你将剩余的解答过程完成)(3)拓展结论,设计新题:在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,若△ABC的边长为1,AE=2,求CD的长(请你画出图形,并直接写出结果).参考答案与试题解析一、填空题1.如图,△ABC≌△DEF,EB=8,AE=2,则DE= 10 .【考点】全等三角形的性质.【分析】结合图形和已知条件求出AB的长度,再根据全等三角形对应边相等得DE=AB.【解答】解:∵EB=8,AE=2,∴AB=EB+AE=8+2=10,∵△ABC≌△DEF,∴DE=AB=10.【点评】本题主要考查全等三角形对应边相等的性质,熟练掌握性质并灵活运用是解题的关键.2.分式无意义的条件是x= ﹣3 .【考点】分式有意义的条件.【分析】根据分式无意义的条件进行填空即可.【解答】解:∵分式无意义,∴x+3=0,∴x=﹣3,故答案为﹣3.【点评】本题考查了分式无意义的条件,分母为0分式无意义.3.化简:÷= .【考点】分式的乘除法.【专题】计算题;分式.【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式=•=,故答案为:【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.4.若方程无解,则m= 1 .【考点】分式方程的解.【专题】计算题.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.【解答】解:方程去分母得:(x﹣3)(2﹣x)=m(x﹣2)解得:x=3﹣m,∴当x=2时分母为0,方程无解,即3﹣m=2,∴m=1时方程无解.故答案为:1.【点评】本题考查了分式方程无解的条件,是需要识记的内容.5.已知a+b=2,则a2﹣b2+4b的值为 4 .【考点】因式分解的应用.【分析】把所给式子整理为含(a+b)的式子的形式,再代入求值即可.【解答】解:∵a+b=2,∴a2﹣b2+4b,=(a+b)(a﹣b)+4b,=2(a﹣b)+4b,=2a+2b,=2(a+b),=2×2,=4.故答案为:4.【点评】本题考查了利用平方差公式分解因式,利用平方差公式和提公因式法整理出a+b的形式是求解本题的关键,同时还隐含了整体代入的数学思想.6.已知:如图,∠ACB=∠DBC,要使△ABC≌△DCB,只需增加的一个条件是∠A=∠D或∠ABC=∠DCB或BD=AC (只需填写一个你认为适合的条件).【考点】全等三角形的判定.【专题】开放型.【分析】已知一条公共边和一个角,有角边角或角角边定理,再补充一组对边相等或一组对角相等即可.【解答】解:添加∠A=∠D,∠ABC=∠DCB,BD=AC后可分别根据AAS、SAS、SAS判定△ABC≌△ADC.故填∠A=∠D或∠ABC=∠DCB或BD=AC.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.7.如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC= 6 .【考点】线段垂直平分线的性质;含30度角的直角三角形.【分析】先作辅助线,然后利用垂直平分线的性质求出AD=BD,最后解直角三角形计算.【解答】解:连接BD∵DE垂直平分AB∴AD=BD∴∠DBA=∠A=30°∴∠CBD=30°∴BD=2CD=4∴AC=CD+AD=CD+BD=2+4=6.答案6.【点评】此题主要考查线段的垂直平分线的性质和直角三角形的性质.8.如图,∠1=∠2=30°,∠3=∠4,∠A=80°,则x= 110 度,y= 130 度.【考点】三角形的外角性质;三角形内角和定理.【分析】由三角形中一个外角等于与它不相邻的两个内角和知,∠x=∠A+∠1=80°+30°=110°,∠4= [180°﹣∠A﹣(∠1+∠2)]=20°,∴∠y=∠x+∠4=110°+20°=130°.【解答】解:∵∠x=∠A+∠1=80°+30°=110°,∠4= [180°﹣∠A﹣(∠1+∠2)]=20°,∴∠y=∠x+∠4=110°+20°=130°.【点评】本题利用了:①三角形中一个外角等于与它不相邻的两个内角和;②三角形内角和为180度.二、选择题9.下列长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.1,2,3 D.5,6,10【考点】三角形三边关系.【分析】根据三角形的三边关系进行分析判断.【解答】解:根据三角形任意两边的和大于第三边,得A中,3+4=7<8,不能组成三角形;B中,5+6=11,不能组成三角形;C中,1+2=3,不能够组成三角形;D中,5+6=11>10,能组成三角形.故选D.【点评】本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.10.下列计算正确的是()A.(x3)3=x6B.a6•a4=a24C.(﹣mn)4÷(﹣mn)2=m2n2D.3a+2a=5a2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;单项式的除法,合并同类项法则对各选项分析判断利用排除法求解.【解答】解:A、(x3)3=x3×3=x9,故本选项错误;B、a6•a4=a6+4=a10,故本选项错误;C、(﹣mn)4÷(﹣mn)2=m2n2,故本选项正确;D、3a+2a=5a,故本选项错误.故选C.【点评】本题考查了同底数幂的除法,同底数幂的乘法,幂的乘方的性质,合并同类项法则,熟记各性质并理清指数的变化情况是解题的关键.11.在如图的网格中,在网格上找到点C,使△ABC为等腰三角形,这样的点有几个()A.8 B.9 C.10 D.11【考点】等腰三角形的判定.【专题】网格型.【分析】首先由勾股定理可求得AB的长,然后分别从BA=BC,AB=AC,CA=CB去分析求解即可求得答案.【解答】解:如图,∵AB==2,∴①若BA=BC,则符合要求的有:C1,C2共2个点;②若AB=AC,则符合要求的有:C3,C4共2个点;③若CA=CB,则符合要求的有:C5,C6,C7,C8,C9,C10共6个点.∴这样的C点有10个.故选:C.【点评】本题考查了等腰三角形的判定以及勾股定理,解题关键是分类的数学思想.12.计算(18x4﹣48x3+6x)÷6x的结果为()A.3x3﹣13x2 B.3x3﹣8x2C.3x3﹣8x2+6x D.3x3﹣8x2+1【考点】整式的除法.【分析】多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.【解答】解:(18x4﹣48x3+6x)÷6x=3x3﹣8x2+1.故选:D.【点评】考查了整式的除法,多项式除以单项式实质就是转化为单项式除以单项式.多项式除以单项式的结果仍是一个多项式.13.如图,在△ABC中,∠ACB=90°,∠A=20°,若将△ABC沿CD折叠,使点B落在AC边上的点E 处,则∠CED的度数是()A.30° B.40° C.50° D.70°【考点】翻折变换(折叠问题);三角形内角和定理.【分析】首先根据△CDE是△CBD沿CD折叠,可得∠B=∠CED,于是得到结论.【解答】解:∵在△ABC中,∠ACB=90°,∠A=20°,∴∠B=90°﹣20°=70°,∵△CDE是△CBD沿CD折叠,∴∠B=∠CED,∴∠CED=70°,故选D.【点评】本题主要考查了翻折变换的知识,解答本题的关键是根据翻折变换的性质得到∠B=∠CED,此题难度不大.14.如图所示,l是四边形ABCD的对称轴,AD∥BC,现给出下列结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】轴对称的性质.【分析】根据轴对称图形的性质,四边形ABCD沿直线l对折能够完全重合,再根据两直线平行,内错角相等可得∠CAD=∠ACB=∠BAC=∠ACD,然后根据内错角相等,两直线平行即可判定AB∥CD,根据等角对等边可得AB=BC,然后判定出四边形ABCD是菱形,根据菱形的对角线互相垂直平分即可判定AO=OC;只有四边形ABCD是正方形时,AB⊥BC才成立.【解答】解:∵l是四边形ABCD的对称轴,∴∠CAD=∠BAC,∠ACD=∠ACB,∵AD∥BC,∴∠CAD=∠ACB,∴∠CAD=∠ACB=∠BAC=∠ACD,∴AB∥CD,AB=BC,故①②正确;又∵l是四边形ABCD的对称轴,∴AB=AD,BC=CD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,∴AO=OC,故④正确,∵菱形ABCD不一定是正方形,∴AB⊥BC不成立,故③错误,综上所述,正确的结论有①②④共3个.故选C.【点评】本题考查了轴对称的性质,平行线的性质,等角对等边的性质,熟记对称轴两边的部分能够完全重合是解题的关键.三、计算与作图题(本大题共4小题,每小题6分,共24分)15.分解因式:3x2y+12xy2+12y3.【考点】提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=3y(x2+4xy+4y2)=3y(x+2y)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.先化简,再求值:,其中m=9.【考点】分式的化简求值.【专题】计算题.【分析】原式被除数括号中两项通分并利用同分母分式的加法法则计算,除数分母利用完全平方公式分解因式后,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将m的值代入计算即可求出值.【解答】解:原式=•=,当m=9时,原式==.【点评】此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.17.解方程: =﹣1.【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:15x﹣12=4x+10﹣3x+6,移项合并得:14x=28,解得:x=2,经检验x=2是增根,分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.请在下列三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画的三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)【考点】利用轴对称设计图案.【专题】作图题.【分析】可分别选择不同的直线当对称轴,得到相关图形即可.【解答】解:【点评】考查利用轴对称设计图案;选择不同的直线当对称轴是解决本题的突破点.四、(本大题共3小题,每小题8分,共24分)19.如图所示,点B、F、C、E在同一条直线上,AB∥DF,AC∥DE,AC=DE,FC与BE相等吗?请说明理由.【考点】全等三角形的判定与性质.【专题】证明题.【分析】可先求解△ABC≌△DEF,进而可得线段BC=EF,又EC为公共边长,所以可得FC=BE.【解答】解:相等;理由如下:∵AB∥DF,AC∥DE,∴∠B=∠F,∠ACB=∠FED,又AC=DE,∴△ABC≌△DEF,∴BC=EF,∴BC﹣EC=EF﹣EC,即BE=CF.【点评】本题考查了三角形全等的判定及性质;熟练掌握全等三角形的判定及性质,本题比较简单.20.如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E,A在直线DC的同侧,连接AE.(1)求证:△ACE≌△BCD;(2)线段AE与BC有什么位置关系?请说明理由.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)根据等边三角形性质推出BC=AC,CD=CE,∠BCA=∠ECD=60°,求出∠BCD=∠ACE,根据SAS证△ACE≌△BCD;(2)△ACE≌△BCD,推出∠EAC=∠DBC=∠ACB,根据平行线的判定推出即可.【解答】(1)解:理由:∵△ABC和△DEC是等边三角形,∴BC=AC,CD=CE,∠ABC=∠BCA=∠ECD=60°.∴∠BCA﹣∠DCA=∠ECD﹣∠DCA,即∠BCD=∠ACE.在△ACE和△BCD中,,∴△ACE≌△BCD;(2)∵△ACE≌△BCD.∴∠EAC=∠B=60°∴∠EAC=∠ACB∴AE∥BC【点评】本题考查了等边三角形性质,全等三角形的判定和性质,平行线的判定,关键是求出△ACE≌△BCD,主要考查学生的推理能力.21.千年古镇赵化开发的鑫城小区的内坝是一块长为(3a+b)米,宽为(2a+b)米的长方形地,物业部门计划将内坝进行绿化(如图阴影部分),中间部分将修建一仿古小景点(如图中间的正方形),则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.【考点】多项式乘多项式.【分析】根据矩形的面积公式,可得内坝、景点的面积,根据面积的和差,可得答案.【解答】解:由题意,得(3a+b)(2a+b)﹣(a+b)2=6a2+5ab+b2﹣a2﹣2ab﹣b2=5a2+3ab,当a=3,b=2时,5a2+3ab=5×32+3×3×2=63,答:绿化的面积是5a2+3ab平方米,当a=3,b=2时的绿化面积是63m2.【点评】本题考查了多项式成多项式,利用了多项式乘多项式法则.五、(本大题共2小题,每小题9分,共18分)22.在△ABC中,∠BAC=90°,∠B=45°,D为BC上一点,BD=AB,DE⊥BC,交AC于点E.(1)求证:△ADE是等腰三角形;(2)图中除△ADE是等腰三角形外,还有没有等腰三角形?若有,请一一写出来(不要求证明);若没有,请说明理由.【考点】等腰三角形的判定与性质.【专题】常规题型.【分析】(1)由BD=AB,得∠BAD=∠BDA,又因为∠BAC=90°,DE⊥BC,根据等角的余角相等,得∠EAD=∠ADE,从而问题得证;(2)由∠BAC=90°,DE⊥BC,∠B=45°,可得等腰三角形ABC、DEC,由 BD=AB,可得等腰三角形ABD.【解答】解:(1)证明:∵BD=AB,∴∠BAD=∠BDA∵DE⊥BC,∴∠BDE=90°又∠BAC=90°,∴∠EAD=∠EDA.∴AE=DE,即△ADE是等腰三角形.(2)还有三个等腰三角形,△ABD、△ABC、△CDE.【点评】本题考查了等腰三角形的性质和判定及互余的性质.判断等腰三角形的办法:(1)根据定义,有两条边相等的三角形是等腰三角形;(2)根据性质,等角对等边.23.为庆祝2015年元旦的到来,学校决定举行“庆元旦迎新年”文艺演出,根据演出需要,用700元购进甲、乙两种花束共260朵,其中甲种花束比乙种花束少用100元,已知甲种花束单价比乙种花束单价高20%,乙种花束的单价是多少元?甲、乙两种花束各购买了多少朵?【考点】分式方程的应用.【分析】设乙种花束的单价是x元,则甲种花束的单价为(1+20%)x元,根据用700元购进甲、乙两种花束共260朵,列方程求解.【解答】解:设乙种花束的单价是x元,则甲种花束的单价为(1+20%)x元,由题意得, +=260,解得:x=2.5,经检验:x=2.5是原分式方程的解,则(1+20%)x=3,则买甲花束为: =100个,乙种花束为: =160个.答:乙种花束的单价是2.5元,甲、乙两种花束各购买100个、160个.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.六、(本大题共1小题,共12分)24.小敏与同桌小颖在课下学习中遇到这样一道数学题:“如图(1),在等边三角形ABC中,点E 在AB上,点D在CB的延长线上,且ED=EC,试确定线段AE与DB的大小关系,并说明理由”.小敏与小颖讨论后,进行了如下解答:(1)取特殊情况,探索讨论:当点E为AB的中点时,如图(2),确定线段AE与DB的大小关系,请你写出结论:AE = DB(填“>”,“<”或“=”),并说明理由.(2)特例启发,解答题目:解:题目中,AE与DB的大小关系是:AE=DB(填“>”,“<”或“=”).理由如下:如图(3),过点E作EF∥BC,交AC于点F.(请你将剩余的解答过程完成)(3)拓展结论,设计新题:在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,若△ABC的边长为1,AE=2,求CD的长(请你画出图形,并直接写出结果).【考点】三角形综合题.【分析】(1)当E为中点时,过E作EF∥BC交AC于点F,则可证明△BDE≌△FEC,可得到AE=DB;(2)类似(1)过E作EF∥BC交AC于点F,可利用AAS证明△BDE≌△FEC,可得BD=EF,再证明△AEF是等边三角形,可得到AE=EF,可得AE=DB;(3)分两种情况:点E在AB上和在BA的延长线上,类似(2)证得全等,再利用平行得到.【解答】解:(1)AE=DB,理由如下:∵ED=EC,∴∠EDC=∠ECD∵△ABC是等边三角形,∴∠ACB=∠ABC=60°,∵点E为AB的中点,∴∠ECD=∠ACB=30°,∴∠EDC=30°,∴∠D=∠DEB=30°,∴DB=BE,∵AE=BE,∴AE=DB;故答案为:=;(2)如图3,∵△ABC为等边三角形,且EF∥BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,∠FEC=∠ECB;∴∠EFC=∠DBE=120°;∵ED=EC,∴∠D=∠ECB,∠D=∠FEC,在△EFC与△DBE中,,∴△EFC≌△DBE(AAS),∴EF=DB;∵∠AEF=∠AFE=60°,∴△AEF为等边三角形,∴AE=EF,∴AE=BD.(3)①如图4,当点E在AB的延长线上时,过点E作EF∥BC,交AC的延长线于点F;则∠DCE=∠CEF,∠DBE=∠AEF;∠ABC=∠AEF,∠ACB=∠AFE;∵△ACB为等边三角形,∴∠ABC=∠ACB=60°,∴∠AEF=∠AFE=60°,∠DBE=∠ABC=60°,∴∠DBE=∠EFC;而ED=EC,∴∠D=∠DCE,∠D=∠CEF;在△FEC和△BDE中,,∴△EFC≌△DBE(AAS),∴EF=BD;∵△AEF为等边三角形,∴AE=EF=2,BD=EF=2,∴CD=1+2=3;②如图5,当点E在BA的延长线上时,过点E作EF∥BC,交CA的延长线于点F;类似上述解法,同理可证:DB=EF=2,BC=1,∴CD=2﹣1=1.【点评】本题是三角形综合题目,考查了全等三角形的判定和性质及等边三角形的性质和判定等知识;证明三角形全等是解决问题的关键.2016-2017学年八年级(上)期末数学试卷一、选择题1.下列大学的校徽图案中,是轴对称图形的是()A.B.C.D.2.下列运算正确的是()A.3x2+2x3=5x5B.(π﹣3.14)0=0 C.3﹣2=﹣6 D.(x3)2=x63.若分式有意义,则x的取值范围是()A.x≠3 B.x≠﹣3 C.x>3 D.x>﹣34.若x2﹣kxy+9y2是一个完全平方式,则k的值为()A.3 B.±6 C.6 D.+35.下列长度的三条线段,能组成三角形的是()A.3,4,8 B.5,6,11 C.12,5,6 D.3,4,56.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是()A.85° B.80° C.75° D.70°7.如图,AB=AD,要说明△ABC≌△ADE,需添加的条件不能是()A.∠E=∠C B.AC=AE C.∠ADE=∠ABC D.DE=BC8.已知﹣=,则的值为()A.B.C.﹣2 D.29.若分式方程无解,则m的值为()A.﹣1 B.0 C.1 D.310.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(共9小题,每小题3分,满分27分)11.计算:﹣|﹣5|+(2016﹣π)0﹣()﹣2= .12.若分式的值为0,则x= .13.已知2x=3,则2x+3的值为.14.石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为.15.一个多边形的内角和等于1260°,则这个多边形是边形.16.一个三角形等腰三角形的两边长分别为13和7,则周长为.17.如图,在Rt△ABC中,∠C=90°,∠BAC=60°,∠BAC的平分线AD长为8cm,则BC= .18.如图,△ABC中,AB=AC=13cm,AB的垂直平分线交AB于D,交AC于E,若△EBC的周长为21cm,则BC= cm.19.如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数.例如,(a+b)2=a2+2ab+b2展开式中的系数1、2、1恰好对应图中第三行的数字;再如,(a+b)3=a3+3a2b+3ab2+b3展开式中的系数1、3、3、1恰好对应图中第四行的数字.请认真观察此图,写出(a+b)4的展开式,(a+b)4= .三、解答题(本大题共7小题,共63分)20.计算(1)﹣ab2c•(﹣2a2b)2÷6a2b3(2)4(x+1)2﹣(2x﹣5)(2x+5).21.分解因式(1)x2(x﹣2)﹣16(x﹣2)(2)2x3﹣8x2+8x.22.(1)先化简,再求值:(1﹣)÷,其中a=﹣1(2)解方程式:.23.△ABC在平面直角坐标系中的位置如图所示.A(2,3),B(3,1),C(﹣2,﹣2)三点在格点上.(1)作出△ABC关于y轴对称的△A1B1C1;(2)直接写出△ABC关于x轴对称的△A2B2C2的各点坐标;(3)求出△ABC的面积.24.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.25.2016年12月28日沪昆高铁已经开通运营,从昆明到某市,可乘普通列车或高铁,已知高铁的行驶里程是400千米,普通列车的行驶里程是高铁的行驶里程的1.3倍.(1)求普通列车的行驶里程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比普通列车所需时间缩短3小时,求高铁的平均速度.26.如图,四边形ABDC中,∠D=∠ABD=90°,点O为BD的中点,且OA平分∠BAC.(1)求证:CO平分∠ACD;(2)求证:AB+CD=AC.参考答案与试题解析一、选择题1.下列大学的校徽图案中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行解答即可.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.【点评】此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.2.下列运算正确的是()A.3x2+2x3=5x5B.(π﹣3.14)0=0 C.3﹣2=﹣6 D.(x3)2=x6【考点】幂的乘方与积的乘方;合并同类项;零指数幂;负整数指数幂.【分析】根据合并同类项法则、零指数幂、负整数指数幂、幂的乘方分别求出每个式子的值,再判断即可.【解答】解:A、3x2和2x3不能合并,故本选项错误;B、结果是1,故本选项错误;C、结果是,故本选项错误;D、结果是x6,故本选项正确;故选D.【点评】本题考查了合并同类项法则、零指数幂、负整数指数幂、幂的乘方的应用,能求出每个式子的值是解此题的关键.3.若分式有意义,则x的取值范围是()A.x≠3 B.x≠﹣3 C.x>3 D.x>﹣3【考点】分式有意义的条件.【分析】根据分式有意义的条件可得x+3≠0,再解即可.【解答】解:由题意得:x+3≠0,解得:x≠3,故选:B.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.4.若x2﹣kxy+9y2是一个完全平方式,则k的值为()A.3 B.±6 C.6 D.+3【考点】完全平方式.【分析】根据首末两项是x和3y的平方,那么中间项为加上或减去x和3y的乘积的2倍,进而得出答案.【解答】解:∵x2﹣kxy+9y2是完全平方式,∴﹣kxy=±2×3y•x,解得k=±6.故选:B.【点评】本题主要考查了完全平方公式,根据两平方项确定出这两个数,再根据乘积二倍项求解是解题关键.5.下列长度的三条线段,能组成三角形的是()A.3,4,8 B.5,6,11 C.12,5,6 D.3,4,5【考点】三角形三边关系.【分析】根据三角形的三边关系进行分析判断,两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【解答】解:根据三角形任意两边的和大于第三边,A选项中,3+4=7<8,不能组成三角形;B选项中,5+6=11,不能组成三角形;C选项中,5+6=11<12,不能够组成三角形;D选项中,3+4>5,能组成三角形.故选D.【点评】本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.6.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是()A.85° B.80° C.75° D.70°【考点】三角形内角和定理.【分析】先根据∠A=50°,∠ABC=70°得出∠C的度数,再由BD平分∠ABC求出∠ABD的度数,再根据三角形的外角等于和它不相邻的内角的和解答.【解答】解:∵∠ABC=70°,BD平分∠ABC,∴∠ABD=70°×=35°,∴∠BDC=50°+35°=85°,故选:A.【点评】本题考查的是三角形的外角和内角的关系,熟知三角形的外角等于和它不相邻的内角的和是解题的关键.7.如图,AB=AD,要说明△ABC≌△ADE,需添加的条件不能是()A.∠E=∠C B.AC=AE C.∠ADE=∠ABC D.DE=BC【考点】全等三角形的判定.【分析】由条件AB=AD,结合∠A=∠A,要使△ABC≌△ADE则需添加一组角相等或AC=AE,则可求得答案.【解答】解:∵AB=AD,且∠A=∠A,∴当∠E=∠C时,满足AAS,可证明△ABC≌△ADE,当AC=AE时,满足SAS,可证明△ABC≌△ADE,当∠ADE=∠ABC时,满足ASA,可证明△ABC≌△ADE,当DE=BC时,满足SSA,不能证明△ABC≌△ADE,故选D.【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.8.已知﹣=,则的值为()A.B.C.﹣2 D.2【考点】分式的加减法.【专题】计算题;分式.【分析】已知等式通分并利用同分母分式的减法法则计算,整理即可求出所求式子的值.【解答】解:已知等式整理得: =,即=﹣,则原式=﹣2,故选C【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.9.若分式方程无解,则m的值为()A.﹣1 B.0 C.1 D.3【考点】分式方程的解.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,由分式方程无解求出x的值,代入整式方程计算即可求出m的值.。
2016-2017学年第一学期期末考试八年级数学试题参考答案一、选择题(本题共36分,每小题3分)二、填空题(本题共24分,每小题3分)x;12. 6<x<12;13.4,0),(4,4),(0,4);14.-6;15.①11.②④三、解答题(本题共16分,每小题4分)16.(1))解:方程两边乘以,得------------------------1分解得.--------------------------2分检验:当时,.---------------------------------3分所以,原分式方程的解为.---------------------------4分(2))a2(x﹣y)+4b2(y﹣x)=a2(x﹣y)﹣4b2(x﹣y)------------------------1分=(x﹣y)(a2﹣4b2)---------------------------------------2分=(x﹣y)(a+2b)(a﹣2b).---------------------------------4分17. 解:原式=[﹣]×,=×,-----------------2分=×,-------------------------------------------3分=,--------------------------------------------4分2x+5>1,2x>﹣4,x>﹣2,-------------------------------------------5分∵x是不等式2x+5>1的负整数解,∴x=﹣1,--------------------------------------------6分把x=﹣1代入中得:=3.--------------------------------------------8分18. 解:(1)如图,A′(﹣2,4),B′(3,﹣2),C′(﹣3,1);-----------------3分-- ------6分(2)S△ABC=6×6﹣×5×6﹣×6×3﹣×1×3,=36﹣15﹣9﹣1,=10.--------------------------------------10分19. (1)证明:∵△ABC是等边三角形,∴∠BAC=∠B=60°,AB=AC.--------------------------------2分又∵AE=BD,∴△AEC≌△BDA(SAS).--------------------------------2分∴AD=CE;--------------------------------5分(2)解:∵(1)△AEC≌△BDA,∴∠ACE=∠BAD,--------------------------------7分∴∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.--------------------------------10分20. 解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x 元,…………1分由题意,得=2×+500,解得x=3,经检验x=3是方程的解. (3)分答:该种干果的第一次进价是每千克3元…………5分(2)30009000+-5006+500660%-3000+9000 331+20%⨯⨯⨯⨯()()()…………7分=(1000+2500﹣500)×6+1800﹣12000=3000×6+1800﹣12000=18000+1800﹣12000=7800(元).…………9分答:超市销售这种干果共盈利7800元.…………10分21. 1)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,------------1分由题意知,在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),-------------------------------3分∴∠ABC=∠ACB,∴AB=AC;------------------------------4分(2)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,--------------------------5分由题意知,OE=OF.∠BEO=∠CFO=90°,∵在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),-----------6分∴∠OBE=∠OCF,又∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC;--------------------------9分(3)解:不一定成立,-------------------------10分当∠A 的平分线所在直线与边BC 的垂直平分线重合时AB=AC ,否则AB ≠AC .(如示例图)--------------------------12分22. 解:(1)第一个图形中阴影部分的面积是a 2﹣b 2,第二个图形的面积是(a+b )(a ﹣b ),则a 2﹣b 2=(a+b )(a ﹣b ).故答案是B ; ------------------3分(2)①∵x 2﹣9y 2=(x+3y )(x ﹣3y ),------------------------5分∴12=4(x ﹣3y )------------------------6分得:x ﹣3y=3;------------------------8分 ②111111111+11+-1+1-+1-2233999910010031421009810199=223399991001001101=2100101=200⨯⨯⨯⨯⨯⨯⨯()(﹣)()(1)......()()(1)()......9分............10分......11分......12分。
一、选择题(每题3分,共30分)1. 下列各数中,正数是()A. -1/2B. -3/4C. 0D. 1/22. 若a、b是实数,且a+b=0,则下列各式中正确的是()A. a=0,b=0B. a≠0,b≠0C. a≠0,b=0D. a=0,b≠03. 下列各数中,有理数是()A. √2B. πC. 1/3D. 无理数4. 下列各式中,正确的是()A. a+b=b+aB. a-b=b-aC. a×b=b×aD. a÷b=b÷a5. 下列各数中,正数是()A. -1/2B. -3/4C. 0D. 1/26. 若a、b是实数,且a+b=0,则下列各式中正确的是()A. a=0,b=0B. a≠0,b≠0C. a≠0,b=0D. a=0,b≠07. 下列各数中,有理数是()A. √2B. πC. 1/3D. 无理数8. 下列各式中,正确的是()A. a+b=b+aB. a-b=b-aC. a×b=b×aD. a÷b=b÷a9. 下列各数中,正数是()A. -1/2B. -3/4C. 0D. 1/210. 若a、b是实数,且a+b=0,则下列各式中正确的是()A. a=0,b=0B. a≠0,b≠0C. a≠0,b=0D. a=0,b≠0二、填空题(每题3分,共30分)11. 若a=2,b=-3,则a+b=______,a-b=______,a×b=______,a÷b=______。
12. 若x+3=5,则x=______。
13. 若2(x-3)=8,则x=______。
14. 若3a=9,则a=______。
15. 若a÷2=4,则a=______。
16. 若√x=3,则x=______。
17. 若x^2=16,则x=______。
18. 若a=√2,则a^2=______。
19. 若a=3,b=2,则a+b=______,a-b=______,a×b=______,a÷b=______。
2016--2017学年度第一学期期末考试八年级数学试卷一、选择题(本题共10题,每小题3分,共30分)1. 下列计算正确的是() A. 22a a a =⋅ B.a a a =÷34 C.()752a a = D.()222b a ab -=- 2. 下列图形中,不是轴对称图形的是( )A. 线段B.角C.等腰三角形D.直角三角形3. 下列因式分解中,正确的是( )A. ()3262+=+x xB.()()9992-+=-x x xC.()12122++=++x x x xD.)4(242y x m xy mx -=-4.已知空气的单位体积质量是0.0012393/cm g ,则用科学计数法表示该数为()A.310239.1-⨯B.210239.1-⨯C.2101239.0-⨯D.410239.1-⨯5.若53=m ,43=n ,则n m -23的值是( )A.21B.20C.425D.66. 计算x x x +---12132得( )A. 1--xB.1+-xC.x +11D.x -117. 如图,在△ABC 中,AB=AC ,过点A 作直线c,点D ,E 在直线c 上,∠BAC=∠BDA=∠AEC ,BD=4,EC=5,则DE 的长为( )A.6.5B.7C.7.5D.88. 在直角坐标系xoy 中,已知点A (1,1),在x 轴上确定一点P ,使△AOP为等腰三角形,则符合条件的点PG 共有( )A.1个B.2个C.3个D.4个9. 已知c ba b ac a c b +=+=+,则()()()a c c b b a abc+++的值是( )A.1B.-1C.-1或1D.1或110. 在正方形ABCD 中,点E 是AD 的中点,∠EBC 的平分线交CD 于F ,将△DEF 沿EF 折叠,点D 落在BE 上的点M 处,延长BC ,EF 交于点N ,则下列四个结论中:①DF=CF ;②BF ⊥EN;③△BEN 是等边三角形;④DEF BEF S S ∆∆=3.正确的是() A. ①②③ B.①②④ C.②③④ D.①②③④二、填空(本题有6个小题,每小题3分,共18分)11. 当x=_______时,分式21232--x x 的值为0. 12. 分解因式22225x y x -得___________.13. 在正数范围内定义一种运算“⊗” :ba b a 11+=⊗,则方程()01=+⊗x x 的解为__________. 14. 如图,△ABC 中,∠C=90°,∠BAC=60°,AD 平分∠BAC ,已知AD=20cm ,则BC 的长为______cm.15. 如图,已知等边△ABC 的边长为2,过AB 边上一点P 作PE ⊥AC 于点E, Q 为BC 延长线上一点,取PA=CQ ,连接PQ ,交AC 于M ,则EM 的长为__________.16. 已知122432+--=--+x B x A x x x ,那么6A-3B=___________. 三、解答题(本题有9个小题,共72分)17. (本题满分6分)如图:已知AB=AD ,BC=DC.求证:∠B=∠D.18. (本题满分6分)化简分式⎪⎭⎫ ⎝⎛--÷-x x x x x 121,并选一个使分式有意义的x 值,代入求值。
2016-2017年秋期八年级上期末教学质量检测数学试卷出题人:曾琴一、选择题〔本大题共10个小题,每小题3分,共30分〕1.若分式有意义,则x满足的条件是A.x≠0B.x≠3C.x≠-3D.x≠±32.计算:(-x)3·(-2x)的结果是A.-2x4B.-2x3C.2x4D.2x33.在平面直角坐标系中,点A(7,-2)关于x轴对称的点A′的坐标是A.(7,2)B.(7,-2)C.(-7,2) D.(-7,-2)4.若△ABC≌△A′B′C′,且AB=AC=9,△ABC的周长为26cm,则B′C′的长为A.10cmB.9cmC.4cmD.8cm5.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P为:A.90°﹣α B. 90°+αC. C. 360°﹣α6.分式方程1226x x=+的解为第5题图A.x=-2B.x=2 C.x=-3D.x=37.计算:201423⎛⎫⎪⎝⎭×(-1.5)2015的结果是A.-32B.32C.-23D.238. 下列各图形都是轴对称图形,其中对称轴最多的是A.等腰直角三角形B.直线C.等边三角形D.正方形9.已知△ABC的两边长分别为AB=9、AC=2,第三边BC的长为奇数,则BC的长是A.5B.7C.9D.1110.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为A. 5B. 5或6C. 5或7D. 5或6或7二、填空题(本大题共6个小题,每小题3分,共18分)请将答案直接填在答题卷对应的横线上.11.分解因式:4x2-1=.12.若分式2212xx x-+-=0,则x=.A )BCD 84° (第13题)13.如图,在△ABC 中,点D 是BC 上一点,∠BAD =84°,AB =AD =DC ,则∠CAD =.14.如图,在△ABC 中,EF 是AB 边的垂直平分线,AC =18cm ,BC =16cm 则△BCE 的周长为cm .15.等腰三角形的周长为24cm ,腰长为xcm ,则x 的取值X 围是________.16.已知b a b a +=+111 ,则ba ab +的值。
2016-2017学年八年级(上)期末数学试卷两套合集二附答案解析2016-2017学年八年级(上)期末数学试卷一、选择题:每题2分,共12分.1.要使分式成心义,那么x的取值应知足()A.x≠2 B.x≠﹣1 C.x=2 D.x=﹣12.以下大学的校徽图案是轴对称图形的是()A.清华大学B.北京大学C.人民大学D.浙江大学3.以下计算正确的选项是()A.3a﹣a=2 B.a2•a3=a6C.a2+2a2=3a2D.(a+b)2=a2+b24.假设三角形两边长别离为6cm,2cm,第三边长为偶数,那么第三边长为()A.2cm B.4cm C.6cm D.8cm5.如下图,亮亮书上的三角形被墨迹污染了一部份,专门快他就依照所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA6.化简的结果是()A.B.C.a﹣b D.b﹣a二、填空题:每题3分,共24分.7.写出一个运算结果是a6的算式.8.计算:(2016)0+()2﹣(﹣1)2016= .9.分解因式:a3﹣a= .10.假设3x=15,3y=5,那么3x﹣2y= .11.一个多边形内角和是一个四边形内角和的4倍,那么那个多边形的边数是.12.在平面直角坐标系中,点P(﹣2,3)关于x轴对称的点P1的坐标是.13.假设分式的值为0,那么x的值为.14.如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,那么AC= .三、解答题:每题5分,共20分.15.因式分解:2a2﹣4a+2.16.化简:x(4x+3y)﹣(2x+y)(2x﹣y)17.解分式方程:.18.先化简,再求值:(﹣)÷,其中x=﹣3.四、解答题:每题7分,共28分.19.已知:图①、图②均为5×6的正方形网格,点A、B、C在格点(小正方形的极点)上.请你别离在图①、图②中确信格点D,画出一个以A、B、C、D为极点的四边形,使其为轴对称图形,并画出对称轴.20.如图是一个长为2a、宽为2b的长方形,沿图中虚线用剪子均匀分成四块小长方形,然后按图2形状拼成一个正方形.(1)请利用图2中的空白部份面积的不同表示方式,写出一个关于a、b的恒等式.(2)假设a+b=10,ab=6,依照你所取得的恒等式,求(a﹣b)的值.21.如图AB=AC,BD=CD,DE⊥BA,点E为垂足,DF⊥AC,点F为垂足,求证:DE=DF.22.已知,小敏、小聪两人在x=2,y=﹣1的条件下别离计算P和Q的值,小敏说P的值比Q大,小聪说Q的值比P大,请你判定谁的结论正确?并说明理由.五、解答题:每题8分,共16分.23. 2016年中秋节期间,某商城隆重开业,某商家有打算选购甲、乙两种礼盒作为开业期间给予买家的礼物,已知甲礼盒的单价是乙礼盒单价的1.5倍;用600元单独购买甲种礼盒比单独购买乙种礼盒要少10个.(1)求甲、乙两种礼盒的单价别离为多少元?(2)假设商家打算购买这两种礼盒共40个,且投入的经费不超过1050元,那么购买的甲种礼盒最多买多少个?24.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于M,交AC于N.(1)假设∠ABC=70°,那么∠MNA的度数是.(2)连接NB,假设AB=8cm,△NBC的周长是14cm.①求BC的长;②在直线MN上是不是存在P,使由P、B、C组成的△PBC的周长值最小?假设存在,标出点P的位置并求△PBC的周长最小值;假设不存在,说明理由.六、解答题:每题10分,共20分.25.已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作等边△ADE(极点A、D、E按逆时针方向排列),连接CE.(1)如图1,当点D在边BC上时,求证:①BD=CE,②AC=CE+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CE+CD是不是成立?假设不成立,请写出AC、CE、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的反向延长线上且其他条件不变时,补全图形,并直接写出AC、CE、CD之间存在的数量关系.26.研究性学习:在平面直角坐标系中,等腰三角形ABC的极点A的坐标为(2,2).(1)假设底边BC在x轴上,请写出1组知足条件的点B、点C的坐标:;设点B、点C的坐标别离为(m,0)、(n,0),你以为m、n应知足如何的条件?答:.(2)假设底边BC的两头点别离在x轴、y轴上,请写出1组知足条件的点B、点C的坐标:;设点B、点C的坐标别离为(m,0)、(0,n),你以为m、n应知足如何的条件?答:.参考答案与试题解析一、选择题:每题2分,共12分.1.要使分式成心义,那么x的取值应知足()A.x≠2 B.x≠﹣1 C.x=2 D.x=﹣1【考点】分式成心义的条件.【分析】依照分式成心义,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣2≠0,解得x≠2.应选:A.【点评】此题考查了分式成心义的条件,从以下三个方面透彻明白得分式的概念:(1)分式无心义⇔分母为零;(2)分式成心义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.2.以下大学的校徽图案是轴对称图形的是()A.清华大学B.北京大学C.人民大学D.浙江大学【考点】轴对称图形.【分析】依照轴对称图形的概念对各选项分析判定即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.应选B.【点评】此题考查了轴对称图形的概念,轴对称图形的关键是寻觅对称轴,图形两部份折叠后可重合.3.以下计算正确的选项是()A.3a﹣a=2 B.a2•a3=a6C.a2+2a2=3a2D.(a+b)2=a2+b2【考点】同底数幂的乘法;归并同类项;完全平方公式.【分析】依照同底数幂的乘法、归并同类项、完全平方公式的运算法那么结合选项求解.【解答】解:A、3a﹣a=2a,计算错误,故本选项错误;B、a2•a3=a5,计算错误,故本选项错误;C、a2+2a2=3a2,计算正确,故本选项正确;D、(a+b)2=a2+2ab+b2,计算错误,故本选项错误.应选C.【点评】此题考查了同底数幂的乘法、归并同类项、完全平方公式等知识,把握各知识点的运算法那么是解答此题的关键.4.假设三角形两边长别离为6cm,2cm,第三边长为偶数,那么第三边长为()A.2cm B.4cm C.6cm D.8cm【考点】三角形三边关系.【分析】依照三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,求得第三边的取值范围,再进一步进行分析.【解答】解:依照三角形的三边关系,得第三边大于4cm,而小于8cm.又第三边是偶数,那么应是6cm.应选C.【点评】此题考查了三角形的三边关系,同时注意偶数这一条件.5.如下图,亮亮书上的三角形被墨迹污染了一部份,专门快他就依照所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA【考点】全等三角形的判定.【分析】依照图象,三角形有两角和它们的夹边是完整的,因此能够依照“角边角”画出.【解答】解:依照题意,三角形的两角和它们的夹边是完整的,因此能够利用“角边角”定理作出完全一样的三角形.应选D.【点评】此题考查了三角形全等的判定的实际运用,熟练把握判定定理并灵活运用是解题的关键.6.化简的结果是()A.B.C.a﹣b D.b﹣a【考点】分式的混合运算.【分析】先算小括号里的,再把除法统一成乘法,约分化为最简.【解答】解:原式=()•==﹣,应选B.【点评】分式的四那么运算是整式四那么运算的进一步进展,在计算时,第一要弄清楚运算顺序,先去括号,再进行分式的乘除.二、填空题:每题3分,共24分.7.(2021•滨州)写出一个运算结果是a6的算式a2•a4(答案不唯一).【考点】幂的乘方与积的乘方;同底数幂的乘法;同底数幂的除法.【专题】开放型.【分析】依照同底数幂的乘法法那么,底数不变,指数相加,可得答案.【解答】解:a2•a4=a6,故答案为:a2•a4(答案不唯一).【点评】此题考查了同底数幂的乘法,同底数幂相乘,底数不变,指数相加.8.计算:(2016)0+()2﹣(﹣1)2016= .【考点】零指数幂.【分析】依照非零的零次幂等于1,负数的偶数次幂是正数,可得答案.【解答】解:原式=1+﹣1=,故答案为:.【点评】此题考查了零次幂,利用非零的零次幂等于1,负数的偶数次幂是正数是解题关键.9.分解因式:a3﹣a= a(a+1)(a﹣1).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).【点评】此题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意要分解完全.10.假设3x=15,3y=5,那么3x﹣2y= .【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】直接利用同底数幂的除法运算法那么将原式变形进而得出答案.【解答】解:∵3x=15,3y=5,∴3x﹣2y=3x÷(3y)2=15÷25=.故答案为:.【点评】此题要紧考查了同底数幂的除法运算法那么,正确将原式变形是解题关键.11.一个多边形内角和是一个四边形内角和的4倍,那么那个多边形的边数是10 .【考点】多边形内角与外角.【分析】多边形的外角和是360度,多边形的外角和是内角和的4倍,那么多边形的内角和是360×4=1440度,再由多边形的内角和列方程解答即可.【解答】解:设那个多边形的边数是n,由题意得,(n﹣2)×180°=360°×4解得n=10.故答案为:10.【点评】此题要紧考查了多边形的内角和定理与外角和定理,熟练把握定理是解题的关键.12.在平面直角坐标系中,点P(﹣2,3)关于x轴对称的点P1的坐标是P1(﹣2,﹣3).【考点】关于x轴、y轴对称的点的坐标.【分析】依照关于x轴对称的点,横坐标相同,纵坐标互为相反数;那么P1的坐标为(﹣2,﹣3).【解答】解:∵P(﹣2,3)与P1关于x轴对称,∴横坐标相同,纵坐标互为相反数,∴P1的坐标为(﹣2,﹣3).故答案为(﹣2,﹣3).【点评】考查了关于x轴、y轴对称的点的坐标,解决此题的关键是把握好对称点的坐标规律,注意结合图象,进行经历和解题.13.假设分式的值为0,那么x的值为﹣3 .【考点】分式的值为零的条件.【分析】依照分式成心义的条件可得x2﹣9=0,且(x﹣1)(x﹣3)≠0,再解即可.【解答】解:由题意得:x2﹣9=0,且(x﹣1)(x﹣3)≠0,解得:x=﹣3,故答案为:﹣3.【点评】此题要紧考查了分式值为零的条件,关键是把握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”那个条件不能少.14.如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,那么AC= 6 .【考点】线段垂直平分线的性质;含30度角的直角三角形.【分析】先作辅助线,然后利用垂直平分线的性质求出AD=BD,最后解直角三角形计算.【解答】解:连接BD∵DE垂直平分AB∴AD=BD∴∠DBA=∠A=30°∴∠CBD=30°∴BD=2CD=4∴AC=CD+AD=CD+BD=2+4=6.答案6.【点评】此题要紧考查线段的垂直平分线的性质和直角三角形的性质.三、解答题:每题5分,共20分.15.因式分解:2a2﹣4a+2.【考点】提公因式法与公式法的综合运用.【专题】计算题.【分析】原式提取2,利用完全平方公式分解即可.【解答】解:原式=2(a2﹣2a+1)=2(a﹣1)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练把握因式分解的方式是解此题的关键.16.化简:x(4x+3y)﹣(2x+y)(2x﹣y)【考点】整式的混合运算.【专题】计算题.【分析】原式第一项利用单项式乘以多项式法那么计算,第二项利用平方差公式化简,去括号归并即可取得结果.【解答】解:原式=4x2+3xy﹣4x2+y2=3xy+y2.【点评】此题考查了整式的混合运算,熟练把握运算法那么是解此题的关键.17.解分式方程:.【考点】解分式方程.【专题】计算题;压轴题.【分析】观看可得2﹣x=﹣(x﹣2),因此方程的最简公分母为:(x﹣2),去分母将分式方程化为整式方程后再求解,注意查验.【解答】解:方程两边同乘(x﹣2),得:1=﹣(1﹣x)﹣3(x﹣2)整理得:1=x﹣1﹣3x+6,解得:x=2,经查验x=2是增根,∴原分式方程无解.【点评】(1)解分式方程的大体思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程必然注意要验根;(3)分式方程去分母时不要漏乘.18.先化简,再求值:(﹣)÷,其中x=﹣3.【考点】分式的化简求值.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的减法法那么计算,同时利用除法法那么变形,约分取得最简结果,将x的值代入计算即可求出值.【解答】解:原式=[﹣]•=﹣=﹣,当x=﹣3时,原式=.【点评】此题考查了分式的化简求值,熟练把握运算法那么是解此题的关键.四、解答题:每题7分,共28分.19.已知:图①、图②均为5×6的正方形网格,点A、B、C在格点(小正方形的极点)上.请你别离在图①、图②中确信格点D,画出一个以A、B、C、D为极点的四边形,使其为轴对称图形,并画出对称轴.【考点】利用轴对称设计图案.【分析】依照轴对称图形的性质设计出轴对称图形即可.【解答】解:如下图:.【点评】此题要紧考查了利用轴对称设计图案,正确把握轴对称图形概念是解题关键.20.如图是一个长为2a、宽为2b的长方形,沿图中虚线用剪子均匀分成四块小长方形,然后按图2形状拼成一个正方形.(1)请利用图2中的空白部份面积的不同表示方式,写出一个关于a、b的恒等式(a+b)2=(a ﹣b)2+4ab .(2)假设a+b=10,ab=6,依照你所取得的恒等式,求(a﹣b)的值.【考点】完全平方公式的几何背景.【分析】(1)阴影部份的面积能够看做是边长(a﹣b)的正方形的面积,也能够看做边长(a+b)的正方形的面积减去4个小长方形的面积;(2)利用(1)的结论,把(a﹣b)2=(a+b)2﹣4ab,把数值整体代入即可.【解答】解:(1)恒等式为:(a+b)2=(a﹣b)2+4ab.例如:当a=5,b=2时,(a+b)2=(5+2)2=49(a﹣b)2=(5﹣2)2=94ab=4×5×2=40因为49=40+9,因此(a+b)2=(a﹣b)2+4ab.故答案为::(a+b)2=(a﹣b)2+4ab.(2)∵a+b=10,(a+b)2=100,∵(a+b)2=(a﹣b)2+4ab,ab=6,∴(a﹣b)2=(a+b)2﹣4ab=100﹣4×6=76,∴a﹣b=2或a﹣b=﹣2,∵a>b,∴a﹣b=2.【点评】此题考查了列代数式,完全平方公式的实际应用,完全平方公式与正方形的面积公式和长方形的面积公式常常联系在一路.要学会观看.21.如图AB=AC,BD=CD,DE⊥BA,点E为垂足,DF⊥AC,点F为垂足,求证:DE=DF.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】利用“边边边”证明△ABD和△ACD全等,依照全等三角形对应角相等可得∠BAD=∠CAD,再依照角平分线上的点到角的两边的距离相等即可得证.【解答】证明:在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,∵DE⊥BA,DF⊥AC,∴DE=DF.【点评】此题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,求出∠BAD=∠CAD是解题的关键.22.已知,小敏、小聪两人在x=2,y=﹣1的条件下别离计算P和Q的值,小敏说P的值比Q大,小聪说Q的值比P大,请你判定谁的结论正确?并说明理由.【考点】分式的化简求值;整式的混合运算—化简求值.【专题】探讨型.【分析】先依照分式及整式混合运算的法那么把原式进行化简,再把x=2,y=﹣1时期入求出P、Q 的值,比较出其大小即可.【解答】解:都不正确.∵P=﹣==x﹣y,∴当x=2,y=﹣1时,P=2+1=3;∵Q=(x+y)(x+y﹣2y)=(x+y)(x﹣y),∴当x=2,y=﹣1时,Q=(2﹣1)(2+1)=3,∴P=Q.【点评】此题考查的是分式的化简求值及整式的化简求值,熟知分式及整式混合运算的法那么是解答此题的关键.五、解答题:每题8分,共16分.23.2016年中秋节期间,某商城隆重开业,某商家有打算选购甲、乙两种礼盒作为开业期间给予买家的礼物,已知甲礼盒的单价是乙礼盒单价的1.5倍;用600元单独购买甲种礼盒比单独购买乙种礼盒要少10个.(1)求甲、乙两种礼盒的单价别离为多少元?(2)假设商家打算购买这两种礼盒共40个,且投入的经费不超过1050元,那么购买的甲种礼盒最多买多少个?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)依照题意能够取得相应的分式方程,从而能够解答此题;(2)依照题意能够取得相应的不等式,从而能够解答此题.【解答】解:(1)设乙种礼盒购买了x个,解得,x=20,经查验x=20是原分式方程的解,那么1.5x=30,即甲、乙两种礼盒的单价别离为30元、20元;(2)设购买甲种礼盒x个,30x+20(40﹣x)≤1050,解得,x≤25即购买的甲种礼盒最多买25个.【点评】此题考查分式方程的应用、一元一次不等式的应用,解题的关键是明确题意,找出所求问题需要的条件.24.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于M,交AC于N.(1)假设∠ABC=70°,那么∠MNA的度数是50°.(2)连接NB,假设AB=8cm,△NBC的周长是14cm.①求BC的长;②在直线MN上是不是存在P,使由P、B、C组成的△PBC的周长值最小?假设存在,标出点P的位置并求△PBC的周长最小值;假设不存在,说明理由.【考点】轴对称-最短线路问题;线段垂直平分线的性质;等腰三角形的性质.【分析】(1)依照等腰三角形的性质得出∠ABC=∠ACB=70°,求得∠A=40°,依照线段的垂直平分线的性质得出AN=BN,进而得出∠ABN=∠A=40°,依照三角形内角和定理就可得出∠ANB=100°,依照等腰三角形三线合一就可求得∠MNA=50°;(2)①依照△NBC的周长=BN+CN+BC=AN+NC+BC=AC+BC就可求得.②依照轴对称的性质,即可判定P确实是N点,因此△PBC的周长最小值确实是△NBC的周长.【解答】解:(1)∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=40°,∵MN是AB的垂直平分线,∴AN=BN,∴∠ABN=∠A=40°,∴∠ANB=100°,∴∠MNA=50°;故答案为50°.(2)①∵AN=BN,∴BN+CN=AN+CN=AC,∵AB=AC=8cm,∴BN+CN=8cm,∵△NBC的周长是14cm.∴BC=14﹣8=6cm.②∵A、B关于直线MN对称,∴连接AC与MN的交点即为所求的P点,现在P和N重合,即△BNC的周长确实是△PBC的周长最小值,∴△PBC的周长最小值为14cm.【点评】此题考查了等腰三角形的性质,线段的垂直平分线的性质,三角形内角和定理和轴对称的性质,熟练把握性质和定理是解题的关键.六、解答题:每题10分,共20分.25.已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作等边△ADE(极点A、D、E按逆时针方向排列),连接CE.(1)如图1,当点D在边BC上时,求证:①BD=CE,②AC=CE+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CE+CD是不是成立?假设不成立,请写出AC、CE、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的反向延长线上且其他条件不变时,补全图形,并直接写出AC、CE、CD之间存在的数量关系.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)依照等边三角形的性质及等式的性质就能够够得出△ABD≌△ACE,从而得出结论;(2)依照等边三角形的性质及等式的性质就能够够得出△ABD≌△ACE,就能够够得出BD=CE,就能够够得出AC=CE﹣CD;(3)先依照条件画出图形,依照等边三角形的性质及等式的性质就能够够得出△ABD≌△ACE,就能够够得出BD=CE,就能够够得出AC=CD﹣CE.【解答】解:(1)∵△ABC和△ADE都是等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,即∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE.∵BC=BD+CD,AC=BC,∴AC=CE+CD;(2)AC=CE+CD不成立,AC、CE、CD之间存在的数量关系是:AC=CE﹣CD.理由:∵△ABC和△ADE都是等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE在△ABD和△ACE中,∴△ABD≌△ACE(SAS)∴BD=CE ∴CE﹣CD=BD﹣CD=BC=AC,∴AC=CE﹣CD;(3)补全图形(如图)AC、CE、CD之间存在的数量关系是:AC=CD﹣CE.理由:∵△ABC和△ADE都是等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,∴∠BAD=∠CAE在△ABD和△ACE中,∴△ABD≌△ACE(SAS)∴BD=CE.∵BC=CD﹣BD,∴BC=CD﹣CE,∴AC=CD﹣CE.【点评】此题考查了等边三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.26.研究性学习:在平面直角坐标系中,等腰三角形ABC的极点A的坐标为(2,2).(1)假设底边BC在x轴上,请写出1组知足条件的点B、点C的坐标:(0,0)(4,0);设点B、点C的坐标别离为(m,0)、(n,0),你以为m、n应知足如何的条件?答:m+n=4 .(2)假设底边BC的两头点别离在x轴、y轴上,请写出1组知足条件的点B、点C的坐标:(2,0)(0,2);设点B、点C的坐标别离为(m,0)、(0,n),你以为m、n应知足如何的条件?答:m=n .【考点】等腰三角形的性质;坐标与图形性质.【分析】(1)假设底边BC在x轴上,那么B,C必然关于直线x=2对称.(2)假设底边BC的两头点别离在x轴、y轴上,那么B,C必然关于直线y=x对称.【解答】解:(1)假设底边BC在x轴上,那么点B、点C的坐标能够是:(0,0)(4,0);设点B、点C的坐标别离为(m,0)、(n,0),那么B、C关于点(2,0)对称,∴m+n=4.(2)假设底边BC的两头点别离在x轴、y轴上,点B、点C的坐标能够是:(2,0)(0,2);设点B、点C的坐标别离为(m,0)、(0,n),那么点B、C关于直线y=x对称,∴m=n.故别离填:(0,0)(4,0),m+n=4,(2,0)(0,2),m=n(m、n≠4、0).【点评】此题考查了的研究性的性质及坐标与图形的性质;解题要紧应用了等腰三角形的三线合必然理,等腰三角形的顶角极点必然在底边的垂直平分线上,结合图形做题是比较关键的.2016-2017学年八年级(上)期末数学试卷一、填空题1.如图,△ABC≌△DEF,EB=8,AE=2,那么DE= .2.分式无心义的条件是x= .3.化简:÷= .4.假设方程无解,那么m= .5.已知a+b=2,那么a2﹣b2+4b的值为.6.已知:如图,∠ACB=∠DBC,要使△ABC≌△DCB,只需增加的一个条件是(只需填写一个你以为适合的条件).7.如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,那么AC= .8.如图,∠1=∠2=30°,∠3=∠4,∠A=80°,那么x= 度,y= 度.二、选择题9.以下长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.1,2,3 D.5,6,1010.以下计算正确的选项是()A.(x3)3=x6B.a6•a4=a24C.(﹣mn)4÷(﹣mn)2=m2n2D.3a+2a=5a211.在如图的网格中,在网格上找到点C,使△ABC为等腰三角形,如此的点有几个()A.8 B.9 C.10 D.1112.计算(18x4﹣48x3+6x)÷6x的结果为()A.3x3﹣13x2 B.3x3﹣8x2C.3x3﹣8x2+6x D.3x3﹣8x2+113.如图,在△ABC中,∠ACB=90°,∠A=20°,假设将△ABC沿CD折叠,使点B落在AC边上的点E处,那么∠CED的度数是()A.30° B.40° C.50° D.70°14.如下图,l是四边形ABCD的对称轴,AD∥BC,现给出以下结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC.其中正确的结论有()A.1个B.2个C.3个D.4个三、计算与作图题(本大题共4小题,每题6分,共24分)15.分解因式:3x2y+12xy2+12y3.16.先化简,再求值:,其中m=9.17.解方程: =﹣1.18.请在以下三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形通过轴对称变换后取得的图形,且所画的三角形极点与方格中的小正方形极点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)四、(本大题共3小题,每题8分,共24分)19.如下图,点B、F、C、E在同一条直线上,AB∥DF,AC∥DE,AC=DE,FC与BE相等吗?请说明理由.20.如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E,A在直线DC的同侧,连接AE.(1)求证:△ACE≌△BCD;(2)线段AE与BC有什么位置关系?请说明理由.21.千年古镇赵化开发的鑫城小区的内坝是一块长为(3a+b)米,宽为(2a+b)米的长方形地,物业部门打算将内坝进行绿化(如图阴影部份),中间部份将修建一仿古小景点(如图中间的正方形),那么绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.五、(本大题共2小题,每题9分,共18分)22.在△ABC中,∠BAC=90°,∠B=45°,D为BC上一点,BD=AB,DE⊥BC,交AC于点E.(1)求证:△ADE是等腰三角形;(2)图中除△ADE是等腰三角形外,还有无等腰三角形?假设有,请一一写出来(不要求证明);假设没有,请说明理由.23.为庆贺2021年元旦的到来,学校决定举行“庆元旦迎新年”文艺演出,依照演出需要,用700元购进甲、乙两种花束共260朵,其中甲种花束比乙种花束少用100元,已知甲种花束单价比乙种花束单价高20%,乙种花束的单价是多少元?甲、乙两种花束各购买了多少朵?六、(本大题共1小题,共12分)24.小敏与同桌小颖在课下学习中碰到如此一道数学题:“如图(1),在等边三角形ABC中,点E 在AB上,点D在CB的延长线上,且ED=EC,试确信线段AE与DB的大小关系,并说明理由”.小敏与小颖讨论后,进行了如下解答:(1)取特殊情形,探讨讨论:当点E为AB的中点时,如图(2),确信线段AE与DB的大小关系,请你写出结论:AE DB(填“>”,“<”或“=”),并说明理由.(2)特例启发,解答题目:解:题目中,AE与DB的大小关系是:AE=DB(填“>”,“<”或“=”).理由如下:如图(3),过点E作EF∥BC,交AC于点F.(请你将剩余的解答进程完成)(3)拓展结论,设计新题:在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,假设△ABC的边长为1,AE=2,求CD的长(请你画出图形,并直接写出结果).参考答案与试题解析一、填空题1.如图,△ABC≌△DEF,EB=8,AE=2,那么DE= 10 .【考点】全等三角形的性质.【分析】结合图形和已知条件求出AB的长度,再依照全等三角形对应边相等得DE=AB.【解答】解:∵EB=8,AE=2,∴AB=EB+AE=8+2=10,∵△ABC≌△DEF,∴DE=AB=10.【点评】此题要紧考查全等三角形对应边相等的性质,熟练把握性质并灵活运用是解题的关键.2.分式无心义的条件是x= ﹣3 .【考点】分式成心义的条件.【分析】依照分式无心义的条件进行填空即可.【解答】解:∵分式无心义,∴x+3=0,∴x=﹣3,故答案为﹣3.【点评】此题考查了分式无心义的条件,分母为0分式无心义.3.化简:÷= .【考点】分式的乘除法.【专题】计算题;分式.【分析】原式利用除法法那么变形,约分即可取得结果.【解答】解:原式=•=,故答案为:【点评】此题考查了分式的乘除法,熟练把握运算法那么是解此题的关键.4.假设方程无解,那么m= 1 .【考点】分式方程的解.【专题】计算题.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解那个整式方程取得的解使原方程的分母等于0.【解答】解:方程去分母得:(x﹣3)(2﹣x)=m(x﹣2)解得:x=3﹣m,∴当x=2时分母为0,方程无解,即3﹣m=2,∴m=1时方程无解.故答案为:1.【点评】此题考查了分式方程无解的条件,是需要识记的内容.5.已知a+b=2,那么a2﹣b2+4b的值为 4 .【考点】因式分解的应用.【分析】把所给式子整理为含(a+b)的式子的形式,再代入求值即可.【解答】解:∵a+b=2,∴a2﹣b2+4b,=(a+b)(a﹣b)+4b,=2(a﹣b)+4b,=2a+2b,=2(a+b),=2×2,=4.故答案为:4.【点评】此题考查了利用平方差公式分解因式,利用平方差公式和提公因式法整理出a+b的形式是求解此题的关键,同时还隐含了整体代入的数学思想.6.已知:如图,∠ACB=∠DBC,要使△ABC≌△DCB,只需增加的一个条件是∠A=∠D或∠ABC=∠DCB或BD=AC (只需填写一个你以为适合的条件).【考点】全等三角形的判定.【专题】开放型.【分析】已知一条公共边和一个角,有角边角或角角边定理,再补充一组对边相等或一组对角相等即可.【解答】解:添加∠A=∠D,∠ABC=∠DCB,BD=AC后可别离依照AAS、SAS、SAS判定△ABC≌△ADC.故填∠A=∠D或∠ABC=∠DCB或BD=AC.【点评】此题考查三角形全等的判定方式;判定两个三角形全等的一样方式有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,依照已知结合图形及判定方式选择条件是正确解答此题的关键.7.如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,那么AC= 6 .【考点】线段垂直平分线的性质;含30度角的直角三角形.【分析】先作辅助线,然后利用垂直平分线的性质求出AD=BD,最后解直角三角形计算.【解答】解:连接BD∵DE垂直平分AB。
12016—2017学年度第一学期阶段性质量监测参考答案及评分意见八年级数学说明:1.如果考生的解法与本解法不同,可参照本评分标准制定相应评分细则.2.当考生的解答在某一步出现错误,影响了后继部分时,如果这一步以后的解答未改变这道题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、 选择题:(本题共8个小题,每小题3分,共24分)1. D2. A3. C4.B5. B6. D7. D8. A 二、 填空题(本题共有8个小题,每小题3分,满分24分)9. 23— ; 10. 如果两个角是等腰三角形的两底角,那么这两个角相等; 11. -1;12. 乙 ; 13. 40°; 14. ⎩⎨⎧=+++=-5050)100()100(10x y y x y x ; 15. 13; 16. 26731344+三、 作图题:(4分)17.(图形略) 作图正确,作图痕迹必须清楚得3分,结论1分. 四、解答题(共68分)18.计算:(本题满分14分,(1)、(2)每小题3分,(3)、(4)每小题4分)适当考虑分步得分解:(1)原式=3413- (2) 原式=56-(3)原方程组的解为: ⎩⎨⎧==180120y x (4)点P 的坐标为:(4 , 2)19.(本小题满分8分)(1)通过以上统计图提取有关信息完成下面两个表格:甲队员的信息表-1 乙队员的信息表-2分 (2)根据以上信息,整理分析数据如下表-3,请填写完整.………………………………………………………………………………6分(3)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定,2BAEF CD G214 第21题3综合以上各因素,若选派一名学生参加比赛的话,可选择 乙 参赛,因为乙获得高分的可能更大.………………………………………………………………………………8分20. 列方程(组)解应用题.(本题8分)(方法不唯一,正确即得分) 设定价为x 元,进价为y 元,由题意可知:……………………………1分⎩⎨⎧--=-=-)35(12)%85(845y x y x y x ………………………………………5分 解得: ⎩⎨⎧==155200y x ……………………………………………..7分答:该商品定价为200元,进价为155元. ……………………….8分 21.(本题8分)证明:∵AD ⊥BC ,EF ⊥BC∴∠ADC =∠EFC =90°∴A C ‖ GD ………………………………3分 ∴∠3=∠2又∵∠1=∠2 ∴∠1=∠3………………………………5分∴A C ‖GD∴∠4 =∠C ………………………………8分 22. (本小题满分8分) (1)解:根据题意得:60015200400151+=++=x x y ………………1分100252+=x y ………………………2分(2) 由y 1=y 2得:15x+600=25x+100解得:x=50∴A 地到B 地的路程为50千米时两种运输方式的总运费一样. ………5分(3) 当x=120时,2400600120151=+⨯=y ………………………6分3100100120252=+⨯=y ………………………..7分 ∵21y y <∴若A 地到B 地的路程为120km ,采用铁路运输节省总运费 …………………8分 23. (本小题满分10分)(1)∠P=120°+13∠A ………………………………..2分……………..6分∴∠PBC+∠PCB=13(∠ABC+∠ACB )=13(180°-∠A ) ∴∠P =180°-∠(PBC+∠PCB ) =180°-13(180°-∠A )13证明:∵点P 是∠ABC 、∠ACB 的三等分线的交点.∴∠PBC=13∠ABC ;∠PCB=13∠ACB ∴∠PBC+∠PCB=13(∠ABC+∠ACB )又∵∠A+(∠ABC +∠ACB )=180° ∴∠ABC+∠ACB=180°-∠AA BCP图23(2)∠P=135°+14∠A ……8分 (3)∠P=1n n -180°+1n∠A ……10分24:(本小题满分12分)(1)M (2l +1,0)………………………………………..2分 (2)设AC 的解析式为y=kx +b ,依题可知:⎩⎨⎧+==b k b 402 解得:⎪⎩⎪⎨⎧=-=221b k 所以221+-=x y ; ……………………………………….5分(3) ①当0<l <1.5时:x=l ,y=122l -+即QP=122l -+, 4(21)32MC l l =-+=-2111111(32)2322224QMC S MC QP l l l l ∆⎛⎫∴=⋅=-⋅-+=-+ ⎪⎝⎭……………………8分 ②当l =1.5时, M 与C 重合,S △QMC=0.(注:可并于①或③中)……………………9分③当1.54t<<时, (21)423MC l l =+-=-2111111(23)2322224QMC S MC QP l l l l ∆⎛⎫∴=⋅=-⋅-+=-+- ⎪⎝⎭……………12分。
2016-2017学年度上学期期末考试八年级数学试题 2017.01第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1. 在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是A .B .C .D . 2. 若分式51+x 有意义,则x 的取值范围是 A .5->x B .5-<x C .5≠x D .5-≠x3. 下列运算正确的是A . ()623a a -=-B .842a a a ÷=C . 222)(b a b a +=+D .4)21(2=-- 4. 多项式m mx -2与多项式122+-x x 的公因式是A.1-xB.1+xC.12-xD.2)1(-x5.如图,在△ABC 中,AB =AC ,过A 点作AD ∥BC ,若∠BAD =110°,则∠BAC 的大小为A .30°B .40°C .50°D .70°6. 在平面直角坐标系中,已知点A (-2,a )和点B (b ,-3)关于y 轴对称,则ab 的值 是A .-1B .1C .6D .-67.若2(1)(3)x x x mx n -+=++,则m n +=A .-1B .-2C .-3D .28. 已知4x y +=,3xy =,则22x y +的值为A .22B .16C .10D .4(第5题图)9. 在Rt △ABC 中,已知∠C =90°,有一点D 同时满足以下三个条件:①在直角边BC 上;②在∠CAB 的角平分线上;③在斜边AB 的垂直平分线上,那么∠B 等于A .60°B .45°C .30°D .15°10.如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于F ,若BF =AC ,则∠ABC 的大小是A .40°B .45°C .50°D .60°11. 下列判断中,正确的个数有①斜边对应相等的两个直角三角形全等;②有两个锐角相等的两个直角三角形不一定全等;③一条直角边对应相等的两个等腰直角三角形全等;④一个锐角和一条直角边分别相等的两个直角三角形全等.A. 4个B. 3个C. 2个D. 1个12. 化简2221121a a a a a a +-÷--+的结果是 A.1a B.a C.11a a +- D.11a a -+ 13.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是 A. 15B. 30C. 45D. 6014. 如图,AD 为 △ABC 的角平分线,DE ⊥AB 于点 E ,DF ⊥AC 于点 F ,连接 EF 交 AD 于点 O .则下列结论:①DE=DF ;②△ADE ≌△ADF ;③︒=∠+∠90CDF BDE ;④AD 垂直平分EF.其中正确结论的个数是A. 1个B. 2个C. 3个D. 4个(第10题图) (第13题图) (第14题图)第Ⅱ卷 非选择题(共78分)二、填空题:(本题共5小题,每小题3分,共15分)15.分解因式:822-x =________________.16. 如图,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C =______度.17. 请在横线上补上一项,使多项式9_______42++x 成为完全平方式.18. 如图,已知AB ∥CF ,E 为DF 的中点,若AB =7cm ,CF =4cm ,则BD =cm .19. 阅读理解:若3,253==b a ,试比较b a ,的大小关系.小明同学是通过下列方式来解答问题的:因为322)(55315===a a ,273)(33515===b b ,而2732>,∴1515b a > ∴b a >.解答上述问题逆用了幂的乘方,类比以上做法,若3,297==y x ,试比较x 与y 的大小关系为x ______y .(填“>”或“<”)三、解答题(本题满分63分)20.(本题满分8分,每小题4分)(1)计算:()343212a b a b •÷-2 ;(2)分解因式:322484y xy y x -+-.21.(本题满分7分)解方程:31.11x x x -=-+(第16题图) (第18题图)22.(本题满分8分)先化简,再求值: 9)3132(2-÷-++x x x x ,其中5x .=-23. (本题满分9分)已知:如图,C 是AB 上一点,点D ,E 分别在AB 两侧,AD ∥BE ,且AD =BC ,BE =AC .(1)求证:CD =CE ;(2)连接DE ,交AB 于点F ,猜想△BEF 的形状,并给予证明.24.(本题满分10分)某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?(第23题图)小丽同学动手剪了如图①所示的正方形与长方形纸片若干张.(1)她用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是___________________;(2)如果要拼成一个长为)2(b a +,宽为)(b a +的大长方形,则需要2号卡片______ 张,3号卡片 张;(3)当她拼成如图③所示的长方形,根据6张小纸片的面积和等于大纸片(长方形)的面积可以把多项式2223b ab a ++分解因式,其结果是 ;(4)动手操作,请你依照小丽的方法,利用拼图分解因式2265b ab a ++=________________;并画出拼图.【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B,C),连结AM,以AM为边作等边△AMN,连结CN.求证:CN∥AB.(第26题图1)【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论CN∥AB还成立吗?请说明理由.(第26题图2)2016-2017学年度上学期期末考试八年级数学参考答案 2017-1一、选择题(每小题3分,共42分)1-~5 CDDAB 6~10 DACCB 11~14 BABC二、填空题(每小题3分,共15分)15.)2)(2(2-+x x 16. ︒25 17. x 12 (或x 12-或x 12±) 18. 3 19.<三、解答题(本大题共7小题,共63分)20. (8分)解:(1)原式3432812a b a b =-÷ ……2分 (2)223484x y xy y -+- 223b =- …………4分 224(2)y x xy y =--+ ……2分 21.(7分)解:方程两边同乘()(1)1x x +-,得 24()y x y =-- ………4分 ()()()()11131x x x x x +-+-=- ……………………………………2分解得,2x = ……………………………………………5分检验:当2x =时,()(1)10x x +-≠ …………………………………………6分 ∴2x =是原分式方程的解. ……………………………………………7分 22.(8分).xx x x x )3)(3()3132(-+⨯--+=原式 ………………………...2分 xx x x 3)3(2+--= ……………………….….4分 xx x x x 9362-=---= …………………………………..6分 当2-=x 时,原式=2112929=---=-x x ……………………8分 23. (9分)(1)证明:∵AD ∥BE ,∴∠A =∠B ,………………………………..1分在△ADC 和△BCE 中⎪⎩⎪⎨⎧=∠=∠=BE AC B A BCAD ∴△ADC ≌△BCE (SAS ),………………………3分∴CD =CE ;……………………………………..…..4分(2)△BEF 为等腰三角形,……………………………………5分证明如下:由(1)可知CD =CE ,∴∠CDE =∠CED ,………………………………………….…6分 由(1)可知△ADC ≌△BEC ,∴∠ACD =∠BEC ,…………………………………………….7分∴∠CDE +∠ACD =∠CED +∠BEC ,即∠BFE =∠BED ,……………………………………..……...8分∴BE=BF , ∴△BEF 是等腰三角形.………………………………….….9分24.(10分)解:(1)设该商家第一次购进机器人x 个,……………….…1分 依题意得:+10=,……………..3分解得x =100.…………………………………....5分经检验x =100是所列方程的解,且符合题意.答:该商家第一次购进机器人100个.……………………6分(2)设每个机器人的标价是a 元.则依题意得:(100+200)a ﹣11000﹣24000≥(11000+24000)×20%,..8分解得a ≥140.……………………………………………...9分答:每个机器人的标价至少是140元.…………………..10分25.(10分)解:(1)222)(2b a b ab a +=++……………….…2分(2) 2, 3 …………….…4分(3) ))(2(2322b a b a b ab a ++=++ …………….…6分(4) )2)(3(6522b a b a b ab a ++=++………….…8分 作图正确 ………….…10分26.(11分)(1)证明:∵△ABC 和△AMN 都是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN =60°,….1分∴∠BAM +∠MAC =∠MAC +∠CAN , ∴∠BAM =∠CAN ,………………………….2分在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB ∴△ABM ≌△ACN (SAS ), (4)分∴∠ACN =∠ABM =60°……………………………..5分∵∠ACB=60° ∴∠BCN+∠ABM=180°;…………6分∴CN ∥AB…………………………………………….7分(2)成立,…………………………………………8分理由如下:∵△ABC 和△AMN 都是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN=60°,∴∠BAC+∠CAM=∠CAM+∠MAN , ∴∠BAM=∠CAN在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB , ∴△ABM ≌△ACN (SAS ),………9分∴∠ACN=∠ABM =60°…………………………….10分∵∠ACB=60° ∴∠BCN+∠ABM=180°;∴CN∥AB……………………………………………………...11分。
2016—2017学年度第一学期期末质量检测八年级数学试题参考答案及评分标准一、选择题:(本题满分36分,每小题3分)A D D A D D CB DCD D二、填空题:(本题满分18分)13. (6,-9) 14. 10 15. 4 16.8 17. 5或7 18.③④三、解答题:(本题满分69分)19.(本题满分8分)(1)解:原方程可变形为:1)2)(2(162)2(-=-++-+-x x x x 方程两边同乘以)2)(2(-+x x ,得:)2)(2(16)2(2-+-=++-x x x ……………………………………2分解这个方程得:2=x ……………………………………3分检验:当2=x 时,)2)(2(-+x x =0,∴2=x 是增根∴原分式方程无解。
……………………………………4分(2)解:原式=1+x x ……………………………………2分 ∵当1,01x =-,时,题中分式无意义,∴23x =或 ∴当2=x 时,原式=32;当3=x 时,原式=43 以上三种情况只选一种即可. ………………………………………4分20. (本题共3个小题,每小题3分,满分9分)(1)30—126(2)4+6(3)23-≥≥x ,此不等式组的正整数解为x=1、2、321.(本题满分9分)证明:∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC∴DE =DF …………………………3分∵点D 是BC 的中点∴BD =CD …………………………5分在Rt △BDE 与Rt △CDF 中⎩⎨⎧==CDBD DF DE ∴Rt △BDE ≌Rt △CDF (HL )…………………………8分∴∠B=∠C …………………………9分22.(本题满分7分)(1)m=3x+8;-------------2分(2)根据题意得:3)1(5831)1(5+-<+≤+-x x x .-----------------4分解得56>≥x∴有6名学生获奖---------6分m=3*6+8=26 该校买了26本课外读物------7分23.(本题满分12分)(1)证明:∵△ABE 为等边三角形∴AB=EA …………………1分又∵EF ⊥AB∴ 3021=∠=∠AEB AEF ………2分 在△ACB 与△EF A 中⎪⎩⎪⎨⎧=∠=∠∠=∠EA AB EFA ACB AEF BAC∴△ACB ≌△EF A ……………………………………4分∴AC =EF ……………………………………5分(2)证明:∵△ACD 为等边三角形∴∠D A C=60°,AC =AD∵AC =EF∴AD =EF ……………………………………7分又∵∠BAC =30°∴∠DAF =60°+30°=90°=∠EF A∴AD ∥EF ……………………………………9分∴四边形ADFE 是平行四边形. …………………10分(3)EF=3---------------------------------------------12分24.(本题满分9分)(1)解:2.4千米=2400米设小明步行的速度是x 米/分钟,则骑自行车的速度是x 3米/分钟,根据题意,得:20324002400=-xx ………………………………3分 解这个方程,得:80=x …………………………………4分 经检验,80=x 是原分式方程的解,且符合题意. 答:小明步行的速度是80米/分钟. …………………………5分(2)4238024002802400=⨯++分钟 …………………………7分 42分钟<45分钟所以,小明能在球赛开始前赶到体育馆. ………………………9分25.(本题满分12分)证明:取AB 的中点M ,连接ME .∵四边形ABCD 是正方形,E 为BC 中点,M 为AB 中点∴AM =MB =BE =EC∴Rt △MBE 为等腰直角三角形∴∠BME =45°∴∠AME =135°∵CF 平分∠DCG∴∠ECF =135°∴∠AME =∠ECF …………………………1分∵∠AEF =90°∴∠CEF +∠AEB =90°又∵∠MAE +∠AEB =90°∴∠MAE =∠CEF …………………………2分在△AME 与△ECF 中⎪⎩⎪⎨⎧∠=∠=∠=∠ECF AME ECAM CEF MAE ∴△AME ≌△ECF (ASA )…………………………3分∴AE =EF ……………………………………………4分【拓展】(1)情况一:当点E 在线段BC 上时,结论成立。
2016-2017学年重庆市丰都县初二(上)期末数学试卷一、选择题(本大题12个小题,每小题4分,共48分)在每小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的1.(4分)如果一个三角形的两边长分别为2和4,则第三边长可能是()A.2 B.4 C.6 D.82.(4分)下列图形中,是轴对称图形的是()A. B.C.D.3.(4分)下列各式从左到右的变形是因式分解的是()A.x2+2x+3=(x+1)2+2 B.(x+y)(x﹣y)=x2﹣y2C.x2﹣xy+y2=(x﹣y)2 D.2x﹣2y=2(x﹣y)4.(4分)计算2x3÷的结果是()A.2x2B.2x4C.2x D.45.(4分)如图,如果AD∥BC,AD=BC,AC与BD相交于O点,则图中的全等三角形一共有()A.3对 B.4对 C.5对 D.6对6.(4分)下列约分正确的是()A.=x3B.=C.=0 D.=7.(4分)分解因式(x﹣1)2﹣2(x﹣1)+1的结果是()A.(x﹣1)(x﹣2) B.x2C.(x+1)2D.(x﹣2)28.(4分)如图,是一组按照某种程度摆放成的图案,则图6中三角形的个数是()A.18 B.19 C.20 D.219.(4分)某特快列车在最近一次的铁路大提速后,时速提高了30千米/小时,则该列车行驶350千米所用的时间比原来少用1小时,若该列车提速前的速度是x千米/小时,下列所列方程正确的是()A.B.C.D.10.(4分)已知m2﹣m﹣1=0,则计算:m4﹣m3﹣m+2的结果为()A.3 B.﹣3 C.5 D.﹣511.(4分)如图,点D、E分别是边AB、AC的中点,将△ADE沿着DE对折,点A落在BC边上的点F,若∠B=50°,则∠BDF的度数为()A.50°B.70°C.75°D.80°12.(4分)7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a= b B.a=3b C.a= b D.a=4b二、填空题(本大题共6个小题,每小题4分,共24分)13.(4分)计算的结果为.14.(4分)因式分解:﹣3x2+6xy﹣3y2=.15.(4分)如图:∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于.16.(4分)如图,∠ABC=∠DCB,请补充一个条件:,使△ABC≌△DCB.17.(4分)已知:,则代数式的值为.18.(4分)正方形ABCD中,E、F分别在AD、DC上,∠ABE=∠CBF=15°,G是AD上另一点,且∠BGD=120°,连接EF、BG、FG、EF、BG交于点H,则下面结论:①DE=DF;②△BEF是等边三角形;③∠BGF=45°;④BG=EG+FG中,正确的是(请填番号)三、解答题(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤19.(7分)(1)计算:(7x2y3﹣8x3y2z)÷8x2y2(2)分解因式:(x2﹣1)2﹣6(x2﹣1)+9.20.(7分)附加题:如图,已知∠1=∠2,∠3=∠4,∠A=100°,求x的值.四、解答题(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤21.(10分)如图,已知PB⊥AB,PC⊥AC,且PB=PC,D是AP上的一点,求证:BD=CD.22.(10分)已知:如图所示,△ABC中,∠BAC=90°,AB=AC,分别过点B、C 作经过点A的直线L的垂线段BD、CE,垂足分别D、E.(1)求证:DE=BD+CE.(2)如果过点A的直线经过∠BAC的内部,那么上述结论还成立吗?请给出你的结论,并画出图形予以证明.23.(10分)在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?24.(10分)(1)化简[(xy+2)(xy﹣2)﹣2(x2y2﹣2)]÷xy(2)根据以上结果求当其中x=10,y=﹣时的值.五、解答题(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤25.(12分)某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.(1)第一次购书的进价是多少元?(2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚钱,赚多少?26.(12分)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC 绕点C顺时针方向旋转60°,到△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由.(3)探索:当α为多少度时,△AOD是等腰三角形.2016-2017学年重庆市丰都县初二(上)期末数学试卷参考答案与试题解析一、选择题(本大题12个小题,每小题4分,共48分)在每小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的1.(4分)如果一个三角形的两边长分别为2和4,则第三边长可能是()A.2 B.4 C.6 D.8【解答】解:设第三边长为x,则由三角形三边关系定理得4﹣2<x<4+2,即2<x<6.因此,本题的第三边应满足2<x<6,把各项代入不等式符合的即为答案.2,6,8都不符合不等式2<x<6,只有4符合不等式.故选:B.2.(4分)下列图形中,是轴对称图形的是()A. B.C.D.【解答】解:A、是轴对称图形,故此选项符合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选:A.3.(4分)下列各式从左到右的变形是因式分解的是()A.x2+2x+3=(x+1)2+2 B.(x+y)(x﹣y)=x2﹣y2C.x2﹣xy+y2=(x﹣y)2 D.2x﹣2y=2(x﹣y)【解答】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、是多项式的乘法,不是因式分解,故本选项错误;C、应为x2﹣2xy+y2=(x﹣y)2,故本选项错误;D、2x﹣2y=2(x﹣y)是因式分解,故本选项正确.故选:D.4.(4分)计算2x3÷的结果是()A.2x2B.2x4C.2x D.4【解答】解:原式=2x3•x=2x4,故选:B.5.(4分)如图,如果AD∥BC,AD=BC,AC与BD相交于O点,则图中的全等三角形一共有()A.3对 B.4对 C.5对 D.6对【解答】解:共4对,△ABD≌△CDB,△ACD≌△CAB,△AOD≌△COB,△AOB ≌△COD,理由是:∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∴AB=CD.在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),同理△ACD≌△CAB,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵∠AOB=∠COD,∴△AOB≌△COD,同理△AOD≌△COB,故选:B.6.(4分)下列约分正确的是()A.=x3B.=C.=0 D.=【解答】解:A、原式=x6﹣2=x4,故本选项错误;B、原式==,故本选项正确;C、原式=1,故本选项错误;D、原式==,故本选项错误;故选:B.7.(4分)分解因式(x﹣1)2﹣2(x﹣1)+1的结果是()A.(x﹣1)(x﹣2) B.x2C.(x+1)2D.(x﹣2)2【解答】解:(x﹣1)2﹣2(x﹣1)+1=(x﹣1﹣1)2=(x﹣2)2.故选:D.8.(4分)如图,是一组按照某种程度摆放成的图案,则图6中三角形的个数是()A.18 B.19 C.20 D.21【解答】解:第一个图案有三角形1个,第二图案有三角形1+3=4个,第三个图案有三角形1+3+4=8个,第四个图案有三角形1+3+4+4=12,第五个图案有三角形1+3+4+4+4=16,第六个图案有三角形1+3+4+4+4+4=20.故选:C.9.(4分)某特快列车在最近一次的铁路大提速后,时速提高了30千米/小时,则该列车行驶350千米所用的时间比原来少用1小时,若该列车提速前的速度是x千米/小时,下列所列方程正确的是()A.B.C.D.【解答】解:原来走350千米所用的时间为,现在走350千米所用的时间为:,所以可列方程为:﹣=1,故选B.10.(4分)已知m2﹣m﹣1=0,则计算:m4﹣m3﹣m+2的结果为()A.3 B.﹣3 C.5 D.﹣5【解答】解:∵m2﹣m﹣1=0∴m2﹣m=1m4﹣m3﹣m+2=m2(m2﹣m)﹣m+2=m2﹣m+2=1+2=3;故选:A.11.(4分)如图,点D、E分别是边AB、AC的中点,将△ADE沿着DE对折,点A落在BC边上的点F,若∠B=50°,则∠BDF的度数为()A.50°B.70°C.75°D.80°【解答】解:∵点D、E分别边AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,∴∠ADE=∠B=50°,∵△DEF是△DEA经过翻折变换得到的,∴∠EDF=50°,∴∠BDF=180°﹣2∠ADE=180°﹣100°=80°.故选:D.12.(4分)7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a= b B.a=3b C.a= b D.a=4b【解答】解:左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为PC,宽为a,∵AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,∴AE+a=4b+PC,即AE﹣PC=4b﹣a,∴阴影部分面积之差S=AE•AF﹣PC•CG=3bAE﹣aPC=3b(PC+4b﹣a)﹣aPC=(3b ﹣a)PC+12b2﹣3ab,则3b﹣a=0,即a=3b.解法二:既然BC是变化的,当点P与点C重合开始,然后BC向右伸展,设向右伸展长度为X,左上阴影增加的是3bX,右下阴影增加的是aX,因为S不变,∴增加的面积相等,∴3bX=aX,∴a=3b.故选:B.二、填空题(本大题共6个小题,每小题4分,共24分)13.(4分)计算的结果为.【解答】解:原式=(﹣)÷=×=.故答案为.14.(4分)因式分解:﹣3x2+6xy﹣3y2=﹣3(x﹣y)2.【解答】解:﹣3x2+6xy﹣3y2=﹣(3x2﹣6xy+3y2)=﹣3(x2﹣2xy+y2)=﹣3(x﹣y)2,故答案为:﹣3(x﹣y)2.15.(4分)如图:∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于4.【解答】解:作DG⊥AC,垂足为G.∵DE∥AB,∴∠BAD=∠ADE,∵∠DAE=∠ADE=15°,∴∠DAE=∠ADE=∠BAD=15°,∴∠DEG=15°×2=30°,∴ED=AE=8,∴在Rt△DEG中,DG=DE=4,∴DF=DG=4.故答案为:4.16.(4分)如图,∠ABC=∠DCB,请补充一个条件:AB=DC或者∠A=∠D,使△ABC≌△DCB.【解答】解:∵∠ABC=∠DCB,BC=BC,∴当AB=DC(SAS)或∠A=∠D(ASA)或∠BCA=∠DBC(AAS)时,∴△ABC≌△DCB.故填AB=DC或∠A=∠D.17.(4分)已知:,则代数式的值为 4.5.【解答】解:已知等式整理得:=﹣2,即x﹣y=﹣2xy,则原式===4.5,故答案为:4.518.(4分)正方形ABCD中,E、F分别在AD、DC上,∠ABE=∠CBF=15°,G是AD上另一点,且∠BGD=120°,连接EF、BG、FG、EF、BG交于点H,则下面结论:①DE=DF;②△BEF是等边三角形;③∠BGF=45°;④BG=EG+FG中,正确的是①②④(请填番号)【解答】证明:连接BD,在BG上取一点M,使得GM=GF.∵四边形ABCD是正方形,∴AB=CB=AD=CD,∠ABC=∠A=∠C=90°,∠ABD=∠CBD=45°,在△BAE和△BCF中,,∴△BAE≌△BCF,∴BE=BF,AE=CF,∴DE=DF,故①正确,∵∠ABE=∠CBF=15°,∠EBF=60°,∴△EBF是等边三角形,故②正确,∵∠BGD=120°,∴∠EGH=∠HFB=60°,∵∠EHG=∠BHF,∴△EHG∽△BHF,∴=,∴=,∵∠EHB=∠GHF,∴△EHB∽△GHF,∴∠BEH=∠BGF=60°,故③错误,∵GM=GF,∴△GMF是等边三角形,∴FM=FG,∠MFG=∠BFE=60°,∴∠BFM=∠EFG,∵BF=FE,∴△BFM≌△EFG,∴BM=EG,∴GB=GM+BM=GF+EG,故④正确.故答案为①②④.三、解答题(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤19.(7分)(1)计算:(7x2y3﹣8x3y2z)÷8x2y2(2)分解因式:(x2﹣1)2﹣6(x2﹣1)+9.【解答】解:(1)原式=y﹣xz;(2)原式=(x2﹣1﹣3)2=(x+2)2(x﹣2)2.20.(7分)附加题:如图,已知∠1=∠2,∠3=∠4,∠A=100°,求x的值.【解答】解:∵在△ABC中,∠A+∠ABC+∠ACB=180°,∠A=100°,∴∠ABC+∠ACB=180°﹣100°=80°,∵∠1=∠2,∠3=∠4,∴∠2+∠4=(∠ABC+∠ACB)=40°,∴x=180°﹣(∠2+∠4)=140°.四、解答题(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤21.(10分)如图,已知PB⊥AB,PC⊥AC,且PB=PC,D是AP上的一点,求证:BD=CD.【解答】证明:∵PB⊥BA,PC⊥CA,在Rt△PAB,Rt△PAC中,∵PB=PC,PA=PA,∴Rt△PAB≌Rt△PAC,∴∠APB=∠APC,又D是PA上一点,PD=PD,PB=PC,∴△PBD≌△PCD,∴BD=CD.22.(10分)已知:如图所示,△ABC中,∠BAC=90°,AB=AC,分别过点B、C 作经过点A的直线L的垂线段BD、CE,垂足分别D、E.(1)求证:DE=BD+CE.(2)如果过点A的直线经过∠BAC的内部,那么上述结论还成立吗?请给出你的结论,并画出图形予以证明.【解答】解:(1)∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵BD⊥l,CE⊥l,∴∠ADB=∠CEA=90°,∴∠BAD+∠ABD=90°,∴∠ABD=∠CAE.在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵AD+AE=DE,∴BD+CE=DE;(2)上述结论不成立.如图所示,BD=DE+CE.证明:∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵BD⊥l,CE⊥l,∴∠ADB=∠CEA=90°,∴∠BAD+∠ABD=90°,∴∠ABD=∠CAE.在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵AD+DE=AE,∴BD=DE+CE.如图所示,CE=DE+BD,证明:证明:∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵BD⊥l,CE⊥l,∴∠ADB=∠CEA=90°,∴∠BAD+∠ABD=90°,∴∠ABD=∠CAE.在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵AE+DE=AD,∴CE=DE+BD.23.(10分)在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?【解答】解:(1)△A1B1C1如图所示;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).24.(10分)(1)化简[(xy+2)(xy﹣2)﹣2(x2y2﹣2)]÷xy(2)根据以上结果求当其中x=10,y=﹣时的值.【解答】解:(1)[(xy+2)(xy﹣2)﹣2(x2y2﹣2)]÷xy=[x2y2﹣4﹣2x2y2+4]÷xy=﹣x2y2÷xy=﹣xy;(2)当x=10,y=﹣时,原式=﹣10×(﹣)=.五、解答题(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤25.(12分)某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.(1)第一次购书的进价是多少元?(2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚钱,赚多少?【解答】解:(1)设第一次购书的单价为x元,根据题意得:+10=.解得:x=5.经检验,x=5是原方程的解,答:第一次购书的进价是5元;(2)第一次购书为1200÷5=240(本),第二次购书为240+10=250(本),第一次赚钱为240×(7﹣5)=480(元),第二次赚钱为200×(7﹣5×1.2)+50×(7×0.4﹣5×1.2)=40(元),所以两次共赚钱480+40=520(元),答:该老板两次售书总体上是赚钱了,共赚了520元.26.(12分)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC 绕点C顺时针方向旋转60°,到△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由.(3)探索:当α为多少度时,△AOD是等腰三角形.【解答】(1)证明:由旋转的性质得:CO=CD,∠OCD=60°,∴△COD是等边三角形;(2)解:当α=150°,即∠BOC=150°时,△AOD是直角三角形.理由如下:由旋转的性质得:△BOC≌△ADC,∴∠ADC=∠BOC=150°,又∵△COD是等边三角形,∴∠ODC=60°,∴∠ADO=90°,即△AOD是直角三角形;(3)解:分三种情况:①AO=AD时,∠AOD=∠ADO.∵∠AOD=360°﹣∠AOB﹣∠COD﹣α=360°﹣110°﹣60°﹣α=190°﹣α,∠ADO=α﹣60°,∴190°﹣α=α﹣60°∴α=125°;②OA=OD时,∠OAD=∠ADO.∵∠AOD=190°﹣α,∠ADO=α﹣60°,∴∠OAD=180°﹣(∠AOD+∠ADO)=50°,∴α﹣60°=50°∴α=110°;③OD=AD时,∠OAD=∠AOD.∵190°﹣α=50°∴α=140°.综上所述:当α的度数为125°或110°或140°时,△AOD是等腰三角形.附赠:初中数学考试答题技巧一、答题原则大家拿到考卷后,先看是不是本科考试的试卷,再清点试卷页码是否齐全,检查试卷有无破损或漏印、重印、字迹模糊不清等情况。