重庆理工大学2015年 偏微分方程考试试卷B
- 格式:pdf
- 大小:122.99 KB
- 文档页数:3
2015 年普通高等学校招生全国统一考试(重庆卷)数学(理科)一、选择题:本大题共10 小题,每小题 5 分,共 50 分,在每小题给出的四个选项中,只有一项符合题目要求.( 1)【 2015 年重庆,理 1】已知集合 A 1,2,3 , B 2,3 ,则( )(A )A B(B )A B( C ) A üB(D ) B ü A【答案】 D【解析】 A={1,2,2} , B={2,3}B A 且 B A B A ,故选 D .( 2)【 2015 年重庆,理 2】在等差数列 a n 中,若 a 24 , a 4 2 ,则 a 6()(A ) 1 (B ) 0(C )1(D ) 6【答案】 B【解析】利用 a 2 +a 6 2a 4 可求得 a 6 0 ,故选 B .( 3)【 2015 年重庆,理 3】重庆市 2013 年各月的平均气温(C )数据的茎叶图如右,则这组数据的中位数是( )( A )19 (B )20 (C ) 21.5 (D )23【答案】 B【解析】这组数据是8,9,12,15,18,20,20,23,23,28,31,32 . 中位数是20+2020 ,故选 B .( 4)【 2015 年重庆,理 4】“ x 1 ”是“ log 1x22”的()2( A )充要条件( B )充分不必要条件( C )必要不充分条件(D )既不充分也不必要条件【答案】 B【解析】 log 1 (x2) 0 x1,故选 B .2( 5)【 2015 年重庆,理 5】某几何体的三视图如图所示, 则该几何体的体积为 ()(A )1(B )2(C )12(D ) 22【答案】 A 3 33 3【解析】该立体图形是由一个三棱锥和一个半圆柱拼接而成的,其体积为两部分体积之和:1 12 11( 12 ) 21 ,故选 A .3223( 6)【 2015 年重庆,理 6】若非零向量2 2b3a 2b ,则 a 与 b 的夹角为()a, b 满足 | a |3| b |,且 a( A )4 ( B )(C )3( D )【答案】 A24【解析】 (ab)(3a 2b )(a b) (3a2b) 0 ,结合 | a |2 2| b |,可得 a b2| b | ,3 3cosa,ba b 2 , a, b [0, ] a,b 4,故选 A .| a || b | 2( 7)【 2015 年重庆,理 7】执行如图所示的程序框图,若输入 k 的值为 8,则判断框图可填入的条件是( )( A ) s 3 5 ( C ) s 11 ( D ) s 154 ( B ) s 1224【答案】 C 6【解析】s 0,k0是k2, s1是 ,k4,s 1 + 1是 ,k 6,s 1 + 1 + 1 是22 42 4 61k 8, s 1 + 1 + 1 + 1否 ,判断框内应该填 s 1 + 1 + 1 =11,故选 C .2 4 6 8 2 4 6 12( 8)【 2015 年重庆,理 8】已知直线 l :x ay 1 0 a R 是圆C :2y 24 x 2 y 1 0 的对称轴,过点 A 4, ax作圆 C 的一条切线,切点为 B ,则|AB| ( )(A )2(B )4 2(C )6(D ) 2 10【答案】 C【解析】 C : x-22y-1 24 ,其圆心坐标为 C (2,1),半径 r2 .由题意可知直线 l : x ay 10( a R) 是圆的直径所在直线,它过圆心,所以 2 a1 1 0 a1 A( 4,1)AC2 10 .由几何图形可C (2,1)知, ABAC 2 r 240 46 ,故选 C .cos(3 ) ( 9)【 2015 年重庆,理 9】若 tan2tan ,则10 =()5sin()5(A )1(B ) 2(C )3(D )4【答案】 C2sin【解析】tan 2 tansin5cos,5cos35cos() cos[() ] sin( ) sin cos cossin cos1052555sin(5 )sin( ) sin( ) sin coscossin cos5 355 5cos()10将式带入上式可得:3 ,故选 C .sin()522( 10)【 2015 年重庆,理 10】设双曲线xy1 a 0,b 0 的右焦点为 F ,右顶点为 A ,过 F 作 AF 的垂线a 2b 2 与双曲线交于 B,C 两点,过 B,C 分别作 AC,AB 的垂线交于点 D .若 D 到直线 BC 的距离小于 aa 2b 2 ,则该双曲线的渐近线斜率的取值范围是()( A ) 1,00,1 ( B ), 11,( C )2,00, 2( D ),22,【答案】 Ab 2AFca, BFb 2. 在 Rt ABD中,由射影定理有:【 解 析 】 由 题 意 可 得 : A(a,0), F (c,0), B(c, )a ba2BF 2AF DFDF BF 2 ( a )(ca)2 (c a).即点 D 到直线 BC 的距离为 (c a) 2 ( ca),由题AF ca2a 2a)2(ca意 得 :(c a)22a c 0b1.而双曲线的渐近线斜率a 2< aa babkk( 1,0)(0,1) ,故选 A .a二、填空题:本大题共 6 小题,考生作答 5 小题,每小题 5 分,共 25 分.把答案填在答题卡的相应位置.( 11)【 2015 年重庆,理 11】设复数 a bi a, b R 的模为3 ,则 abi abi.【答案】 3【解析】复数a bi(a,b R) 的模为3a 2b 23a 2b 2 3 . (abi)( a bi)a 2b 23 .215( 12)【 2015 年重庆,理 12】 x 32 的展开式中 x 8的系数是(用数字作答) .x【答案】527 rr35 r1r r 1157r3 1 5 8【解析】Tr 1) ( )2158 r 2 . 故 (xC 5 ( x2 C 52r x22 ) 的 展 开 式 中 x 的 系数 为xx2 15C 52.2 2( 13)【 2015 年重庆,理 13】在 ABC 中,,AB2 P ABCAD3,则 ACB 120 的角平分线.,【答案】 6【解析】由正弦定理可得:ADABsin ADB2ADB 45BAD 15BAC 30 ,sin BsinADB2C 30 ,再由正弦定理可得: AC AB AC 6 .sin B sin C考生注意:( 14)、( 15)、( 16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分.( 14)【 2015 年重庆,理 14】如图,圆 O 的弦 AB,CD 相交于点 E ,过点 A 作圆 O 的切线与 DC 的延长线交于点 P ,若 PA 6,AE9, PC3, CE: ED2:1 ,则 BE.【答案】 2【解析】 由切割线定理可得: PA 2 PC PDPD 12 CD 9CE 6, ED 3 .再由相交弦定理可得: AE BE CE DE BE 2 .( 15)【 2015 年重庆,理15】已知直线 l 的参数方程为x 1 ty1 ( t 为参数),以坐标原点为极t点, x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos24(350,) .则直线44l 与曲线 C 的交点的极坐标为.【答案】 2,【解析】直线 l 的直角坐标方程为yx 2 .2cos2 42(cos 2sin 2 ) 4 x 2 y 2 4. 由yx 2x222.由35. x 2y 24y 0 x y2 ysin0及 44 =故直线 l 与曲线 C 的交点的极坐标为(2, .)( 16)【 2015 年重庆,理 16】若函数 f ( x)x 1x a 的最小值为 5,则实数 a__.【答案】 4 或 -6【解析】分情况讨论: ( 1)当 a1时,利用零点分段讨论法分段讨论并结合函数图像可知: f x 在 a 处取得最小值 5,所以 | a 1| 5a6 ;( 2)当 a 1 时,利用零点分段讨论法分段讨论并结合函数图像可知:f x 在 a 处取得最小值 5, | a1| 5 a 4 ,综上,可得实数 a6 或 4.三、解答题:本大题共 6 题,共 75 分.解答应写出文字说明,演算步骤或证明过程.( 17)【 2015 年重庆,理 17】(本小题满分 13 分,(Ⅰ)小问 5 分,(Ⅱ)小问 8 分)端午节吃粽子是我国的传统习俗,设一盘中装有 10 个粽子,其中豆沙粽 2 个,肉粽 3 个,白粽 5 个,这三种粽子的外观完全相同,从中任意选取 3 个.(Ⅰ)求三种粽子各取到1 个的概率;(Ⅱ)设 X 表示取到的豆沙粽个数,求X 的分布列与数学期望.解:(Ⅰ)令A 表示事件“三种粽子各取到一个”,则P AC 21C 31C 51 1 .C 1034(Ⅱ) X 所有可能取值为 0,1,2,且PXC 83 71 C 21C 827P X2C 22C 8113, P X3, 3.C 1015 C 1015C 1015故分布列见表:X123P7 7 1151515且 E X7 1 7 2 1 3(个).1515 155( 18【) 2015 年重庆,理 18(】本小题满分 13分,( Ⅰ)小问 7 分,(Ⅱ)小问 6 分)设 f xsinx sin x3 cos 2 x .2(Ⅰ)求 f x 的最小正周期和最大值;(Ⅱ)讨论 fx 在, 2 上的单调性.36解:(Ⅰ)由题 f xcos x sin x3cos 2x1sin 2x3 1 cos2 x sin2x33,故 fx 的最小正周期222T,最大值为22 3 .( Ⅱ ) 由 x 2知 0 2x, 从 而 当 0 2 x即 x 5 时 , f x 单 调 递 增 ; 当,332126362 2 x3即5x 2 时, f x单调递减.因此, f x在6, 5单调递增, 在 5 , 2单1231212 3 调递减.( 19)【 2015 年重庆,理 19】(本小题满分 13 分,(Ⅰ)小问 4 分,(Ⅱ)小问 9 分)如图,三棱锥 PABC 中,PC 平面 ABC ,PC3, ACB2 ,D, E 分别为线段 AB, BC 上的点,且 CDDE2 ,CE 2EB2 .(Ⅰ)证明: DE 平面 PCD ;(Ⅱ)求二面角 A PD C 的余弦值.解:(Ⅰ)因 PC 平面 ABC ,DE 平面 ABC ,故 PC DE .又 CD DE 2 ,CE 2 ,故 CDE为等腰直角三角形,且 CD DE .因 PC CD C , PC 平面 PCD , CD 平面 PCD , 所以 DE 平面 PCD .(Ⅱ)如图,取 CE 的中点 F ,连 DF .由(Ⅰ)知CDE 为等腰直角三角形,故DFCE , DF CFFE 1 .又 ACB,故 DF / /AC ,因此 DFFB2,从而 AC3 .2ACCB 32zP以 C 为原点, CA, CB, CP 的方向分别为 x, y, z 轴的正方向建立空间直角坐标系 Cxyz .则 C 0,0,0 , A3,0,0 ,E 0,2,0 , D 1,1,0 , P 0,0,3 ,故 DA1, 1,0,22DP1, 1,3 , DE1,1,0 .设 n 1x 1 , y 1 , z 1 为平面 APD 的法向量,则n 1 DA 0n 1 DPCF EyBADxx 1 2y 1,取 y 11 得 n 12,1,1 .由(Ⅰ)知 DE平面 PCD ,故 DE 即为平面 PCD 的法即y 1 3z 1 x 1 0向量.因cos n 1, DEn 1 DE 3 ,故所求二面角 A PD C 的余弦值为3 .| n 1 | |DE|66( 20)【 2015 年重庆, 理 20】(本小题满分 12 分,(Ⅰ)小问 7 分,(Ⅱ)小问 5 分)设函数 f x3x 2 ax a R .e x(Ⅰ)若 f x 在 x 0 处取得极值,确定 a 的值,并求此时曲线y f x 在点 1, f 1处的切线方程;(Ⅱ)若 fx 在 3,上为减函数,求 a 的取值范围.解:(Ⅰ)由题 f x6x a e x3x 2ax e x3x 26 a x a ,因 f x 在 x0 处取得极值, 故 f0 ,e2xex得 a 0 .因此 fx3x 2 e x, fx6x 3x 2 e x.从而 f13, f13,所以曲线yf x 在ee4点 1, f 1 处的切线方程为 y3 3 x1 即 3x ey0 .ee(Ⅱ)由题知f x0 对 x3 恒成立,故26 a x a 0 即 a3 3 x1 对 x3 恒成立.显然3xx 1g xx 33 x1在 3,单调递减,故 g max xg 39,所以 a 9 ,即 a 的取值范围为1 229.,2( 21)【 2015 年重庆,理 21】(本题满分 12 分,(Ⅰ)小问 5 分,(Ⅱ)小问 7 分)如图,椭圆2 2x y 1 ab 0 的左右焦点分别为F 1, F 2 ,过 F 2 的直线交椭圆于 P, Q 两点,且22abPQ PF 1 .(Ⅰ)若 | PF 1 | 2 2 ,|PF 2| 2 2 ,求椭圆的标准方程;(Ⅱ)若 | PF 1 | | PQ |,求椭圆的离心率e .解:(Ⅰ)由题 2a |PF 1 | |PF 2|4 ,故 a2 .又 4c 2 | PF 1 |2 | PF 2 |2 12 ,故 c23 ,因此 b2a2c 21 ,从2而椭圆方程为x2 1 .4y(Ⅱ)连 F 1Q ,由题 4a |F 1P| |PQ|| QF 1 |2 2 |F 1 P ,|故 |F 1P| 2 2 2 a ,从而 | F 2P | 2a |F 1P|2 2 1 a ,因此 4c2| PF 1 |2| PF 2 |24 96 2 a 2,所以 e 2 9 6 2632,得 e6 3 .( 22)【 2015 年重庆,理 22】(本题满分 12 分,(Ⅰ)小问 4 分,(Ⅱ)小问 8 分)在数列a n 中, a 13 ,a n 1a n a n 120 n N .a n(Ⅰ)若 0 , 2 ,求数列 a n 的通项公式;(Ⅱ)若1 k 0 N , k 02 ,1 ,证明: 21 a k 0 1 21.k 03k 0 2k 011解:(Ⅰ)由0 ,2 得 a n 1an2a n 2 .因 a 1 3 0 ,故 a n0 ,得 a n 1 2a n .因此 a n 是首项为3 公比为2 的等比数列,从而a n3 2n 1 .(Ⅱ)由题 a n 1 a n1 a n 2,因 a 1 3 0 ,故 3 a 1 a 2a n0.k 0因 a n 1a n 2 a n 1 11,即 a n 1a n111 ,1k 0k 0k 0 a n 1 k 0k 0 a n 1a nk 0故 a k1a 1k 0a i 1a i3k 01 1 1 3 k111 21 ,i 1i 1k 0 k 0 a i 1 i 1k 0 3k 0 13k 01因此 a 1a 2a k 0a k 0 12 ,从而 a k 013 k 0111 21.k 0 2k 011i 12k 0 综上可知 21 a k 121.3k 0 12k 015。
偏微分方程数学考试试题
1. 求解以下偏微分方程:
a. $ \frac{\partial u}{\partial t} = 3 \frac{\partial u}{\partial x} $
b. $ \frac{\partial^2 u}{\partial t^2} = 5 \frac{\partial^2 u}{\partial x^2} $
c. $ \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} $
2. 考虑以下边界条件问题:
$ u(0,t) = 0 $
$ u(1,t) = 2t $
$ u(x,0) = \sin(\pi x) $
求解该问题的解析解。
3. 对于给定的偏微分方程,尝试通过变量分离的方法求解。
证明解的唯一性。
4. 考虑一维热传导方程:$ \frac{\partial u}{\partial t} = \alpha
\frac{\partial^2 u}{\partial x^2} $
其中 $ \alpha $ 是热扩散系数。
解释在不同参数 $ \alpha $ 下方程的行为和性质。
5. 讨论偏微分方程的数值解法,比较有限差分法和有限元法的优缺点并举例说明。
6. 推导一维波动方程的解,并给出波动方程的初边值问题求解方法。
7. 请给出二阶常系数齐次线性偏微分方程的通解形式,并解释其中
每一个参数的物理意义。
8. 推导热传导方程的一维解,并讨论热源对温度分布的影响。
以上就是本次数学考试试题,请同学们认真作答,加油!。
2015年普通高等学校招生全国统一考试(重庆卷)数学(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2015年重庆,理1】已知集合{}1,2,3A =,{}2,3B =,则( )(A )A B = (B )A B =∅ (C )A B (D )B A【答案】D【解析】A={1,2,2}B={2,3}B A B A B A ⇒⊂≠⇒⊂≠,且,故选D .(2)【2015年重庆,理2】在等差数列{}n a 中,若24a =,42a =,则6a =( )(A )1- (B )0 (C )1 (D )6 【答案】B【解析】利用264+2a a a =可求得60a =,故选B . (3)【2015年重庆,理3】重庆市2013年各月的平均气温(C ︒)数据的茎叶图如右,则这组数据的中位数是( ) (A )19(B )20 (C )21.5 (D )23【答案】B 【解析】这组数据是8,9,12,15,18,20,20,23,23,28,31,32. 中位数是20+20202=,故选B .(4)【2015年重庆,理4】“1x >”是“()12log 20x +<”的( )(A )充要条件 (B )充分不必要条件 (C )必要不充分条件 (D )既不充分也不必要条件 【答案】B【解析】12log (2)01x x +<⇒>-,故选B .(5)【2015年重庆,理5】某几何体的三视图如图所示,则该几何体的体积为( )(A )13π+ (B )23π+ (C )123π+ (D )223π+【答案】A【解析】该立体图形是由一个三棱锥和一个半圆柱拼接而成的,其体积为两部分体积之和:211(1)212113223ππ⨯⨯⎛⎫⨯⨯⨯⨯+=+ ⎪⎝⎭,故选A . (6)【2015年重庆,理6】若非零向量,a b 满足22||||3a b =,且()()32a b a b -⊥+,则a 与b 的夹角为( ) (A )4π (B )2π (C )34π (D )π 【答案】A【解析】()(32)()(32)0a b a b a b a b -⊥+⇒-+=,结合22||||3a b =,可得2||3a b b =,2cos ,,,[0,],24||||a b a b a b a b a b ππ∴<>==<>∈⇒<>=,故选A .(7)【2015年重庆,理7】执行如图所示的程序框图,若输入k 的值为8,则判断框图可填入的条件是( )(A )34s ≤ (B )56s ≤ (C )1112s ≤ (D )1524s ≤【答案】C【解析】10,022s k k s ==⇒==是,是,114+24k s ⇒==,是,1116++246k s ⇒==,是11118+++2468k s ⇒==,否,判断框内应该填11111++=24612s ≤,故选C .(8)【2015年重庆,理8】已知直线l :()10x ay a R +-=∈是圆C :224210x y x y +--+=的对称轴,过点()4,A a -作圆C 的一条切线,切点为B ,则||AB =( )(A )2 (B) (C )6 (D)【答案】C【解析】()()22:-2-14C x y +=,其圆心坐标为2,1C (),半径2r =.由题意可知直线:10()l x ay a R +-=∈是圆的直径所在直线,它过圆心2,1C (),所以21101(4,1)a a A AC +⨯-=⇒=-⇒--⇒=知,6AB ==,故选C .(9)【2015年重庆,理9】若tan 2tan 5πα=,则3cos()10sin()5παπα--=( )(A )1 (B )2 (C )3 (D )4 【答案】C【解析】2sin5tan 2tansin cos 5cos5ππαααπ=⇒=⊗,3cos()cos[()]sin()sin cos cos sin cos 1052555sin()sin()sin()sin cos cos sin cos55555ππππππαααααπππππααααα-+-++∴===---- 将⊗式带入上式可得:3cos()103sin()5παπα-=-,故选C . (10)【2015年重庆,理10】设双曲线()222210,0x y a b a b-=>>的右焦点为F ,右顶点为A ,过F 作AF 的垂线与双曲线交于,B C 两点,过,B C 分别作,AC AB 的垂线交于点D .若D 到直线BC 的距离小于a )(A )()()1,00,1- (B )()(),11,-∞-+∞ (C )()()0,2 (D )((),2,-∞+∞【答案】A【解析】由题意可得:22(,0),(,0),(,),b b A a F c B c AF c a BF a a ∴=-=.在Rt ABD ∆中,由射影定理有:22222()()()b BF c a c a a BF AF DF DF AF c a a +-=⋅⇒===-.即点D 到直线BC 的距离为22()()c a c a a +-,由题意得:22()()c a c a a +-<01ba a c a+⇒<<.而双曲线的渐近线斜率(1,0)(0,1)bk k a =±∴∈-,故选A .二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.把答案填在答题卡的相应位置. (11)【2015年重庆,理11】设复数()i ,a b a b R +∈()()i i a b a b +-= . 【答案】3【解析】复数i(,)a b a b R +∈223a b =+=.22(i)(i)3a b a b a b ∴+-=+=. (12)【2015年重庆,理12】53x ⎛+ ⎝的展开式中8x 的系数是 (用数字作答).【答案】52【解析】71535215517()()1582222r r rrr r r r T C x C x r x --+=⋅=∴-=∴=.故35()2x x +的展开式中8x 的系数为2521522C =. (13)【2015年重庆,理13】在ABC ∆中,0120B =,2AB =,P ABC -的角平分线3AD =,则AC = . 【答案】6【解析】由正弦定理可得:2sin 451530sin sin 2AD AB ADB ADB BAD BAC B ADB =⇒∠=⇒∠=⇒∠=⇒∠=∠, 30C ∴∠=,再由正弦定理可得:6sin sin AC ABAC B C=⇒=.考生注意:(14)、(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分. (14)【2015年重庆,理14】如图,圆O 的弦,AB CD 相交于点E ,过点A 作圆O 的切线与DC 的延长线交于点P ,若6PA =,9AE =,3PC =,:2:1CE ED =,则BE = . 【答案】2【解析】由切割线定理可得:21296,3PA PC PD PD CD CE ED =⋅⇒=⇒=⇒==.再由相交弦定理可得:2AE BE CE DE BE ⋅=⋅⇒=.(15)【2015年重庆,理15】已知直线l 的参数方程为11x ty t =-+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为235cos24(0,)44ππρθρθ=><<.则直线l 与曲线C 的交点的极坐标为 .【答案】()2,π【解析】直线l 的直角坐标方程为2y x =+.222222cos 24(cos sin )4 4.x y ρθρθθ=∴-=∴-=由 222240y x x x y y =+=-⎧⎧⇒⎨⎨-==⎩⎩222x y ρ∴=+=.由35sin 0=44y ππρθθθπ==<<⇒及. 故直线l 与曲线C 的交点的极坐标为2,π(). (16)【2015年重庆,理16】若函数()1f x x x a =++-的最小值为5,则实数a = __.【答案】4或-6【解析】分情况讨论:(1)当1a ≤-时,利用零点分段讨论法分段讨论并结合函数图像可知:()f x 在a 处取得最小值5,所以|1|56a a +=⇒=-;(2)当1a >时,利用零点分段讨论法分段讨论并结合函数图像可知:()f x 在a 处取得最小值5,|1|54a a +=⇒=,综上,可得实数a =6-或4.三、解答题:本大题共6题,共75分.解答应写出文字说明,演算步骤或证明过程. (17)【2015年重庆,理17】(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分)端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同, 从中任意选取3个.(Ⅰ)求三种粽子各取到1个的概率;(Ⅱ)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.解:(Ⅰ)令A 表示事件“三种粽子各取到一个”,则()11123531014C C C P A C ==. (Ⅱ)X 所有可能取值为0,1,2,且()383107015C P X C ===,()12283107115C C P X C ===, ()21283101215C C P X C ===.故分布列见表:且X 0 1 2 P715715 115()77130121515155E X =⨯+⨯+⨯=(个). (18)【2015年重庆,理18】(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分)设()2sin sin 3cos 2f x x x x π⎛⎫=-- ⎪⎝⎭.(Ⅰ)求()f x 的最小正周期和最大值;(Ⅱ)讨论()f x 在2,63ππ⎡⎤⎢⎥⎣⎦上的单调性.解:(Ⅰ)由题()()213cos sin 3cos sin 21cos22f x x x x x x =-=-+=3sin 23x π⎛⎫--⎪⎝⎭,故()f x 的最小正周期 T π=,最大值为23-. (Ⅱ)由2,63x ππ⎡⎤∈⎢⎥⎣⎦知023x ππ≤-≤,从而当0232x ππ≤-≤即5612x ππ≤≤时,()f x 单调递增;当223x πππ≤-≤即52123x ππ≤≤时,()f x 单调递减.因此,()f x 在5,612ππ⎡⎤⎢⎥⎣⎦单调递增,在52,123ππ⎡⎤⎢⎥⎣⎦单调递减.(19)【2015年重庆,理19】(本小题满分13分,(Ⅰ)小问4分,(Ⅱ)小问9分)如图,三棱锥P ABC -中,PC ⊥平面ABC ,3PC =,2ACB π∠=,,D E 分别为线段,AB BC 上的点,且2CD DE ==,22CE EB ==.(Ⅰ)证明:DE ⊥平面PCD ;(Ⅱ)求二面角A PD C --的余弦值.解:(Ⅰ)因PC ⊥平面ABC ,DE ⊂平面ABC ,故PC DE ⊥.又2CD DE ==,2CE =,故CDE ∆为等腰直角三角形,且CD DE ⊥.因PC CD C =,PC ⊂平面PCD ,CD ⊂平面PCD , 所以DE ⊥平面PCD .(Ⅱ)如图,取CE 的中点F ,连DF .由(Ⅰ)知CDE ∆为等腰直角三角形,故DF CE ⊥,1DF CF FE ===.又2ACB π∠=,故//DF AC ,因此23DF FB AC CB ==,从而32AC =.以C 为原点,,,CA CB CP 的方向分别为,,x y z 轴的正方向建立空间直角坐标系C xyz -.则()0,0,0C ,3,0,02A ⎛⎫ ⎪⎝⎭,()0,2,0E ,()1,1,0D ,()0,0,3P ,故1,1,02DA ⎛⎫=- ⎪⎝⎭,()1,1,3DP =--,()1,1,0DE =-.设()1111,,n x y z =为平面APD 的法向量,则110n DA n DP ⎧⋅=⎪⎨⋅=⎪⎩即111112030x y x y z -=⎧⎨--+=⎩,取11y =得()12,1,1n =.由(Ⅰ)知DE ⊥平面PCD ,故DE 即为平面PCD 的法向量.因1113cos ,||||n DE n DE n DE ⋅==⋅,故所求二面角A PD C --的余弦值为3. (20)【2015年重庆,理20】(本小题满分12分,(Ⅰ)小问7分,(Ⅱ)小问5分)设函数()()23xx axf x a R e +=∈.(Ⅰ)若()f x 在0x =处取得极值,确定a 的值,并求此时曲线()y f x =在点()()1,1f 处的切线方程;(Ⅱ)若()f x 在[)3,+∞上为减函数,求a 的取值范围. 解:(Ⅰ)由题()()()()2226336x xxxx a e x ax e x a x af x ee+-+-+-+'==,因()f x 在0x =处取得极值,故()00f '=,得0a =.因此()23x f x x e -=,()()263x f x x x e -'=-.从而()31f e =,()31f e'=,所以曲线()y f x =在点()()1,1f 处的切线方程为()331y x e e-=-即30x ey -=.z yxF PEDC BA(Ⅱ)由题知()0f x '≤对3x ≥恒成立,故()2360x a x a -+-+≥即()3311a x x ≥---对3x ≥恒成立.显然()()3311g x x x =---在[)3,+∞单调递减,故()()max 932g x g ==-,所以92a ≥-,即a 的取值范围为9,2⎡⎫+∞⎪⎢⎣⎭. (21)【2015年重庆,理21】(本题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)如图,椭圆()222210x y a b a b+=>>的左右焦点分别为12,F F ,过2F 的直线交椭圆于,P Q 两点,且 1PQ PF ⊥. (Ⅰ)若1||22PF =+,2||22PF =-,求椭圆的标准方程; (Ⅱ)若1||||PF PQ =,求椭圆的离心率e .解:(Ⅰ)由题122||||4a PF PF =+=,故2a =.又222124||||12c PF PF =+=,故23c =,因此2221b a c =-=,从而椭圆方程为2214x y +=.(Ⅱ)连1F Q ,由题()1114||||||22||a F P PQ QF F P =++=+,故()1||222F P a =-,从而21||2||F P a F P =-()221a =-,因此()2222124||||4962c PF PF a =+=-,所以()2296263e =-=-,得63e =-.(22)【2015年重庆,理22】(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)在数列{}n a 中,13a =,()2110n n n n a a a a n N λμ+++++=∈.(Ⅰ)若0λ=,2μ=-,求数列{}n a 的通项公式; (Ⅱ)若()0001,2k N k k λ+=∈≥,1μ=-,证明:010011223121k a k k ++<<+++. 解:(Ⅰ)由0λ=,2μ=-得212n n n a a a +=.因130a =>,故0n a >,得12n n a a +=.因此{}n a 是首项为3公比为2的等比数列,从而132n n a -=⋅.(Ⅱ)由题2101n n n a a a k +⎛⎫+= ⎪⎝⎭,因130a =>,故1230n a a a =>>>>>.因21000011111n n n n n a a a k k k a a k +==-+⋅+⎛⎫+ ⎪⎝⎭,即1001111n n n a a k k a +⎛⎫-=-⎪+⎝⎭, 故()0011111100000111113131213131k k k k i i i i i i a a a a k k a k k k ++===⎛⎫⎛⎫=+-=+->+-=+ ⎪ ⎪+++⎝⎭⎝⎭∑∑∑,因此001212k k a a a a +>>>>>,从而00110001113122121k k i a k k k +=⎛⎫<+-=+⎪++⎝⎭∑. 综上可知010011223121k a k k ++<<+++.。
一、单项选择题(每小题3分,共计15分)1.=-+→113lim )0,0(),(xy xy y x ( )A 、3B 、6C 、∞D 、不存在2.函数⎪⎩⎪⎨⎧=+≠++=000),(222222y x y x y x xy y x f 在点(0,0)处( B )A 、连续但不存在偏导数B 、存在偏导数但不连续C 、既不连续又不存在偏导数D 、既连续又存在偏导数3.D 为圆122≤+y x ,则dxdy y x D⎰⎰--221=( D )A 、 πB 、3π C 、32π D 、2π 4.下面四个函数中,函数( D )在点(0,0)处不取得极值但点(0,0)是它的驻点。
A 、xy y x f =),( B 、22),(y x y x f += C 、)(),(22y x y x f +-= D 、22),(y x y x f +=5.设平面闭区域D ={}222),(R y x y x ≤+,1D ={}0,0,),(222≥≥≤+y x R y x y x ,则下列等式中正确的是( D )A 、σσd x xd D D ⎰⎰⎰⎰=14 B 、σσd y yd D D ⎰⎰⎰⎰=14 C 、σσd xy xyd D D ⎰⎰⎰⎰=14 D 、σσd x d x D D ⎰⎰⎰⎰=1224二、填空题(每小题3分,共计24分)1.微分方程1sin cos =+'x y x y 的通解为 ;2.函数xy z arctan =,则x z ∂∂= ; 3.若曲线L 是圆周122=+y x ,则曲线积分⎰Lds = 2pai ; 4.曲面32=+-xy e z z 在点(1,2,0)处的切平面方程为 2x+y-3=0 ;5.准线C 为⎩⎨⎧=--=++012222222z y x z y x ,母线平行于Z 轴的柱面方程为 ; 6.计算⎰⎰-2202x y dy e dx = ; 7.如曲线积分dy y y x dx xy x L)56()4(4214-++-⎰λλ与路径无关,则λ= 3 ; 8.幂级数∑∞=⋅13n n nn x 的收敛半径是R= 3 。
2015年普通高等学校招生全国统一考试(重庆卷)数 学(理工类)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、 已知集合A={}1,2,3,B={}2,3,则A 、A=B B 、A ⋂B=∅C 、A ØBD 、B ØA2、在等差数列{}n a 中,若2a =4,4a =2,则6a =A 、-1B 、0C 、1D 、63、重庆市2013年各月的平均气温(o C )数据的茎叶图如下:则这组数据的中位数是A 、19B 、20C 、21.5D 、234、 “x>1”是“12log (x+2)<0”的A 、充要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分也不必要条件5、某几何体的三视图如图所示,则该几何体的体积为A 、13π+ B 、23π+ C 、 123π+ D 、223π+6、若非零向量a ,b 满足|a|=3|b|,且(a -b )⊥(3a +2b ),则a 与b 的夹角为 A 、4π B 、2π C 、34π D 、π 7、执行如题(7)图所示的程序框图,若输入K 的值为8,则判断框图可填入的条件是A 、s ≤34B 、s ≤56C 、s ≤1112D 、s ≤15248、已知直线l :x+ay-1=0(a ∈R )是圆C :224210x y x y +--+=的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB|= A 、2B 、42C 、6D 、210 9、若tan α=2tan 5π,则3cos()10sin()5παπα-=- A 、1 B 、2 C 、3 D 、410、设双曲线22221x y a b-=(a>0,b>0)的右焦点为1,过F 作AF 的垂线与双曲线交于B,C 两点,过B,C 分别作AC ,AB 的垂线交于点D.若D 到直线BC 的距离小于22a ab ++,则该双曲线的渐近线斜率的取值范围是A 、(-1,0)⋃(0,1)B 、(-∞,-1)⋃(1,+∞)C 、(-2,0)⋃(0,2)D 、(-∞,-2)⋃(2,+∞)二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11、设复数a+bi (a ,b ∈R )的模为3,则(a+bi )(a-bi )=________. 12、532x x ⎛+ ⎪⎝⎭的展开式中8x 的系数是________(用数字作答). 13、在ABC 中,B=120o ,AB=2,A 的角平分线AD=3,则AC=_______.考生注意:(14)、(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分.14、如题(14)图,圆O 的弦AB ,CD 相交于点E ,过点A 作圆O 的切线与DC 的延长线交于点P ,若PA=6,AE=9,PC=3,CE:ED=2:1,则BE=_______.15、已知直线l 的参数方程为11x t y t=-+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线C 的极坐标方程为235cos 24(0,)44ππρθρθ=><<,则直线l 与曲线C 的交点的极坐标为_______.16、若函数f (x )=|x+1|+2|x-a|的最小值为5,则实数a=_______.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤。