生化笔记(完整版)
- 格式:doc
- 大小:276.00 KB
- 文档页数:116
生化笔记第一章糖类1.糖类是地球上数量最多的一类有机化合物。
2.葡萄糖——烯醇式——果糖和甘露糖3.异头体通过直链结构互变4.所有醛糖都是还原糖,部分酮糖也是还原糖,例如果糖。
5.Fehling试剂盒Benedict试剂可以作为氧化剂与还原糖反应,可定性,不可定量。
6.缓冲的溴水溶液能氧化醛糖为醛糖酸,与酮糖不反应。
7.鉴定酮糖:羟甲糠醛与间二苯酚——红色——Swliwanoff实验8.鉴定戊糖:戊糖脱水生成的糠醛+间苯三酚(地皮酚)——朱红色——间苯三酚实验9.鉴定戊糖:戊糖脱水生成的糠醛+甲基间苯二酚(地衣酚)——蓝绿色——Bial反应——测定RNA含量10.鉴定糖类:糠醛+α-萘酚——红紫色——Molisch实验11.测总糖量:糠醛+蒽酮——蓝绿色——蒽酮反应12.高碘酸:测定糖类呋喃型还是吡喃型、测平均相对分子质量、非还原末端残基数、多糖的分支数目。
13.单糖分子中一个羟基被氨基取代的称为氨基糖,胞壁酸和神经氨酸是氨基糖的衍生物,称为酸性氨基糖。
前者是细菌细胞壁的结构多糖的构件之一。
后者中,有三种神经氨酸统称为唾液酸。
唾液酸是动物细胞膜上的糖蛋白和糖脂的重要成分。
14.N-乙酰神经氨酸 = 唾液酸; NAG = N-乙酰葡糖胺; NAM = N-乙酰胞壁酸15.糖苷:乌本苷是Na+-K+—ATP酶的抑制剂;毛地黄毒苷(强心苷)16.所有二糖至少有一个单糖的异头碳参与成键(糖苷键)17.糖苷键在多数情况下只涉及一个单糖的异头碳,另一个单糖的异头碳是游离的。
18.二糖中还原糖:乳糖β1-4、麦芽糖α1-4、纤维二糖β1-419.二糖中非还原糖:蔗糖、海藻糖20.淀粉:直链:α1-4,一个还原端1’,一个非还原端4’分支:分支处α1-6,直链处α1-4。
一个还原端1’,多个非还原端4’α淀粉酶:随机作用于淀粉内部α1-4β淀粉酶:专一从非还原端α1-4脱支酶:α1-6,分支处21.糖原:α1-4和α1-622.纤维素:β1-4,自然界最丰富的多糖23.壳多糖:几丁质,自然界第二个最丰富的多糖24.肽聚糖:NAG + NAM NAG=N-乙酰葡糖胺;NAM=N-乙酰胞壁酸25.粘多糖:基本结构为己糖醛酸和己糖胺的二糖单位组成的长链多聚物。
分享生物化学笔记,大家下载了慢慢看生物化学重点第一章绪论一、生物化学的的概念:生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。
二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。
2.动态生物化学阶段:是生物化学蓬勃发展的时期。
就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。
3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。
三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。
2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。
其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。
3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。
4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。
5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。
第二章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。
构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。
2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu谷氨酸和Asp天冬氨酸);④碱性氨基酸(Lys赖氨酸、Arg精氨酸和His组氨酸二、肽键与肽链:肽键(peptide bond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO-NH-)。
第一章蛋白质的结构和功能一、蛋白质的元素组成:C、H、O、N,多数含S;各种蛋白质的含氮量很接近,平均为16%,测定生物样品含氮量公式:每克样品含氮克数·6.25·100=100g样品中蛋白质含量(g%)二、20种编码氨基酸均属于L-a-氨基酸(除甘氨酸)氨基酸分类:1、非极性疏水性氨基酸2、极性中性氨基酸3、芳香族氨基酸(苯丙氨酸、色氨酸、酪氨酸)4、酸性氨基酸(天冬氨酸Asp、谷氨酸Glu)5、碱性氨基酸(赖氨酸Lys、精氨酸Arg、组氨酸His)三、氨基酸的理化特性:1、氨基酸具有两性解离的性质氨基酸的等电点:在某一PH的溶液中,氨基酸成兼性离子状态,呈电中性,此时溶液的PH称为该氨基酸的等电点。
PH>PI 阴离子PH<PI 阳离子PH=PI 电中性2、含共轭双键的氨基酸具有紫外吸收性质含共轭双键的色氨酸、酪氨酸的最大吸收峰在280nm波长附近3、氨基酸与茚三酮反应生成蓝紫色化合物此化合物最大吸收峰在570nm波长处。
四、蛋白质的分子结构:有什么样的一级结构就有什么样的空间结构有什么样的空间结构就有什么样的功能(一)一级结构:氨基酸的排列顺序称为蛋白质的一级结构化学键:肽键、二硫键(二)二级结构:包括a-螺旋、B-折叠、B-转角、无规卷曲a-螺旋:右手螺旋,每 3.6个氨基酸残基螺旋上升一圈,螺距为0.54nm,两个氨基酸距离为0.15nm,肽链中的全部肽键都可形成氢键,以稳固a-螺旋结构。
模体是具有特殊功能的超二级结构(三)三级结构:蛋白质的三级结构是指整条肽链中全部氨基酸残基的相对空间位置,也就是整条肽链所有原子在三维空间的排布位置。
蛋白质要想具有生物学功能,必须具有三级结构,反之,则不成立。
化学键:疏水键、氢键、范德华力结构域:分子量较大的蛋白质常可折叠成多个结构较为紧密的区域,并各行其功能。
分子伴侣:ATP酶,保证蛋白质正确折叠。
(四)四级结构:每一条多肽链都有其完整的三级结构,称为亚基,亚基与亚基之间呈特定的三维空间排布,并以非共价键连接。
第一章绪论一、生物化学的的概念:生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。
二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。
2.动态生物化学阶段:是生物化学蓬勃发展的时期。
就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。
3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。
三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。
2 •物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收T中间代谢T排泄。
其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。
3 •细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。
4 •生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。
5 •遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。
第二章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。
构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为a-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L- a-氨基酸。
2 •分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:① 非极性中性氨基酸(8种):②极性中性氨基酸(7种):③酸性氨基酸(Glu和Asp):④ 碱性氨基酸(Lys、Arg和His)。
二、肽键与肽链:肽键(peptide bond)是指由一分子氨基酸的a-羧基与另一分子氨基酸的a-氨基经脱水而形成的共价键(-C0 -NH-)。
生物化学占执业2.7%,16分第一节蛋白质的结构与功能一、氨基酸与多肽(一)氨基酸结构与分类1、蛋白质的基本机构:氨基酸,氨基酸------L-α-氨基酸(“拉氨酸”);---手拉手组成唯一不具有不对称碳原子——甘氨酸;含有巯基的氨基酸——半胱氨酸-------记忆:半巯2、氨基酸的分类(1)非极性、疏水性氨基酸:记忆:携(缬氨酸)一(异亮氨酸)本(苯丙氨酸)书,两(亮氨酸)饼(丙氨酸)干(甘氨酸),补(脯氨酸)点水(2)极性、中性氨基酸:记忆:古(谷氨酰胺)天(天冬酰胺)乐(酪氨酸)是(丝氨酸)伴(半胱氨酸)苏(苏氨酸)三(色氨酸)的(蛋氨酸)(3)酸性氨基酸:记忆:天(天冬氨酸)上的谷(谷氨酸)子是酸的(4)碱性氨基酸:记忆:地上的麦(赖氨酸)乳(组氨酸)精(精氨酸)是碱的(二)肽键与肽链氨基酸结合键:肽键,肽键由-CO-NH-组成。
二、蛋白质结构2、3、4级:高级结构/空间构象-----氢键1、二级结构一圈(α-螺旋---稳定)------3.6个氨基酸,右手螺旋方向-----外侧。
2、维持三级结构的化学键-----疏水键。
一级结构:-----肽键;序列。
二级结构:一段弹簧,----氢键(稳定);---亲,你真棒三级结构:-----亚基,整条肽链。
化学键-----疏水键四级结构:----一堆亚基。
---聚合※记忆:一级排序肽键连,二级结构是一段,右手螺旋靠氢键,三级结构是亚基,亚基聚合是四级考题和亚基有关-----四级结构三、蛋白质结构与功能的关系1、蛋白质结构与功能:一级结构是基础,二三四级:表现功能的形式。
2、蛋白质构象病(高级结构改变):疯牛病、致死性家族性失眠症。
四、蛋白质的理化性质蛋白质变性:空间构象破坏,一级结构不变,因素很多。
(1)蛋白质变性特点:溶解度降低、黏度增加、易被水解。
(2)凝固----变性后进一步发展的一种结果。
(3)蛋白质变性:可复性(血清白蛋白)和不可复性两种。
stearic acid硬脂酸,18酸oleic acid 18烯酸,油酸amphipathic两性的,两亲的fatty acid脂肪酸,通常有偶数个碳原子,有双键出现,一般为cis构型表示脂肪酸的方法:硬脂酸10:0 10个碳原子,0个不饱和度烯酸20:4cΔ5,8,11,14 20个碳原子,4个不饱和度,不饱和碳原子分别在从羧酸碳原子起的第5,8,11,14,20号碳原子上Glycerol甘油,丙三醇Fat 脂肪,是甘油和三分子脂肪酸反应生成(triacylglycerol,三酰甘油),用以产生能量,热量(恒温动物brown fat褐色脂肪),绝缘,防止热量散失Adipocyte脂肪细胞MFC mature fat cell; VSFC very small fat cellSaponification皂化,脂肪被强碱水解,产生脂肪酸盐,但会被硬水中的钙镁离子沉淀形成浮渣(scum),破坏乳化作用(emulsifying)Detergent 清洁剂sodium dodecyl sulfate (SDS)Wax 蜡由脂肪酸和长链醇酯化反应而成,完全不水溶,常用作防水,在海洋生物中,代替其他脂质来储存能量,碳链越长,饱和度越大,越稳定构成膜的脂质通常由一个大的头基连两条尾巴,形成圆柱状结构,双分子层通常6nm厚,两个头各1.5nm,疏水核心区约3nm厚。
Glycerophospholipid甘油磷脂,亲水磷酸头部(R3亲水)连两条疏水的脂肪酸Ceramide神经酰胺,脂肪酸和神经胺的氨基肽键连接Glycosphingolipid鞘糖脂cerebroside脑苷脂,脑细胞膜组成成分,ganglioside神经节苷脂,使切断GalNac的酶失效Glycoglycerolipid甘油糖脂在动物膜中少,但常见于植物和细菌膜中Cholesterol胆固醇许多动物膜的成分,通过庞大的结构影响膜的流动性peripheral membrane protein外周膜蛋白质,在膜的一边,分离后不影响膜结构integral membrane protein膜内在蛋白,深深植入双层膜中,分离后影响膜结构。
第四章糖类定义:糖类是多羟基醛或多羟基酮及其缩聚物和某些衍生物的总称。
糖的分类单糖:不能水解的最简单糖类,是多羟基的醛或酮的衍生物(醛糖或酮糖)糖类化合物寡糖:由2—10个分子单糖缩合而成,水解后产生单糖多糖: 由多分子单糖或其衍生物所组成,水解后产生原来的单糖或其衍生物。
同多糖多糖杂多糖糖复合物糖类的生物学作用:∙作为生物体内的主要能源物质∙作为生物体的结构成分∙作为其它生物分子如氨基酸、核苷酸、脂等合成的前体∙作为细胞识别的信息分子4.1 单糖4.1.1单糖的构型单糖有D-及L-两种异构体。
凡在理论上可由D-甘油醛衍生出来的单糖皆为D-型糖。
单糖具有旋光性1. 根据离羰基最远的不对称C原子的-OH位置:-OH 在左:L; -OH 在右:D天然单糖大多数是 D-型糖。
2. 旋光性:右旋:+;左旋:-。
4.1.2 单糖的结构开链形式葡萄糖的结构吡喃糖半缩醛呋喃糖环式结构•证明了链式结构后,发现葡萄糖的某些理化性质与醛不同。
•实验证明仅能生成半缩醛。
•过长氧桥不合理,W.N.Haworth 提出透视式表达糖的环式结构。
•变旋现象(因糖分子结构互变而产生)4.1.3 构象葡萄糖的构象: a.船式 b.椅式4.2 单糖的性质.形成糖酯•形成糖苷•氧化作用•还原成糖醇•与苯肼形成糖脎4.2.1 形成糖酯: 葡萄糖内酯4.2.2 半缩醛羟基与醇、酚羟基脱水成苷1)性质稳定,不氧化、不变旋、不成脎2)功能各异:毛地黄苷、强心苷:有强心功能; 皂苷:溶血功能。
4.2.3 氧化作用•羰基氧化:形成醛酸;•伯醇基氧化:形成糖醛酸。
•斐林(Fehling)试剂定量分析•班乃德(Benedict)试剂定量分析•还原糖4.2.4 还原作用4.2.5 游离羰基与3分子苯肼成糖脎作用苯肼苯肼苯肼葡萄糖苯腙葡糖酮苯腙葡糖脎4.3 重要单糖及其衍生物4.3.1 糖醇性质稳定、甜。
如:甘露醇:降压、药物、药物辅料。
山梨醇:氧化形成葡、果、山梨糖;VitC的原料肌醇:对糖脂代谢有调节作用、B族Vit、从玉米淀粉或微生物发酵制取。
第一章绪论一、生物化学的的概念:生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。
二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。
2.动态生物化学阶段:是生物化学蓬勃发展的时期。
就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。
3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。
三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。
2 •物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收T中间代谢T排泄。
其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。
3 •细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。
4 •生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。
5 •遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。
第二章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。
构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为a-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L- a-氨基酸。
2 •分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:① 非极性中性氨基酸(8种):②极性中性氨基酸(7种):③酸性氨基酸(Glu和Asp):④ 碱性氨基酸(Lys、Arg和His)。
二、肽键与肽链:肽键(peptide bond)是指由一分子氨基酸的a-羧基与另一分子氨基酸的a-氨基经脱水而形成的共价键(-C0 -NH-)。
第一章概述第一节概述一、生物分子是生物特有的有机化合物生物分子泛指生物体特有的各类分子,它们都是有机物。
典型的细胞含有一万到十万种生物分子,其中近半数是小分子,分子量一般在500以下。
其余都是生物小分子的聚合物,分子量很大,一般在一万以上,有的高达1012,因而称为生物大分子。
构成生物大分子的小分子单元,称为构件。
氨基酸、核苷酸和单糖分别是组成蛋白质、核酸和多糖的构件。
二、生物分子具有复杂有序的结构生物分子都有自己特有的结构。
生物大分子的分子量大,构件种类多,数量大,排列顺序千变万化,因而其结构十分复杂。
估计仅蛋白质就有1010-1012种。
生物分子又是有序的,每种生物分子都有自己的结构特点,所有的生物分子都以一定的有序性(组织性)存在于生命体系中。
三、生物结构具有特殊的层次生物用少数几种生物元素(C、H、O、N、S、P)构成小分子构件,如氨基酸、核苷酸、单糖等;再用简单的构件构成复杂的生物大分子;由生物大分子构成超分子集合体;进而形成细胞器,细胞,组织,器官,系统和生物体。
生物的不同结构层次有着质的区别:低层次结构简单,没有种属专一性,结合力强;高层次结构复杂,有种属专一性,结合力弱。
生物大分子是生命的物质基础,生命是生物大分子的存在形式。
生物大分子的特殊运动体现着生命现象。
四、生物分子都行使专一的功能每种生物分子都具有专一的生物功能。
核酸能储存和携带遗传信息,酶能催化化学反应,糖能提供能量。
任何生物分子的存在,都有其特殊的生物学意义。
人们研究某种生物分子,就是为了了解和利用它的功能。
五、代谢是生物分子存在的条件代谢不仅产生了生物分子,而且使生物分子以一定的有序性处于稳定的状态中,并不断得到自我更新。
一旦代谢停止,稳定的生物分子体系就要向无序发展,在变化中解体,进入非生命世界。
六、生物分子体系有自我复制的能力遗传物质DNA能自我复制,其他生物分子在DNA 的直接或间接指导下合成。
生物分子的复制合成,是生物体繁殖的基础。
1.1.1蛋白质的结构与功能考点:组成蛋白质的20种氨基酸的类别、分类依据及几种特殊氨基酸的分类;氨基酸的理化性质、成肽反应及体内重要的生物活性肽;蛋白质的分类及分子结构;蛋白质的结构(包括一级结构与空间结构)与功能的关系;蛋白质的理化性质、分离纯化的基本方法及其原理;蛋白质一级结构的测定(即多肽链中氨基酸序列分析)和空间结构的测定。
重点:氨基酸的分类及理化性质,蛋白质的一级和空间结构及其与功能的关系,分离纯化蛋白质的原理和方法。
难点:蛋白质一级结构的测定,这也是众多研究者花费多年才解决的难题,我们只需弄清楚其要步骤及各步的基本原理和方法即可。
基本知识与理论:一、蛋白质的生物学功能(了解即可)蛋白质是生命的物质基础,没有蛋白质就没有生命,生物体结构越复杂,其蛋白质种类和功能越繁多,其主要的生物学功能是:(一)催化和调节能力某些蛋白质是酶,催化生物体内的物质代谢反应。
某些蛋白质是激素,具有一定的调节功能,如胰岛素调节糖代谢、体内信号转导也常通过某些蛋白质介导。
(二)转运功能某些蛋白具有运载功能,如血红蛋白是转运氧气和二氧化碳的工具,血清白蛋白可以运输自由脂肪酸及胆红素等。
(三)收缩或运动功能某些蛋白质赋予细胞与器官收缩的能力,可以使其改变形状或运动。
如骨骼肌收缩靠肌动蛋白和肌球蛋白。
(四)防御功能如免疫球蛋白,可抵抗外来的有害物质,保护机体。
(五)营养和储存功能如铁蛋白可以储存铁。
(六)结构蛋白许多蛋白质起支持作用,给生物结构以强度及保护,如韧带含弹性蛋白,具有双向抗拉强度。
(七)其他功能如病毒和噬菌体是核蛋白,病毒可以致病。
二、蛋白质的分子组成(一)元素组成组成蛋白质分子的主要元素有碳、氢、氧、氮、硫。
有些还含有少量磷或金属元素。
各种蛋白质的含氮量很接近,平均为16%,且蛋白质是体内的主要含氮物,因此可以根据生物样品的含氮量推算出蛋白质的大致含量。
(二)氨基酸氨基酸是蛋白质的基本组成单位,存在于自然界的氨基酸有300余种,但组成人体蛋白质的氨基酸仅有20种,且均属L-α-氨基酸(甘氨酸除外)即左旋氨基酸,因为甘氨酸无手性碳原子(与四个不同的原子或基团相连的碳原子),大多数有手性碳原子的是手性分子,手性分子有旋光活性。
根据它们的侧链R的结构和性质可分为四类:1.非极性疏水性氨基酸:这类氨基酸的特征是在水中的溶解度小于极性氨基酸。
2.极性中性氨基酸:这类氨基酸的特征是比非极性氨基酸易溶于水,且羧基数等于氨基数,故为中性氨基酸,但因为羧基电离能力较大,故其实际上具有弱酸性。
3.酸性氨基酸:天冬氨酸、谷氨酸。
这两种氨基酸都含有两个羧基,在生理条件下带负电,故为酸性氨基酸。
4.碱性氨基酸:赖氨酸、精氨酸和组氨酸。
这类氨基酸在生理条件下带正电,故为碱性氨基酸。
还需要记住这20种氨基酸的英文缩写符号,尤其是三字符号,并且这四种类别的氨基酸中还有几种特殊的氨基酸,也需记住它们的独特特征。
它们是芳香族氨基酸:苯丙氨酸、酪氨酸、色氨酸分子中含有芳香环含硫氨基酸:甲硫氨酸、半胱氨酸分子中含硫元素,甲硫氨酸也叫蛋氨酸。
亚氨基酸:脯氨酸,其氨基处于环中,为亚氨基酸支链氨基酸:缬氨酸、亮氨酸、异亮氨酸,这三种均含有支链其中有八种氨基酸人体内不能自身合成,必须从食物中获得,称为必需氨基酸,它们是缬氨酸、亮氨酸、异亮氨酸、苏氨酸、蛋氨酸、赖氨酸、苯丙氨酸和色氨酸。
三、氨基酸的理化性质(一)两性电离及等电点氨基酸分子中含有碱性的α-氨基和酸性的α-羧基,能与酸或碱类物质结合成盐,故它是一种两性电解质。
在某一pH值的溶液中氨基酸解离成阳离子和阴离子的趋势与程度相等,成为兼性离子,呈电中性,此时溶液的pH称为该氨基酸的等电点(pI)。
这里有一个等电点的计算问题:1.侧链R为非极性基团或虽为极性但不解离的,此种氨基酸的等电点主要由α-氨基和α-羧基的解离常数的负对数pK1,pK2决定,pI=1[]2(pK1+pK2)2.侧链基团可以解离,则由α-氨基,α-羧基及R基团解离情况共同决定,只需写出电离式,取其兼性离子两边的pK值的平均值即可。
如赖氨酸其电离式为:由电离式可以看出,其兼性离子两边pK值分别是pKα-NH3+和pKε-NH3+而与α-羧基无关故其pI=1[]2(8.95+10.537)=9.74(二)紫外吸收性质色氨酸、酪氨酸在280nm波长附近有最大的紫外吸收峰,由于大多数蛋白质含有这类氨基酸,所以测定蛋白质溶液280nm的光吸收值,是分析溶液中蛋白质含量的快速简便方法。
(三)茚三酮反应:氨基酸+茚三酮水合物→还原茚三酮+氨,还原茚三酮+氨+茚三酮→蓝紫色化合物此化合物最大吸收峰在570nm波长处,由于此吸收峰值的大小与氨基酸释放出的氨量成正比,因此可以作为氨基酸定量分析的方法。
四、肽(一)肽键两分子氨基酸可由一分子所含的氨基与另一分子所带的羧基脱去一分子水缩合成二肽,两个氨基酸之间产生的酰胺键称为肽键,具有不典型双键性质。
由10个以内的氨基酸缩合而成的肽称为寡肽,更多的氨基酸相连而构成多肽。
pr是具有更大分子量的多肽链,但多肽和pr在分子量上很难划出明确界限,实际应用中只有一个习惯上的划分。
肽链中的氨基酸分子因脱水缩合而基团不全,称为氨基酸残基。
多肽链中自由氨基末端称为N端,自由羧基末端称为C端,命名从N端指向C端。
(二)生物活性肽1.谷胱甘肽由谷氨酸和甘氨酸和半胱氨酸组成的三肽。
第一个肽键比较特殊,由谷氨酸γ-羧基与半胱氨酸的氨基组成。
分子中半胱氨酸的巯基是该化合物的主要功能基团。
此巯基具有还原性,要记住谷胱甘肽的生理作用:①作为体内重要的还原剂;保护蛋白质或酶免遭氧化,使它们处在活性状态②可还原细胞内产生的H2O2,避免细胞受损③其巯基具有嗜核特性,能与外源的致癌剂或药物等结合,从而阻断它们与DNA、RNA或蛋白质结合,保护机体免遭损害。
2.多肽类激素及神经肽。
体内有许多激素属寡肽或多肽,如催产素、促肾上腺皮质激素,促甲状腺激素等。
神经肽是在神经传导过程中起信号转导作用的肽类,如脑啡肽、β-内啡肽等。
五pr的分类pr的分类分单纯pr、结合pr,后者除aa外,还含有非pr部分即辅基,绝大部分辅基以共价健与pr部分相连,根据形状分纤维pr及球状pr六、蛋白质的分子结构(要注意构成各级结构的化学键)可分为一级、二级、三级、四级结构四个层次,后三者统称为高级结构或空间构象。
蛋白质的空间构象涵盖了蛋白质分子中每一个原子在三维空间的相对位置,并非所有pr都有四级结构,由二条或二条以上多肽链形成的pr才有四级结构。
(一)蛋白质的一级结构蛋白质的一级结构是指蛋白质分子中氨基酸的排列顺序。
主要化学键是肽键和二硫键。
一级结构是蛋白质空间结构和特异生物学功能的基础。
氨基酸排列顺序的差别意味着从多肽链骨架伸出的侧链R基团的性质和顺序对于每一种蛋白质是特异的——因为R基团大小不同,所带电荷数目不同,对水的亲和力不相同,所以蛋白质的空间构象也不同。
(二)蛋白质的二级结构蛋白质的二级结构指蛋白质分子中某一段肽链的局部空间结构,也就是该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。
维系二级结构的化学键主要是氢键。
二级结构的主要形式包括:α-螺旋结构、β一折叠、β-转角和无规则卷曲。
1.肽单元。
参与肽键的6个原子Cα1、C、O、N、H、Cα2位于同一平面,且Cα1、Cα2在平面上所处的位置为反式构型,此6个原子即构成了肽单元,其基本结构为图中的A、B键是单键,可自由旋转,也正由于这两个单键的自由旋转角度,决定了相邻肽单元之间的相对空间位置。
其中的肽键有一定程度双键性质,不能自由旋转。
2.α-螺旋。
多肽链主链围绕中心轴有规律的螺旋式上升,每隔3.6个残基螺旋上升一圈,每个氨基酸残基向上平移0.15nm,故螺距为0.54nm。
螺旋的走向为右手螺旋。
α-螺旋的每个肽键的N-H和第四个肽键的羰基氧形成氢键,氢键的方向与螺旋长轴基本平行,侧链R基团则伸向螺旋外。
3.β-折叠。
多肽链充分伸展,每个肽单元以C为旋转点折叠成锯齿状结构,侧链R基团交错位于锯齿状结构的上下方。
可由两条以上肽链或一条肽链内的若干肽段折叠成锯齿状结构。
平行肽段间靠链间肽键羰基氧和亚氨基氢形成氢键,使构象稳定,此氢键方向与折叠的长轴垂直。
两条平行肽链走向可相同或相反,由一条肽链折返形成的β-折叠多为反式,反式平行较顺式平行更为稳定。
4.β-转角和无规卷曲。
β-转角常发生于肽链进行180度回折时的转角上,通常由4个氨基酸残基组成,其第一个残基的羰基氧与第四个残基的氨基氢可形成氢键。
β-转角第二个残基常为脯氨酸,因为其N原子位于环中,形成肽键N原子上已没有H,不能再形成氢键,故走向转折β-转角常发生在蛋白质分子的表面,这与蛋白质的生物学功能有关。
无规卷曲用来阐述没有确定规律性的那部分肽链结构。
5.模序。
指在许多蛋白质分子中,可发现两个或三个具有二级结构的肽段,在空间上相互接近,形成一个具有特殊功能的空间结构,称为模序。
实际上它是一种超二级结构。
一个模序总有其特征性的氨基酸序列,并发挥特殊的功能。
常见的α-螺旋—环—α-螺旋结构及锌指结构,前者可结合Ca2+,后者可结合Zn2+,使α-螺旋能镶嵌于DNA的大沟中。
因此含此结构的pr可与DNA或RNA结合,这对于pr调控DNA的转录和pr翻译过程是必要的。
一段肽链其氨基酸残基的侧链适合形成α-螺旋或β-折叠,就会出现相应的二级结构,aa残基带相同的电荷或侧链太大,都会妨碍二级结构的形成,此外还有一个分子伴侣的概念,其作用就是使肽链正确折叠,从而形成正确的空间构象。
(三)蛋白质的三级结构指整条肽键中全部氨基酸残基的相对空间位置,也就是整条肽链所有原子在三维空间的排布位置。
三级结构的形成和稳定主要靠疏水键、盐键、二硫键、氢键和范德华力等次级键。
其中疏水键是最主要的稳定力量。
疏水键是蛋白质分子中疏水基团之间的结合力,酸性和碱性氨基酸的R基团可以带电荷,正负电荷互相吸引形成盐键,与氢原子共用电子对形成的键为氢键。
分子量大的蛋白质三级结构其整条肽链中常可分割成多折叠得转为紧密的结构域,实际上结构域也是一种介于二级和三级结构之间的结构层次,每个结构域执行一定的功能。
(四)蛋白质的四级结构蛋白质的四级结构是由有生物活性的两条或多条肽链组成,肽链与肽链之间不通过共价键相连,而由非共价键维系。
每条多肽链都有其完整的三级结构,称为蛋白质的亚基,这种蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用,称为蛋白质的四级结构。
在四级结构中,各亚基之间的结合力主要是疏水作用,氢键和离子键也参与维持四级结构。
含有四级结构的蛋白质,单独的亚基一般没有生物学功能,只有完整的四级结构才有生物学功能。