第二十二章 一元二次方程小结与复习
- 格式:doc
- 大小:82.00 KB
- 文档页数:4
第二十二章一元二次方程小结Ⅰ、本章知识结构框图:Ⅱ、本章知识点:1、一元二次方程的定义及一般形式:只含有一个未知数、并且未知数的最高次数是2的整式方程叫做一元二次方程。
一元二次方程的一般形式是:ax²+bx+c=0(a≠0),其中ax²叫做二次项,a叫做二次项系数,b叫做一次项系数,c叫做常数项。
注意:(1)一般形式中,b、c可以是任何实数;二次项系数a是不等于0的实数,这是因为a等于0,方程就不是二次方程了;(2)要确认一元二次方程的各项系数,必须先将此方程化简整理成一般形式,然后再确定a、b、c,同时不要漏掉符号。
2、一元二次方程的解:能使一元二次方程左右两边的未知数的值叫做一元二次方程的解(或根)。
3、一元二次方程的四种解法:解一元二次方程常用的方法有:开平方法,配方法,公式法和因式分解法。
其中开平方法和因式分解法是特殊解法,而配方法和由配方法推导出来的求根公式是一般方法,一般方法对任何一元二次方程都可以使用。
(1)直接开平方法:把方程变为形如(x+a)²=b(b≥0)的方程可用直接开平方法求解。
两边直接开平方得:x+a=b或x+a=-b。
∴x1=-a+ b,x2=-a-b。
注意:(1)直接开平方的理论根据是平方根的定义,故只有在b≥0条件下,方程才有实数根。
若b<0,则方程(x+a)²=b无实数根;(2)在实际问题中,要联系实际情况确定方程的解。
(2)因式分解法:如果一元二次方程经过因式分解能化成a·b=0的形式,且a与b都是含有未知数的一次式那么它就可以化为两个一元一次方程a=0或b=0,根据这种思想解一元二次方程的方法,就是因式分解法。
因式分解法体现了将一元二次方程“降次”转化为一元一次方程来解的思想,运用这种方法的步骤是:①将已知方程化为一般形式,使方程右端为0;②将左端的二次三项式分解为两个一次因式的积;③分别令方程左边的两个因式为0,得到两个一次方程,它们的解就是原方程的解。
第二十二章复习一元二次方程综合复习本章知识框架】【本章重点】1.一元二次方程的定义一元二次方程有三个特点:(1) 只含有一个未知数;(2) 未知数的最高次数是2;(3) 是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为(a工0)的形式,则这个方程就为一元二次方程.2.一兀二次方程的一般形式我们把(a工0)叫做一元二次方程的一般形式,特别注意二次项系数一定不为0, b、c可以为任意实数,包括可以为0,即一元二次方程可以没有一次项,常数项.(a工0), (a工0), (a工0)都为一元二次方程.3.一元二次方程的解法元二次方程的解法有四种:(1)直接开平方法;(2)因式分解法;(3)配方法;(4)公式法.要根据方程的特点灵活选择方法,其中公式法是通法,可以解任何一个一元二次方程.4.一元二次方程根的判别式元二次方程根的判别式为.△>0方程有两个不相等的实数根.△ = 0方程有两个相等的实数根.△ <0 方程没有实数根.上述由左边可推出右边,反过来也可由右边推出左边.5.一元二次方程根与系数的关系如果一兀「次方程(a工0)的两个根是,那么.6.解应用题的步骤(1)分析题意,找到题中未知数和题给条件的相等关系;(2)设未知数,并用所设的未知数的代数式表示其余的未知数;(3)找出相等关系,并用它列出方程;(4)解方程求出题中未知数的值;(5)检验所求的答数是否符合题意,并做答.解题思想】1.转化思想转化思想是初中数学最常见的一种思想方法.运用转化的思想可将未知数的问题转化为已知的问题,将复杂的问题转化为简单的问题.在本章中,将解一元二次方程转化为求平方根问题,将二次方程利用因式分解转化为一次方程等.2.从特殊到一般的思想从特殊到一般是我们认识世界的普遍规律,通过对特殊现象的研究得出一般结论,如从用直接开平方法解特殊的问题到配方法到公式法,再如探索一元二次方程根与系数的关系等.3.分类讨论的思想一元二次方程根的判别式体现了分类讨论的思想.【经典例题精讲】1.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0.2.解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解法,再考虑用公式法.3.一元二次方程(a工0)的根的判别式正反都成立.利用其可以(1)不解方程判定方程根的情况;⑵根据参系数的性质确定根的范围;(3)解与根有关的证明题4 一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数;(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程【中考热点】本章的应用性较强,本章内容一直是命题的热点,填空题、选择题有,解答题也有,单独出现或和其他内容结合出现历届中考题目】一、填空题1. (2003 •吉林)方程的解是_________________,2.(2002 •江苏泰州)如果是方程的两根,那么= __________________ .3. (2002 •杭州)已知2是关于x的方程的一个解,贝U 2a—1的值为___________________ .4. (2003 •大连)某房屋开发公司经过几年的不懈努力,开发建设住宅面积由2000年4万平方米,到2002年的7万平方米.设这两年该房屋开发公司建设住宅面积的年平均增长率为X,则可列方程为___________________ .5. (2003 •四川)已知关于X的一元二次方程有两个负数根,那么实数m的取值范围是__________________ .6. (2003 •青岛)九年义务教育三年制初级中学教科书《代数》第三册第52页的例2是这样的:“解方程”.这是一个一元四次方程,根据该方程的特点,它的解法通常是:设,那么,于是原方程可变为①,解这个方程得:.当y = 1时,,••• X =± 1;当y = 5时,,••,所以原方程有四个根:.(1)在由原方程得方程①的过程中,利用__________________ 达到降次的目的,体现了转化的数学思想.(2)解方程,若设,贝原方程可化为_________________7 . (2003 •泰安)已知实数X、y满足,则x + 2y的值为__________________ .8 (2003 •泰安)如图22—1,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两条直角边的长分别为 _________________________________________9. (2003 •济宁)关于x的二次方程的两个实数根为,如果,那么k =、选择题1. (2002 •泰州)k为实数,则关于x的方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C没有实数根 D.无法确定2. (2002 •杭州)用配方法将二次三项式变形的结果是()A.B.C.D.3. (2002 •桂林)如果方程有两个不相等的实数根,那么m的取值范围是()A.m<1 B.m>1C.m<-1 D.m>-14. (2003 •重庆)下列一元二次方程中,没有实数根的是()A.B.C.D.5.(2003 •威海)对于一元二次方程,下面的结论错误的是()A.若c= 0,则方程必有一个根为0B.若c<0,则方程必有两个正数根C•若c>0, bv0,则方程必有两个正数根D.若b>c + 1,则方程有一个根大于—1, 一个根小于—16.(2003 •青岛)已知,且a^P,则aP + a + P的值为()A.2 B.-2C.-1 D.0三、解答题1. (2003 •潍坊)已知关于x的方程有两个不相等的实数根.(1)求k 的取值范围.(2)是否存在实数k,使方程的两实数根互为相反数?解:(1)根据题意,得=—12k + 13>0,所以,.所以,当时,方程有两个不相等的实数根.(2)存在.如果方程的两个实数根互为相反数,则解得,检验知:是的解.所以,时,方程的两实数根互为相反数.当你读了上面的解答过程后,请判断是否有错误?如果有,请指出错误之处,并直接写出正确的答案.2. (2003 •菏泽)已知方程的两个实数根的平方和等于11,求m的值.3. (2003 •滨州)设(a , b)是一次函数y = (k —2)x +m与反比例函数的图象的交点,且a, b是关于x的一兀二次方程的两个不相等的实数根,其中k 为非负数,m,n 为常数.(1) 求k 的值;(2) 求一次函数与反比例函数的解析式.4.(2003 •淄博)下面是一位同学做的一道练习题.已知关于x的方程的两个实数根为P、q,求P、q的值.解:将P、q分别代入,得(1) 请判断该同学的解法是否存在问题,并说明理由;(2) 这道题还可以怎样解?请写出你的解法.参考答案历届中考题目】1.2.3.5 4.5.m>76.换元法,7.— 3 或 28.4,6 9.-31. (1)中忽视k — 1M 0的情况, 正确答案为:当, ⑵中的实数k 不存在,当时,判别式△=— 5<0,方程没有实数根.应为:不存在实数k ,使方程的两个实数根互为相反数2.解:设方程的两根为,由韦达定理,得.又,整理,得, 解之,得.由二次方程有两个实数根,解之,得.故rm=-3不合题意应舍去.取mT= 1,即nn= 1为所求.3.解:(1) •••关于x 的方程有两个不相等的实数根,解得k<3,且k 工0.又•••一次函数y = (k — 2)x +m 存在且k 为非负整数,•- k = 1.⑵•- k = 1,•••原方程可变形为.二 a + b = 4, ab = — 2.又当k = 1时,一次函数y = — x +m 过点(a , b),•- a + b = m二 rm= 4.同理可得n = — 2.故所求的一次函数与反比例函数的解析式分别为 y = — x + 4与.4.答: (1) 该同学的解法存在问题.问题出在没有把求出的解代入根的判别式进行检验.因为,当时,方程,此时△= 0;当时,方程,此时△ >0,符合题意.而当时,方程,此时△ >0,与方程有等根不符.1.A 2 .A 3 .A 4 .C 5 . C 6 .B当k — 1 = 0时,方程为一元一次方程,只有一个实数根. 且k M 1时,方程有两个不相等的实数根.所以,p、q 的值只能取;.(2) 解:由根与系数的关系,得解得;.分别对p,q 的两组值对应的方程判别式检验,知这两组值符合题意要求.。
第23章一元二次方程复习复习目标:⑴了解一元二次方程的有关概念.⑵能灵活运用直接开平方法、配方法、公式法、•因式分解法解一元二次方程.⑶会根据根的判别式判断一元二次方程的根的情况.⑷知道一元二次方程根与系数的关系,并会运用它解决有关问题.⑸能运用一元二次方程解决简单的实际问题.⑹了解数学解题中的方程思想、转化思想、分类讨论思想和整体思想.基础知识回顾1. 方程中只含有_______•未知数,•并且未知数的最高次数是_______,•这样的______的方程叫做一元二次方程,通常可写成如下的一般形式:_______()其中二次项系数是______,一次项系数是______,常数项是________.例如:一元二次方程7x-3=2x2化成一般形式是________•其中二次项系数是_____、一次项系数是_______、常数项是________.2. 解一元二次方程的一般解法有⑴_________;⑵________;⑶•_________;•⑷•求根公式法,•求根公式是______________.3. 一元二次方程ax2+bx+c=0(a≠0)的根的判别式是____________,当_______时,它有两个不相等的实数根;当_________时,它有两个相等的实数根;当_______时,•它没有实数根.例如:不解方程,判断下列方程根的情况:⑴x(5x+21)=20 ⑵x2+9=6x ⑶x2-3x=-54. 设一元二次方程x2+px+q=0的两个根分别为x1,x2,则x1+x2=_______,x1·x2=______.例如:方程x2+3x-11=0的两个根分别为x1,x2,则x1+x2=________;x1·x2=_______.5. 设一元二次方程ax2+bx+c=0(a≠0)的两个根分别为x1,x2,则x1+x2=•_______,•x1·x2=________.重点讲解1. 了解一元二次方程的概念,对有关一元二次方程定义的题目,要充分考虑定义的三个特点,即①是整式方程;②化简后只含有一个未知数;③未知数的最高次数是2.2. 解一元二次方程时,应根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解法,再考虑用公式法.3 .一元二次方程20(0)ax bx c a++=≠的根的判别式正反都成立.利用其可以⑴不解方程判定方程根的情况;⑵根据参系数的性质确定根的范围;⑶解与根有关的证明题.4. 一元二次方程根与系数的应用很多:⑴已知方程的一根,不解方程求另一根及参系数;⑵已知方程,求含有两根对称式的代数式的值及有关未知数系数;⑶已知方程两根,求作以方程两根或其代数式为根的一元二次方程.5. 能够列出一元二次方程解应用题.能够发现、提出日常生活、生产或其他学科中可以利用一元二次方程来解决的实际问题,并正确地用语言表述问题及其解决过程.6. 本章解题思想总结:⑴转化思想转化思想是初中数学最常见的一种思想方法.运用转化的思想可将未知数的问题转化为已知的问题,将复杂的问题转化为简单的问题.在本章中,将解一元二次方程转化为求平方根问题,将二次方程利用因式分解转化为一次方程等.⑵从特殊到一般的思想从特殊到一般是我们认识世界的普遍规律,通过对特殊现象的研究得出一般结论,如从用直接开平方法解特殊的问题到配方法到公式法,再如探索一元二次方程根与系数的关系等.⑶分类讨论的思想一元二次方程根的判别式体现了分类讨论的思想.易错点点拨易错点1:对一元二次方程的定义的理解.判断一个方程是否一元二次方程,关键是将整式方程化简后只含有一个未知数,且未知数的最高次数为2,特别地,当二次项的系数用字母表示时,二次项系数不为零不能漏掉.易错点2:一元二次方程的一般形式.在确定一元二次方程的二次项、一次项及常数项时,一定要将一元二次方程化为一般形式.易错点3:关于解一元二次方程时的易错点.⑴是在解形如“2x x =”这样的方程时,千万不能在方程左右两边都除以x ,从而造成方程丢根;⑵用配方法时,当二次项的系数不为1时,应将二次项系数化为1,再将方程左边配成完全平方式;⑶利用公式法求一元二次方程的解时,要先判断24b ac -必须非负才能求解;⑷利用因式分解法求一元二次方程的解时,方程右边一定要变为0.易错点4:在用一元二次方程解决有关实际问题时,注意运用转化思想,如图形问题中,如何通过平移,旋转等变换把不规则的图形转化为规则的图形.另外,对于增长率问题,要把握基础数与总数的关系.特别地,一元二次方程的两个解,一定要会判断检验其是否符合实际意义.【典型例题】考点1:一元二次方程的概念及一般形式相关知识:只含有一个未知数的整式方程,并且都可以化为ax 2+bx +c =0(a 、b 、c 为常数,•a≠0)的形式,这样的方程叫做一元二次方程.一元二次方程的一般形式:ax 2+bx +c =0(a ≠0).复习策略:准确理解一元二次方程的定义,一元二次方程首先是整式方程,然后是经过化简后能得到一元二次方程的一般形式的方程才是一元二次方程.例1. ⑴下列方程是关于x 的一元二次方程的是 ( )A. 23(1)2(1)x x +=+ B. 21120x x +-= C. 20ax bx c ++= D. 2221x x x +=-⑵方程215x x -=的一次项的系数是 .分析:⑴选A .因为B 选项含有分式,不是一元二次方程;C 选项由于a 的取值不确定,有可能等于0,不一定是一元二次方程;D 选项化简后是一元一次方程.⑵确定一元二次方程的二次项、一次项及常数项时,一定要将方程化为一般形式. 解:⑴选A .⑵5或-5.【评注】概念性的问题关键是抓住概念的本质.一元二次方程必须符合三个条件:①是整式方程;②化简后只含一个未知数;③未知数的最高次数为2.考点2:一元二次方程的解相关知识:使一元二次方程左右两边的值相等的未知数的值,叫做一元二次方程的解,或叫做一元二次方程的根.复习策略:要判断一个值是否是一元二次方程的解,只要将这个值代入一元二次方程,看看方程左右两边是否相等即可.相等,则是方程的解;反之,则不是.例2. 如果关于x 的一元二次方程22(2)340m x x m -++-=有一个解是0,求m 的值. 分析:根据方程的解的意义可知,当x =0 时,方程左右两边相等,此题即是求当x =0时,m 的值.但同时一定要记住,当方程是一元二次方程时,二次项系数不为0这一前提条件,即m -2≠0.解:将x =0 代入方程中,得: 22(2)03040m m -⨯-⨯+-=,整理得:24m =,2m =±.∵方程为关于x 的一元二次方程,∴m -2≠0,即 m ≠2∴m 的值为-2.【评注】已知方程的解确定方程中的待定系数的值,是逆向思维的运用,有时将方程的解代入方程中,可能还会出现含两个待定系数的方程,这时要注意整体思想方法的运用.考点3:了解方程并判定方程根的情况相关知识:一元二次方程根的判别:⑴当24b ac ->0时,方程有两个不相等的实数根;⑵当24b ac -=0时,方程有两个相等的实数根;⑶当24b ac -<0时,方程没有实数根.反之也成立.复习策略:要掌握一元二次方程根的判别式的应用:①不解方程判别根的情况;②根据方程解的情况确定系数的取值范围;③求解与根有关的综合题.例3. ⑴(2007巴中市)一元二次方程2210x x --=的根的情况为( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根⑵(2007安徽泸州)若关于x 的一元二次方程02.2=+-m x x 没有实数根,则实数m的取值范围是( )A. m <lB. m >-1C. m >lD. m <-1分析:⑴判定一元二方程的根的情况,一种方法是根据乘方的定义,即任何一个数的平方都是非负数来确定;另一种方法就是根据“Δ=24b ac -”的值来确定.⑵一元二次方程根的判别式的性质反用也成立,即已知根的情况,可以得到一个等式或不等式,从而确定系数的值或取值范围.解:⑴因为方程Δ=24b ac -=2(2)41(1)--⨯⨯-=8>0,所以方程有两个不相等的实数根,故选B ;⑵根据一元二次方程根的判别式可得: 2(2)4m --<0 ,解得:m >l ,故选C .【评注】一元二次方程根的判别式的运用,是一正一反的过程,在运用时,一定要明确是确定方程的根的情况还是根据根的情况确定字母系数的值或范围,从而选择正用还是逆用.考点4:解一元二次方程相关知识:我们知道,一元二次方程的解法有四种:直接开平方法、因式分解法、配方法和公式法.而解一元二次方程的关键是判断方程的特点,选择最佳解题方法,其基本思想是“ 降次”,把二次转化为一次.这四种方法各有千秋,在解一元二次方程时可根据方程的特点,选用最佳解法.复习策略:灵活选用一元二次方程的解法,可从以下几点考虑:⑴对于形如x 2=a (a ≥0)或(mx -n )2=a (m ≠0, a ≥0)的方程,可根据平方根的意义,用直接开平方的方法求解.⑵如果一元二次方程缺少常数项,或方程的右边为0,左边很容易分解因式,可考虑用因式分解法.⑶当一元二次方程的二次项系数为1,一次项的系数是偶数时,可考虑使用配方法. ⑷如果用以上几种方法都不易求解时,可考虑用公式法求解.例4. 解下列方程: ⑴(x +1)2=12⑵(2x +1) (3x -1)=1⑶2x (x +2)+1=0⑷16-x 2-4x =0⑸3(x -2)2=x (x -2)解析:⑴方程形如(x +m )2=n (n ≥0),所以选用直接开平方法解简便.另外,把方程整理成一般形式之后,如果一次项系数等于零,也选用直接开平方法来解.用直接开平方法:得 x +1=±∴x 1=-1, x 2= --1.⑵方程整理为 6x 2+x -2=0;其左边可分解成(2x -1)(3x +2),所以选用因式分解法.当然,如果方程中常数项为零,一次项系数不为零也可用因式分解法.用因式分解法:(2x -1)(3x +2)=0 ∴x 1=12,x 2=-23.⑶方程整理成一般形式:2x 2+4x +1=0;左边不能在有理数范围内因式分解,所以选用公式法简便.用公式法:∵b 2-4ac =42-4×2×1=8,∴x==422-⨯=-1±2⑷方程整理为 x 2+4x -16=0;由于不易分解,且系数简单,可选用配方法,当然也可用公式法.(此题用配方法写解题过程)整理方程得:x 2+4x =16 配方得x 2+4x +4=16+4 (x +2)2=20 则x +2=±∴x 1=2, x 2=-2.⑸观察方程特点,方程左右两边都有因式(x -2),当然用因式分解法了.由3(x -2)2=x (x -2)得3(x -2)2-x (x -2)=0 因式分解为得(x -2)[3(x -2)-x]=0∴x -2=0或2x -6=0, ∴x 1=2, x 2=3.由以上解析可以这样来总结:解一元二次方程,首先要把原方程变形为一般形式,然后计算b 2-4ac ,最后考虑用何种方法求解.如果b 2-4ac 是完全平方数,则用因式分解法,如果b 2-4ac 不是完全平方数且大于零,则用公式法,配方法实际是公式法的推导过程,因此,除题目要求,一般不用配方法.例5. 解方程:⑴(2007北京)解方程:2410x x +-=.⑵(2007浙江嘉兴)解方程:x 2+3=3(x +1).分析:⑴根据计算:Δ=24b ac -=20,其值不是完全平方数,所以不宜用因式分解法,因此,可考虑配方法或公式法来解.⑵方程先化成一般形式x 2-3x =0,再分析,很明显用因式分解法.解:⑴配方,得:(x +2)2=5,解得:x 1=-2x 2=-2⑵原方程化为:x 2-3x =0,解得:1x =0,2x =3【评注】一元二次方程的四种解法用哪一种解法最简便,是因题而异的,解题步骤也不是如上面总结一成不变的,必须经过对题目的观察与分析,才能选择适当方法,使解题过程简捷.考点5:根据根与系数的关系,求与方程的根有关的代数式的值相关知识: 一元二次方程根与系数的关系:若一元二次方程20ax bx c ++=(a 、b 、c 为已知数,a ≠0,240b ac -≥)的两个实数根为12,x x ,则a c x x ,a b x x 2121=-=+.即:一元二次方程两个根的和等于方程的一次项系数除以二次项系数的商的相反数;两个根的积等于常数项除以二次项系数的商.复习策略:根与系数的关系存在的前提是:①a≠0,即方程一定是一元二次方程;②b 2-4ac≥0,即方程一定有实数根.根据新课标的要求,在课改实验区的中考试题中,运用一元二次方程根与系数的关系的考题主要是求与方程的根有关的代数式的值的题型.例6. ⑴(2007山东淄博)若关于x 的一元二次方程22430x kx k ++-=的两个实数根分别是12,x x ,且满足2121x x x x =+.则k 的值为( )(A )-1或34 (B )-1 (C )34 (D )不存在⑵(2007四川德阳)阅读材料:设一元二次方程20ax bx c ++=的两根为1x ,2x ,则两根与方程系数之间有如下关系:12b x x a +=-,a c x x 21=.根据该材料填空:已知1x ,2x 是方程2630x x ++=的两实数根,则2112x x x x +的值为______分析:以上所选的两道中考题,属于同一种类型,即都是根据一元二次方程根与系数的关系,分别求得12x x +和12x x 的值,⑴是利用方程思想求字母系数k 的值,特别要注意一元二次方程一定有实数根这一前提条件的检验.⑵是求代数式2112x x x x +的值时,要先转化为含有12x x +和21x x ⋅的形式.解:⑴由题意,得:12x x +=-k ,21x x =243k -,再代入2121x x x x =+,得:-k=243k -,即: 2430k k +-=,所以(1)(43)0k k +-=,解得k 的值为-1或34; 又∵k =-1时,方程为:210x x -+=,该方程无解,∴舍去.故选C . ⑵因为2112x x x x +=221212x x x x +=2121212()2x x x x x x +-,再将12x x +=-6和3x x 21=代入,得:原式=36233-⨯=10.【评注】不解方程,利用一元二次方程根与系数的关系求两个代数式的值关键是把所给的代数式经过恒等变形,化为含12x x +,21x x ⋅的形式,然后把12x x +,21x x ⋅的值代入,即可求出所求代数式的值.常见的代数式变形有:①222121212()2x x x x x x +=+- ②12121211x x x x x x ++= ③ 212122221212()211()x x x x x x x x +-+= ④ 22112121212()2x x x x x x x x x x +-+=⑤12x x -=考点6: 一元二次方程的应用相关知识:应用一元二次方程解决实际问题的步骤:在日常生活实践中,许多问题都可以通过建立一元二次方程这个模型来进行求解,然后回到实际问题中去进行解释和检验.首先要把实际问题加以分析,抽象成数学问题,然后用数学知识去解决它.应用一元二次方程解决实际问题的步骤可归结为:“设、找、列、解、验、答”:⑴设:是指设未知数,可分为直接设和间接设.所谓直接设,就是指问什么设什么;在直接设未知数比较难列出方程或者列出的方程比较复杂时,可考虑间接设未知数.⑵找:是指读懂题目,审清题意,明确已知条件和未知条件,找出它们之间的等量关系.⑶列:就是指根据等量关系列出方程.⑷解:就是求出所列方程的解.⑸验:分为两步.一是检验解出的数值是否是方程的解,二是检验方程的解是否符合实际情况.⑹答:就是书写答案,一定要遵循“问什么答什么,怎么问就怎么答”的原则. 以上几个步骤中,审题是基础,找出等量关系是解决问题的关键,能否恰当设元直接影响着列方程和解方程的难易,所以要根据不同的具体情况把握好解题的每一步.复习策略:1. 一元二次方程解应用题应注意:⑴写未知数时必须写清单位,用对单位;列方程时,方程两边必须单位一致;答必须写清单位.⑵注意语言和代数式的转化,要把用语言给出的条件用代数式表示出来.2. 常见的应用题:⑴几何图形的面积问题:这类问题的面积公式是等量关系,如果图形不规则,应分割或组合成规则图形,找出各部分面积之间的关系,再运用规则图形的面积公式列出方程.⑵平均增长(降低)率问题:此类问题是在某个数据的基础上连续增长(降低)两次得到新的数据,解这类问题需牢记公式2(1)a x b +=或2(1)a x b -=,其中a 表示增长(降低)前的数据,x 表示增长或降低率,b 表示后来得到的数据,“+”表示增长,“-”表示降低.[方法·规律]:⑴解此类问题所列的方程,一般用直接开平方法求解.⑵增长率不能为负数,降低率不能大于1.⑶营销问题:解决此类问题首先要清楚几个名称的意义,如成本价、售价、标价、打折、利润、利润率等以及它们之间的等量关系.[梳理·总结]:此类问题常见的等量关系是:“总利润=总售价-总成本”或“总利润=每件商品的利润×销售数量, 100⨯售价-进价利润率=%进价”例7. (2007安徽省)据报道,我省农作物秸杆的资源巨大,但合理利用量十分有限,2006年的利用率只有30%,大部分秸杆被直接焚烧了,假定我省每年产出的农作物秸杆总量不变,且合理利用量的增长率相同,要使2008年的利用率提高到60%,求每年的增长率.(取1.41)分析:此题是平均增长率问题,相等关系是“2008年的利用率达到60%”.对于每年产出的农作物秸杆的总量,可以作为1,也可以设一个未知数,在解题中会自然约去.解:设我省每年产出的农作物秸杆总量为a ,合理利用量的增长率是x ,由题意得: 30%a (1+x )2=60%a ,即(1+x )2=2,∴x 1≈0.41,x 2≈-2.41(不合题意舍去).∴x ≈0.41.答:我省每年秸秆合理利用量的增长率约为41%.例8. 一块矩形耕地大小尺寸如图1,如果修筑同样宽的两条“之”字形的道路,如图1所示,余下的部分作为耕地.要使耕地的面积为540m 2,道路的宽应是多少?分析:在面积问题中有一些计算题,如采用平移的方法适当改变图形的形状,可以给解决问题带来意想不到的美妙效果.此题如不采用“平移法”,很难人手.若把“之”字道路平移一下位置,变为图2,则此题即可迎刃而解.图1 图2解:设道路的宽应是x 米,依题意得:(20)(32)540x x --=整理得:2521000x x -+=解得:12250x x ==,(不符合题意,舍去)答:道路的宽应是2米.【评注】方程是反映现实世界数量关系的一个有效的数学模型,在运用一元二次方程解决实际问题时,要注重对数量关系的分析,要有意识地弄清各数量之间的变化规律,用相应的数学知识和我们已有的经验去解决问题.考点7:一元二次方程中考阅读理解题例析与一元二次方程相关的阅读理解问题,是近几年的一种新题型,由于这类问题有助于培养学生的阅读理解能力、创新意识,而备受大家的关注,现略举几例与同学们共赏析. 例9. (2006年福建晋江市)阅读下面的例题:解方程:x 2—|x|—2=0解:(1)当x ≥0时,原方程化为x 2—x —2=0,解得:x 1=2,x 2=—1(不合题意,舍去).(2)当x <0时,原方程化为x 2+x —2=0,解得:x 1=1(不合题意,舍去),x 2=—2∴原方程的根是x 1=2,x 2=—2.请参照例题解方程x 2—|x —3|—3=0,则此方程的根是 .分析:本题首先请阅读例题的解法,再仿照其方法解类似的一元二次方程.解:当x —3≥0时,原方程化为x 2—x =0,解得x 1=0,x 2=1均不合题意,舍去. 当x —3<0时,原方程化为x 2+x —6=0,解得x 1=2,x 2=—3.∴原方程的根是x 1=2,x 2=—3.故填2,—3.点评:认真看懂例题的解题方法是关键.例10. (2006年广东茂名市)先阅读,再填空解题:(1)方程x 2-x -12=0 的根是:x 1=-3,x 2=4,则x 1+x 2=1,x 1·x 2=-12;(2)方程2x 2-7x +3=0的根是:x 1=12,x 2=3,则x 1+x 2=72,x 1·x 2=32;(3)方程x 2-3x +1=0的根是:x 1= , x 2= .则x 1+x 2= ,x 1·x 2= ;根据以上(1)(2)(3)你能否猜出:如果关于x 的一元二次方程mx 2+nx +p =0(m ≠0且m 、n 、p 为常数)的两根为x 1、x 2,那么x 1+x 2、21x x ⋅与系数m 、n 、p 有什么关系?请写出来你的猜想并说明理由.分析:本题首先请同学们阅读两个一元二次方程的两根之和、两根之积与系数之间的关系,再通过第3个方程的两根之和、两根之积与系数之间的关系特点,归纳猜想出一元二次方程的两个根与系数的关系.解:(3).25—3,25321=+=x x.1,32121=•=+x x x x 猜想.,—2121m px x m n x x =•=+∵一元二次方程mx 2+nx +p =0(m ≠0,且m ,n ,p 为常数)的两个实数根是.24,242221m mp n n x m mp n n x —————=+= ∴m n m mp n n m mp n n x x ——————=++=+24242221, .4)4()(242422222221m p m mp n n m mp n n m mp n n x x ==•+=•——————— 点评:本题是探索一元二次方程根与系数之间的关系.关于x 的一元二次方程mx 2+nx+p=0(m≠0,且m,n,p为常数)的两根为x1,x2,那么.,—2121mpxxmnxx=•=+由方程(1),(2),(3)的根与系数的关系特点,通过观察、比较、猜想发现一般性规律,并进行验证,培养同学们由特殊到一般的数学思想方法.。
第二十二章一元二次方程——小结与复习【学习目标】1、理解并掌握一元二次方程的有关概念。
2、能根据不同的一元二次方程的特点,选用恰当的方法求解,使解题过程简单合理。
3、熟悉掌握列方程解实际问题的一般步骤。
4、进一步熟悉具体问题的数量关系并列出一元二次方程。
5、能根据问题的实际意义,合理地运用几何图形解决问题。
【学习过程】一、自主学习:复习教材本章内容,思考以下几个问题:1、正确理解一元二次方程的定义。
2、一元二次方程都是有哪些解法?各自的解题步骤是什么?3、如何运用b2-4ac判断一元二次方程根的情况,及求一些字母的取值范围。
4、想一想,四个探究是怎样处理的。
“按一定速度传播问题、增长(或降低)率问题、图形设计问题、匀减速问题”5、针对每个探究,怎样找相等关系?6、仔细体会本章内容,你都是有哪些收获?交流与点拨:1、一元二次方程的定义满足的三个条件:(1)整式方程(2)只含一个未知数(3)未知数的最高次数是22、解一元二次方程的方法:直接开平方法、配方法、公式法、因式分解法。
3、用b2-4ac判断一元二次方程根的情况,(考点)ax2+bx+c=0(a≠0)①当b2-4ac>0时方程有两个不相等的实数根;②当b2-4ac=0时方程有两个相等的实数根;③当b2-4ac<0时方程没有实数根;4、平均增长率或降低率(考点)bxa=±2)1(例1、方程013)2(=+++mx xm m 是关于x 的一元二次方程,求m 的值并解方程。
解:例2、用适当的方法解下列方程:(1)096)46(92=--x (2)22)32(9)1(4+=-x x解: 解:例3、已知关于x 的方程01)32()2(22=+-++x k x k 其中k 为常数,试分析此方程根的情况。
解:例4:某电脑公式2007年的各项经营收入中经营电脑配件的收入为600万元,占当年经营总收入的40%,该公式预计2009年经营总收入达到2160万元,且计划从2007年到2009年每年经营总收入的年增长率相同,求年平均增长率为多少?解:例5、某农场要建一个长方形的养鸡场,鸡场的一边靠墙,(墙长25m )另外三边用木栏围成,木栏长40m 。
第二十二章 一元二次方程小结与复习(分3课时完成)一、知识结构二、知识点归纳1.方程中只含有_______•未知数,•并且未知数的最高次数是_______,•这样的______的方程叫做一元二次方程,通常可写成如下的一般形式:_______( )其中二次项系数是______,一次项系数是______,常数项是________.2.解一元二次方程的一般解法有(1)_________;(2)________;(•3)•_________;(•4)•求根公式法,•求根公式是3.一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式是____________,当_______时,它有两个不相等的实数根;当_________时,它有两个相等的实数根;当_______时,•它没有实数根.4.一元二次方程的根与系数的关系:(根与系数关系的前提条件是根的判别式必须大于或等于零)结论1.如果ax 2+bx+c=0(a ≠0)的两个根是x 1,x 2,那么: 结论2.如果方程x 2+px+q =0的两个根是x 1,x 2,那么x 1+x 2=-p ,x 1·x 2=q . 5.一元二次方程应用题.三、典型习题(一)一元二次方程概念1.在下列方程中,一元二次方程的个数是( ).①3x 2+7=0 ②ax 2+bx+c=0 ③(x-2)(x+5)=x 2-1 ④3x 2-=0 A .1个 B .2个 C .3个 D .4个2.方程2x 2=3(x-6)化为一般形式后二次项系数、•一次项系数和常数项分别为( ).A .2,3,-6B .2,-3,18C .2,-3,6D .2,3,6 3.方程x (x-1)=2的两根为( ).acx x a b x x =⋅-=+2121,5xA .x 1=0,x 2=1B .x 1=0,x 2=-1C .x 1=1,x 2=2D .x 1=-1,x 2=2 4.已知x=-1是方程ax 2+bx+c=0的根(b ≠0),则( ). A .1B .-1C .0D .25.方程3x 2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________. 6.一元二次方程的一般形式是 .7.关于x 的方程(a-1)x 2+3x=0是一元二次方程,则a 的取值范围是________. 8.已知方程5x 2+mx-6=0的一个根是x=3,则m 的值为________.9.a 满足什么条件时,关于x 的方程a (x 2+x )x-(x+1)是一元二次方程?10.关于x 的方程(2m 2+m )x m+1+3x=6可能是一元二次方程吗?为什么?11.如果x=1是方程ax 2+bx+3=0的一个根,求(a-b )2+4ab 的值.(二)解一元二次方程的方法:1.将二次三项式x 2-4x+1配方后得( ).A .(x-2)2+3B .(x-2)2-3C .(x+2)2+3D .(x+2)2-3 2.已知x 2-8x+15=0,左边化成含有x 的完全平方形式,其中正确的是( ). A .x 2-8x+(-4)2=31 B .x 2-8x+(-4)2=1 C .x 2+8x+42=1 D .x 2-4x+4=-11 3.方程x 2+4x-5=0的解是________.4.代数式的值为0,则x 的值为________. 5.无论x 、y 取任何实数,多项式x 2+y 2-2x-4y+16的值总是_______数. 6.如果16(x-y )2+40(x-y )+25=0,那么x 与y 的关系是________.7.一元二次方程ax 2+bx+c=0(a ≠0)的求根公式是________,条件是________. 8.当x=______时,代数式x 2-8x+12的值是-4.9.已知方程x 2+px+q=0有两个相等的实数,则p 与q 的关系是________.10.已知b ≠0,不解方程,试判定关于x 的一元二次方程x 2-(2a+b )x+(a+ab-2b 2)•=0的根的情况是________. 11.如果x 2-4x+y 2+13=0,则(xy )z •=2221x x x ---12.某数学兴趣小组对关于x 的方程(m+1)+(m-2)x-1=0提出了下列问题.(1)若使方程为一元二次方程,m 是否存在?若存在,求出m 并解此方程. (2)若使方程为一元一次方程m 是否存在?若存在,请求出.13.用直接开平方法解下列方程(1)3x 2+9=0 (2)8x 2-16=0 (3)(x-)2=2(x-3)2=7214.用配方法解下列方程 (1)x 2-8x+1=0 (2)x 2-2x-=0 (3)9y 2-18y-4=0 (4)x 215.用公式法解下列方程.(1)2x 2-x-1=0 (2)x 2+1.5=-3x (3) x 2x+=0 (4)4x 2-3x+2=016.用因式分解法解下列方程.(1)3y 2-6y=0 (2)25y 2-16=0 (3)x 2-12x-28=0 (4)x 2-12x+35=017.不解方程,判定方程根的情况(1)16x 2+8x=-3 (2)9x 2+6x+1=0 (3)2x 2-9x+8=0 (4)x 2-7x-18=0 18.不解方程,写出下列方程的两根和与两根积:22m x+13891212013)1(2=--x x 0532)2(2=-+x x 02231)3(=-x x。
第二十二章《一元二次方程》小结一、本章知识结构框图二、本章知识点概括1、相关概念(1)一元二次方程:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
(2)一元二次方程的一般形式:ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
(3)一元二次方程的根:一元二次方程的解也叫一元二次方程的根。
2、降次——解一元二次方程(1)配方法:通过配成完全平方形式来解一元二次方程的方法,叫配方法.配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.其步骤是:①方程化为一般形式;②移项,使方程左边为二次项和一次项,右边为常数项;③化二次项系数为1;④配方,方程两边都加上一次项系数一半的平方,使方程左边是完全平方式,从而原方程化为(mx+n)2=p的形式;⑤如果p≥0就可以用开平方降次来求出方程的解了,如果p<0,则原方程无实数根。
(2)公式法:利用求根公式解一元二次方程的方法叫公式法.其方法为:先将一元二次方程化为一般形式ax2+bx+c=0,当⊿=b2-4ac≥0时,•将a、b、c代入求根公式x=a2ac 4bb2-±-(b2-4ac≥0)就得到方程的根.(3)分解因式法:先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而降次.这种解法叫做因式分解法.步骤是:①通过移项将方程右边化为0;②通过因式分解将方程左边化为两个一次因式乘积;③令每个因式等于0,得到两个一元一次方程;④解这两个一元一次方程,得一元二次方程的解。
3、一元二次方程根的判别式(1)⊿=b 2-4ac 叫一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式。
(2)运用根的判别式,在不解方程的前提下判别根的情况:①⊿=b 2-4ac >方程有两个不相等实数根;②⊿=b 2-方程有两个相等实数根;③⊿=b 2-4ac <方程没有实数根;④⊿=b 2-4ac ≥方程有两个实数根。
第二十二章 一元二次方程
小结与复习
【学习目标】
1、 理解并掌握一元二次方程的有关概念。
2、 能根据不同的一元二次方程的特点,选用恰当的方法求解,使解题过程简单合理。
3、 熟悉掌握列方程解实际问题的一般步骤。
4、 进一步熟悉具体问题的数量关系并列出一元二次方程。
5、 能根据问题的实际意义,合理地运用几何图形解决问题。
【学习过程】 一、自主学习:
复习教材本章内容,思考以下几个问题: 1、 正确理解一元二次方程的定义。
2、 一元二次方程都是有哪些解法?各自的解题步骤是什么?
3、 如何运用b 2
-4ac 判断一元二次方程根的情况,及求一些字母的取值范围。
4、 想一想,四个探究是怎样处理的。
“按一定速度传播问题、增长(或降低)率问题、图
形设计问题、匀减速问题” 5、 针对每个探究,怎样找相等关系? 6、 仔细体会本章内容,你都是有哪些收获? 交流与点拨:
1、一元二次方程的定义满足的三个条件:(1)整式方程(2)只含一个未知数(3)未知数的最高次数是2
2、解一元二次方程的方法:直接开平方法、配方法、公式法、因式分解法。
3、用b 2-4ac 判断一元二次方程根的情况,(考点)ax 2+bx+c=0(a ≠0)
①当b 2-4ac >0时方程有两个不相等的实数根;②当b 2-4ac =0时方程有两个相等的实数根;③当b 2-4ac <0时方程没有实数根; 4、平均增长率或降低率(考点)b x a =±2
)1(
二、例题学习: 例1、方程013)2(=+++mx x
m
m
是关于x 的一元二次方程,求m 的值。
解:由题意知 2=m 可得 2±=m 而02≠+m 2-≠m 所以 2=m 例2、用适当的方法解下列方程:
(1)096)46(92=--x (2)22)32(9)1(4+=-x x 解: 解:
例3、已知关于x 的方程01)32()2(22=+-++x k x k 其中k 为常数,试分析此方程根的情况。
解:
例4:某电脑公式2007年的各项经营收入中经营电脑配件的收入为600万元,占当年经营总收入的40%,该公式预计2009年经营总收入达到2160万元,且计划从2007年到2009年每年经营总收入的年增长率相同,求年平均增长率为多少? 解:
例5、某农场要建一个长方形的养鸡场,鸡场的一边靠墙,(墙长25m )另外三边用木栏围成,木栏长40m 。
(1)养鸡场面积能达到180m 2
吗? (2)养鸡场面积能达到220m 2吗? (3)养鸡场面积能达到250m 2吗?
如果能,请给出设计方案,如果不能,请说明理由。
解:
(在例题的学习中,把时间放给学生,也可以当作练习题处理,必要时,教师点评。
) 三、课堂练习:
1、用适当的方法解下列方程:
(1)0252022=+-x x (2))3)(1()3(5-+=-x x x x 解: 解:
2、(教材P 58第4题)一个直角梯形的上底比下底大2cm ,高比上底小1cm ,面积是8cm 2
画出这个梯形。
3、(教材P 58第8题)某银行经过最近两次降息,使每年存款的年利率由2.25%降至1.98%,平均每次降息的百分率是多少(精确到0.01%)?
四、总结反思:(针对学习目标) 可由学生自己完成,教师作适当补充。
1、 知道怎样的方程才是一元二次方程,它与一元一次方程有什么区别和联系。
2、 一元二次方程都是有4种解法,根据方程特点选择不同的解法。
3、 根的判别式的作用。
4、 一元二次方程在实际生活中广泛存在,并且能帮助解决生活中的一些实际问题。
【达标检测】
1、已知,a 、b 、c 是三角形的三边,且方程0)1(2)1(2
2
=++--x b cx x a 有两个相等的实数根,则该三角形是( )
A 、等腰三角形
B 、等边三角形
C 、直角三角形
D 、等腰直角三角形 2、已知关于x 的方程0123)3(2
=-+-+k kx x k 它一定是( )
A 、一元二次方程
B 、一元一次方程
C 、一元二次方程或一元一次方程
D 、无法确定 3、若关于x 的一元二次方程0222=+-k x x 有两个相等的实数根,则该方程的根为 ==21x x 。
4、方程492=x 与a x =2
3的解相同,则a = 。
5、解下列方程
(1)8)6)(3(=-+x x (2)04632
=+-x x
解: 解:
6、(中考)2006年中国内地部分养鸡场突发禽流感疫情,某养鸡场中一只带病毒的小鸡经过两天的传染后鸡场共有169只小鸡遭感染患病,在每一天的传染中平均一只小鸡传染了几只小鸡? 解:
【拓展创新】
1、 根据关于x 的一元二次方程02=++q px x 可列表如下:
则一元二次方程02=++q px x 的正整数解满足( )
A 、 解的整数部分是0,十分位是5;
B 、解的整数部分是0,十分位是8;
C 解的整数部分是1,十分位是1;
D 、解的整数部分是1,十分位是2;、 2、 已知x 是一元二次方程0132
=-+x x 的时实数根,求代数式
)2(2
5
6332
----
+÷x x
x x x 的值。
【布置作业】
教材P58复习题22第1题(2、4、6、8),第2、3题。