建立一元二次方程模型解应用问题
- 格式:ppt
- 大小:1.86 MB
- 文档页数:36
一元二次方程解应用题的六个步骤
解一元二次方程应用题一般可以按照以下六个步骤进行:
1. 理解问题:仔细阅读题目,理解问题的背景和要求。
确定需要解决的未知数,并将其表示为变量。
2. 建立方程:根据问题中提供的信息,建立一元二次方程。
通常,方程的形式
为 ax^2 + bx + c = 0,其中 a、b、c 分别表示方程的系数。
3. 化简方程:将方程进行化简,使其形式符合一元二次方程的标准形式。
通常,需要将方程合并同类项,将其变为 ax^2 + bx + c = 0 的形式。
4. 求解方程:使用合适的方法求解一元二次方程。
可以使用因式分解、配方法、求根公式等方法来求解方程。
根据具体情况选择合适的方法,并逐步进行计算。
5. 检验解:将求得的解代入原方程中,验证是否满足题目中的条件。
如果解满
足方程,即使得方程两边相等,那么该解就是正确的。
6. 回答问题:根据问题的要求,将解以合适的方式进行表述,回答问题。
以上是解一元二次方程应用题的一般步骤。
在实际解题过程中,可能会根据具
体情况有所调整。
希望这些步骤能对你有所帮助。
如果有其他问题,请随时提问。
一元二次方程应用题(含答案) 1:某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?解:设没件降价为x,则可多售出5x件,每件服装盈利44-x元。
依题意x≤1044-x)(20+5x)=1600展开后化简得:x²-44x+144=0即(x-36)(x-4)=0x=4或x=36(舍)即每件降价4元要找准关系式2.游行队伍有8行12列,后又增加了69人,使得队伍增加的行·列数相同,增加了多少行多少列?解:设增加x。
(8+x)(12+x)=96+69.x=3增加了3行3列3.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。
在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价解: (1)若贩卖单价为x元,则每千克降低了(70-x)元,日均多售出2(70-x)千克,日均贩卖量为[60+2(70-x)]千克,每千克赢利(x-30)元.依题意得:y=(x-30)[60+2(70-x)]-5002x^2+260x-650030<=x<=70)元,而>时且-=元.销售单价最高时获总利最多,且多获利元.4.运动员起跑20m后速度才能达到最大速度10m/s,若运动员的速度是均匀增加的,则他起跑开始到10m处时需要多少s?解:0+10)除2为平均增加为50+5a)除2乘a5.一辆警车停在路边,当警车发现一辆一8M/S的速度匀速行驶的货车有违章行为,决定追赶,经过2.5s,警车行驶100m追上货车.试问1)从开始加快到追上货车,警车的速度平均每秒增加多少m?2)从开始加快到行驶64m处是用多长工夫?解:100/【(0+10a)/2】=10解方程为264/【(0+2a)/2】=a解方程为86.一装满20L纯酒精,第一次倒出若干升后,用水加满,第二次又倒出同样升数的混合液,再用水加满,里只有5L的纯酒精,第一次倒出的酒精多少升?(过程)解:设第一次倒出x升,则第二次为x(20-x)/20.(此处为剩下的酒精占整体积20升的多少即比率然后乘上倒出的升数即为倒出的纯酒精数则20-x-x(20-x)/20=5解得x=106.1一个长方体的长与宽的比为5:2,高为5厘米,表面积为40平方厘米。
4.3用一元二次方程解决问题(1)目标导航:知识要点:根据面积与面积之间的关系建立一元二次方程的数学模型并解决这类问题.学习要点:掌握面积法建立一元二次方程的数学模型并运用它解决实际问题.基础巩固题1、长方形的长比宽多4cm,面积为60cm2,则它的周长为________.2、如图,是长方形鸡场平面示意图,一边靠墙,另外三面用竹篱笆围成,若竹篱笆总长为35m,所围的面积为150m2,则此长方形鸡场的长、宽分别为_______.3、直角三角形两条直角边的和为7,面积为6,则斜边为().A.37B.5 C.38D.74、有两块木板,第一块长是宽的2倍,第二块的长比第一块的长少2m,宽是第一块宽的3倍,已知第二块木板的面积比第一块大108m2,这两块木板的长和宽分别是().A.第一块木板长18m,宽9m,第二块木板长16m,宽27m;B.第一块木板长12m,宽6m,第二块木板长10m,宽18m;C.第一块木板长9m,宽4.5m,第二块木板长7m,宽13.5m;D.以上都不对5、从正方形铁片,截去2cm宽的一条长方形,余下的面积是48cm2,则原来的正方形铁片的面积是().A.8cm B.64cm C.8cm2D.64cm26、在一块长12m,宽8m的长方形平地中央,划出地方砌一个面积为8m2•的长方形花台,要使花坛四周的宽地宽度一样,则这个宽度为多少?7、某林场计划修一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,•上口宽比渠深多2m,渠底比渠深多0.4m.(1)渠道的上口宽与渠底宽各是多少?(2)如果计划每天挖土48m3,需要多少天才能把这条渠道挖完?8、如图,要设计一本书的封面,封面长27cm,宽21cm,•正中央是一个与整个封面长宽比例相同的矩形,•如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,•应如何设计四周边衬的宽度(精确到0.1cm )?九 年级 练数 学 习同步9、如图,在ΔABC 中,∠B=90º,AB=4cm ,BC=10cm ,点P 从点B 出发,沿BC 以1cm/s 的速度向点C 移动,问:经过多少秒后,点P 到点A 的距离的平方比点P 到点B 的距离的8倍大1?AB P C思维拓展题10、如图所示,在一个长为32米,宽为20米的矩形空地上,建造一个草坪,并修筑等宽且互相垂直的两条路,要使草坪的面积为540米2,求路的宽度。
(利用一元二次方程解决实际问题) 一元二次方程是一个形式如ax^2+bx+c=0的方程,其中a、b、c为实数且a≠0。
它的解可以通过使用求根公式x=(-b±√(b^2-4ac))/(2a)来求得。
利用一元二次方程,我们可以解决许多实际问题,如求解物体的运动轨迹、解决几何问题等等。
下面将通过几个实际问题的例子来说明如何利用一元二次方程解决实际问题。
例1:一个石头从100米高的地方自由落下,求石头落地时的速度和落地时间。
解:根据物体自由落体运动的规律,石头落地时的速度可以通过一元二次方程求解。
设石头落地时的速度为v,落地时间为t,则有以下等式:100 = 0.5 * g * t^2 (物体自由落体的位移公式)v = g * t (物体自由落体的速度公式)其中,g为重力加速度,取9.8 m/s^2。
将第二个等式代入第一个等式中,得到:100 = 0.5 * (v/t) * t^2200 = v * t将上述方程组代入一元二次方程的标准形式ax^2+bx+c=0中,得到:t^2 - (200/v) * t + 0 = 0根据一元二次方程的求根公式,可以解得:t = (200/v)/2 = 100/v将t代入第二个等式中,得到:v = g * (100/v)v^2 = 100 * gv = √(100 * g) ≈ 31.3 m/s所以,石头落地时的速度约为31.3 m/s,落地时间为t = 100/v ≈ 3.2 s。
例2:一个花瓶从楼顶上掉下来,从花瓶掉到地面的时间为5秒,求楼顶的高度。
解:根据物体自由落体运动的规律,花瓶掉到地面的时间可以通过一元二次方程求解。
设楼顶的高度为h,则有以下等式:h = 0.5 * g * t^2其中,g为重力加速度,取9.8 m/s^2,t为花瓶掉到地面的时间,取5秒。
将上述方程代入一元二次方程的标准形式ax^2+bx+c=0中,得到:0.5 * g * t^2 - h = 0根据一元二次方程的求根公式,可以解得:h = 0.5 * g * t^2 = 0.5 * 9.8 * 5^2 = 122.5 m所以,楼顶的高度为122.5米。
一元二次方程的应用求解物理问题一元二次方程是数学中非常重要的概念和工具,它在各个领域中都有广泛的应用。
尤其在物理问题中,一元二次方程被广泛用于解释和求解与运动、力学、光学等相关的实际问题。
本文将通过几个例子,展示一元二次方程在物理问题中的应用和解决方法。
例一:自由落体运动自由落体运动是物理学中最基础的运动模型之一。
当一个物体从静止状态开始自由下落时,可以利用一元二次方程来描述其位置随时间的变化。
给定一个物体从某一高度h自由落下,忽略空气阻力的影响,加速度为重力加速度g。
设物体落地所需的时间为t,我们可以通过一元二次方程来求解t的值。
根据物体的运动学公式,物体下落的高度h与时间t的关系可以表示为:h = (1/2)gt^2其中,h代表高度,g代表重力加速度,t代表时间。
将上面的方程改写为一元二次方程的标准形式:(1/2)gt^2 - h = 0通过求解这个一元二次方程,可以得到自由落体运动中物体落地所需的时间t的值。
进而可以计算出物体的落地速度、动能等相关信息。
例二:抛体运动抛体运动是另一个常见的物理问题,它描述了一个物体在水平方向上具有初速度的情况下,受到重力作用下的轨迹。
假设一个物体以初速度v0沿着水平方向抛出,同时受到重力加速度g的作用。
物体的抛体运动可以用一元二次方程来描述其竖直方向上的运动轨迹。
根据物体的运动学公式,物体在竖直方向上的位置y与时间t的关系可以表示为:y = v0t - (1/2)gt^2其中,y代表高度,v0代表初速度,g代表重力加速度,t代表时间。
将上面的方程改写为一元二次方程的标准形式:(1/2)gt^2 - v0t + y = 0通过求解这个一元二次方程,可以得到物体在抛体运动中到达某一高度y所需的时间t的值。
进而可以计算出物体的最大高度、飞行时间等相关信息。
例三:光学问题光学问题中,一元二次方程也经常用于求解光线的折射、反射等问题。
例如,当光线从一种介质射入另一种介质中时,会发生折射现象。
日常生活中一元二次方程的应用当今社会正处在市场经济的时代,我们的日常生活中经常会遇到各种经营、销售、利润、房产等问题.我们知道数学来源于生活,又应用于我们的生活,新课程的改革实验也要求同学们能用一些所学的数学知识解决生活中的实际问题,体会到数学的应用价值,下面我们就最近所学的“一元二次方程在日常生活中应用“看两个实例,以求对同学们有所帮助.问题1:联华超市将进货单价为40元的商品如果按50元销售,就能卖出500个,但如果这种商品每个涨价1元,其销售量就减少10个,如果你是超市的经理的话,为了赚得8000元的利润,你觉得售价应定为多少?这时应进货多少个?分析:我们知道商品的定价和进货量应该根据市场的行情而定,如果定价过高,超越了消费者心理承受力的话,恐怕消费者无人问津,销售商只能自认倒霉了;定价过低的话,利润过低、甚至亏本的话,销售商也就划不来的.上述问题中如果销售价按照单价50元的话,每个利润是10元,可以卖出500个,共可获利5000元,无法完成利润8000元的目标,所以只有提高单价并控制适当的单价,才可以完成获得利润5000元任务.解:设该种商品的单价为(50+x )元,则每个的利润是[]40)50(-+x 元,销售数量为(500-10x )个,由题意得方程:[]8000)10500(40)50(=--+x x ;整理得:0300402=+-x x ;解之得:101=x ,302=x故这个商品的单价可定为60元时,其进货量为500-10×10=400个;当这个商品的单价定为80元时,其进货量为500-10×30=200个.注:如果同学们以后学了二次函数内容的话,还可以知道当单价定为70元时,获得的最大利润为8100元.问题2:某地开发区为改善居民的住房条件,每年要建一批新的住房,人均住房面积逐年增加(人均住房面积=该区人口总数该区住房总面积,单位平方米/人). 该开发区2002年至2004年,每年年底人口总数和人均住房面积的统计结果如图所示,请根据此提供的信息解答下面问题:(1)该区2003年和2004年两年中哪一年比上一年增加的住房面积多?多增加多少平方米?(2)由于经济发展需要,预计到2006年底,该地区人口总数将比2004年底增加2万,为使到2006年底地区人均住房面积达到11平方米/人,试求2005年和2006年这两年该地区住房总面积的年增长率应达到百分之几?分析:随着我们国家经济迅速发展,经济实力的不断强大,广大人民的住房条件正在得到不断的改善,生活水平正在得到不断地提高.我们从上述问题的图象中可以获取一些信息:解:(1)2004年比2003年增加的住房多,多增加了7.4平方米.0 2002 2003 2004 99.610平方米/年开发区近三年人均住房面积变化曲线0 172004 2003 2002 年20万人开发区近三年人口变化图(2)设住房总面积年平均增长率应达到x ,由题意得:)220(11)1(2002+⨯=+x ;解得:101.01==x ℅;1.22-=x (不合题意,舍去).答略.应该说一元二次方程在日常生活中的应用应该说是非常广泛的,还有诸如储蓄、利税问题等,同学们有兴趣的话还可以作更多的研究.。