整理后生化笔记(收藏)
- 格式:doc
- 大小:38.50 KB
- 文档页数:4
生化背诵知识点总结生物化学是生物学的重要分支,研究生物各种生物分子的结构、性质、合成、降解以及能量转换等方面的科学。
在生命科学领域,生化背诵知识点是非常重要的,本文将对生化背诵知识点进行总结,希望对大家的学习有所帮助。
一、氨基酸与蛋白质1. 氨基酸的结构氨基酸是蛋白质的基本组成单位,分为20种,其中9种为必需氨基酸。
氨基酸的共同结构为:羧基(-COOH)、氨基(-NH2)、α-碳原子(-C)和一个侧链(-R)。
氨基酸可以根据侧链的性质分为极性氨基酸和非极性氨基酸。
2. 氨基酸的分类根据侧链的性质,氨基酸可以分为极性氨基酸、非极性氨基酸、酸性氨基酸和碱性氨基酸。
极性氨基酸包括赖氨酸、色氨酸、组氨酸、天冬氨酸、精氨酸和丝氨酸等;非极性氨基酸包括丙氨酸、甲硫氨酸、异亮氨酸、缬氨酸和脯氨酸等。
3. 蛋白质的结构蛋白质是由氨基酸通过肽键连接而成的巨大分子,可以分为一级结构、二级结构、三级结构和四级结构。
一级结构是指氨基酸的线性排列;二级结构是指氨基酸的局部结构,包括α-螺旋、β-折叠和无规则卷曲;三级结构是指整个蛋白质的立体构象,包括超级螺旋、反平行和平行β-折叠;四级结构是多个亚基蛋白质之间的组合。
4. 氨基酸代谢氨基酸代谢包括氨基酸的降解与合成。
氨基酸的降解主要发生在肝脏中,通过转氨基酶的作用将氨基酸转化为α-酮酸和氨基基团,然后氨基基团通过尿素循环转化为尿素排出体外。
氨基酸的合成主要发生在细胞质内,通过氨基酸合成酶的催化将α-酮酸转化为氨基酸。
5. 氨基酸的同化和异化氨基酸的同化是指将氨基酸转化为体内蛋白质的过程,主要发生在肝脏和肌肉组织中;氨基酸的异化是指氨基酸被降解为能量和二氧化碳的过程,主要发生在肝脏和肾上腺皮质中。
二、糖与糖代谢1. 单糖的结构单糖主要包括葡萄糖、果糖、半乳糖和核糖等,它们的共同结构为Cn(H2O)n,并且具有醛基或酮基。
其中,葡萄糖和果糖是生物体内最常见的单糖,葡萄糖是葡萄糖醇的高级物质。
教学目标:1.掌握蛋白质的概念、重要性和分子组成。
2.掌握α-氨基酸的结构通式和20种氨基酸的名称、符号、结构、分类;掌握氨基酸的重要性质;熟悉肽和活性肽的概念。
3.掌握蛋白质的一、二、三、四级结构的特点及其重要化学键。
4.了解蛋白质结构与功能间的关系。
5.熟悉蛋白质的重要性质和分类导入:100年前,恩格斯指出“蛋白体是生命的存在形式”;今天人们如何认识蛋白质的概念和重要性?1839年荷兰化学家马尔德(G.J.Mulder)研究了乳和蛋中的清蛋白,并按瑞典化学家Berzelius的提议把提取的物质命名为蛋白质(Protein,源自希腊语,意指“第一重要的”)。
德国化学家费希尔(E.Fischer)研究了蛋白质的组成和结构,在1907年奠立蛋白质化学。
英国的鲍林(L.Pauling)在1951年推引出蛋白质的螺旋;桑格(F.Sanger)在1953年测出胰岛素的一级结构。
佩鲁茨(M.F.Perutz)和肯德鲁(J.C.kendrew) 在1960年测定血红蛋白和肌红蛋白的晶体结构。
1965年,我国生化学者首先合成了具有生物活性的蛋白质——胰岛素(insulin)。
蛋白质是由L-α-氨基酸通过肽键缩合而成的,具有较稳定的构象和一定生物功能的生物大分子(biomacromolecule)。
蛋白质是生命活动所依赖的物质基础,是生物体中含量最丰富的大分子。
单细胞的大肠杆菌含有3000多种蛋白质,而人体有10万种以上结构和功能各异的蛋白质,人体干重的45%是蛋白质。
生命是物质运动的高级形式,是通过蛋白质的多种功能来实现的。
新陈代谢的所有的化学反应几乎都是在酶的催化下进行的,已发现的酶绝大多数是蛋白质。
生命活动所需要的许多小分子物质和离子,它们的运输由蛋白质来完成。
生物的运动、生物体的防御体系离不开蛋白质。
蛋白质在遗传信息的控制、细胞膜的通透性,以及高等动物的记忆、识别机构等方面都起着重要的作用。
随着蛋白质工程和蛋白质组学的兴起和发展,人们对蛋白质的结构与功能的认识越来越深刻。
1.1.1蛋白质的结构与功能考点:组成蛋白质的20种氨基酸的类别、分类依据及几种特殊氨基酸的分类;氨基酸的理化性质、成肽反应及体内重要的生物活性肽;蛋白质的分类及分子结构;蛋白质的结构(包括一级结构与空间结构)与功能的关系;蛋白质的理化性质、分离纯化的基本方法及其原理;蛋白质一级结构的测定(即多肽链中氨基酸序列分析)和空间结构的测定。
重点:氨基酸的分类及理化性质,蛋白质的一级和空间结构及其与功能的关系,分离纯化蛋白质的原理和方法。
难点:蛋白质一级结构的测定,这也是众多研究者花费多年才解决的难题,我们只需弄清楚其要步骤及各步的基本原理和方法即可。
基本知识与理论:一、蛋白质的生物学功能(了解即可)蛋白质是生命的物质基础,没有蛋白质就没有生命,生物体结构越复杂,其蛋白质种类和功能越繁多,其主要的生物学功能是:(一)催化和调节能力某些蛋白质是酶,催化生物体内的物质代谢反应。
某些蛋白质是激素,具有一定的调节功能,如胰岛素调节糖代谢、体内信号转导也常通过某些蛋白质介导。
(二)转运功能某些蛋白具有运载功能,如血红蛋白是转运氧气和二氧化碳的工具,血清白蛋白可以运输自由脂肪酸及胆红素等。
(三)收缩或运动功能某些蛋白质赋予细胞与器官收缩的能力,可以使其改变形状或运动。
如骨骼肌收缩靠肌动蛋白和肌球蛋白。
(四)防御功能如免疫球蛋白,可抵抗外来的有害物质,保护机体。
(五)营养和储存功能如铁蛋白可以储存铁。
(六)结构蛋白许多蛋白质起支持作用,给生物结构以强度及保护,如韧带含弹性蛋白,具有双向抗拉强度。
(七)其他功能如病毒和噬菌体是核蛋白,病毒可以致病。
二、蛋白质的分子组成(一)元素组成组成蛋白质分子的主要元素有碳、氢、氧、氮、硫。
有些还含有少量磷或金属元素。
各种蛋白质的含氮量很接近,平均为16%,且蛋白质是体内的主要含氮物,因此可以根据生物样品的含氮量推算出蛋白质的大致含量。
(二)氨基酸氨基酸是蛋白质的基本组成单位,存在于自然界的氨基酸有300余种,但组成人体蛋白质的氨基酸仅有20种,且均属L-α-氨基酸(甘氨酸除外)即左旋氨基酸,因为甘氨酸无手性碳原子(与四个不同的原子或基团相连的碳原子),大多数有手性碳原子的是手性分子,手性分子有旋光活性。
生化技术笔记期末总结第一,我学习了生物体内化学成分的分离和鉴定方法。
生物体内有许多不同种类的分子,如蛋白质、核酸、碳水化合物和脂质等。
为了研究和应用这些分子,我们需要先将其从混合物中分离出来,然后通过一系列的实验方法进行鉴定。
在本学期的实验课程中,我学习了几种常用的生物分离和鉴定方法,包括电泳、色谱和质谱等。
这些方法不仅可以帮助我分离和纯化特定的分子,还能确定其分子结构和化学性质。
第二,我学习了生物体内化学反应和酶催化作用的原理和应用。
生物体内有许多重要的化学反应,如代谢途径、信号传导和基因表达等。
这些反应通常是由酶催化的。
酶是一类高效催化特定化学反应的蛋白质分子。
在生物化学技术中,我们可以利用酶来加速化学反应的速度,提高反应产物的产率。
例如,酶联免疫吸附试验(ELISA)是一种常用的生物化学技术,它利用酶催化的反应来检测特定分子的存在。
第三,我学习了基因工程技术的原理和应用。
基因工程技术是利用重组DNA技术来修改生物体的基因组成。
在本学期的课程中,我学习了基本的基因工程技术,如DNA克隆、聚合酶链式反应(PCR)和基因转染等。
这些技术可以用于生产重组蛋白质、制作转基因植物和动物,以及开发新药和疫苗等。
基因工程技术在医疗和农业领域有着广泛的应用前景。
第四,我学习了生物信息学的基本原理和技术。
生物信息学是将计算机科学和统计学应用于生物学研究的交叉学科。
在本学期的学习中,我了解了常见的生物信息学工具和数据库,如BLAST、基因组浏览器和生物数据库等。
这些工具和数据库可以帮助生物学家研究和分析生物体的基因组、蛋白质组和代谢组等。
生物信息学在基因组学、蛋白质组学和系统生物学等领域有着重要的应用。
总之,本学期我学到了许多关于生化技术的知识和技能。
通过实验和理论课程的学习,我掌握了生物分离和鉴定方法、酶催化反应原理、基因工程技术以及生物信息学技术等。
这些知识和技能不仅为我未来的学习和研究提供了基础,也为我将来从事相关领域的工作打下了坚实的基础。
生化每章知识点总结归纳第一章:蛋白质的合成与结构本章主要介绍了蛋白质的合成与结构。
蛋白质是生物体内最为重要、最为复杂的一类有机化合物,是构成细胞结构,参与细胞代谢、调节机体生理功能等各种生命活动的关键物质。
蛋白质合成包括转录和翻译两个阶段。
转录是指将DNA上的具体基因转录成mRNA,而翻译则是将mRNA上的密码子翻译成氨基酸序列,合成具体的蛋白质。
蛋白质的结构主要包括一级结构、二级结构、三级结构和四级结构。
一级结构是指氨基酸序列,二级结构是指α-螺旋和β-折叠,三级结构是指蛋白质分子的立体构象,四级结构是指多肽链之间的相互作用。
第二章:酶的结构、功能和应用本章主要介绍了酶的结构、功能和应用。
酶是生物体内催化生物化学反应的生物催化剂,能够加速化学反应的速率,而不改变反应的热力学性质。
酶的结构主要包括酶的活性中心和辅基团。
酶的活性中心是其催化作用的关键部位,而辅基团则是在酶的构象和功能中扮演重要角色的组织。
酶的功能主要包括底物特异性、催化速率和酶的调节。
底物特异性是指酶对底物的选择性,催化速率是指酶对底物的反应速率,而酶的调节是指酶在生物体内活性的调节。
酶的应用主要包括在医药、食品、工业、环境保护等领域的应用。
第三章:脂肪酸、三酰甘油和脂质膜本章主要介绍了脂肪酸、三酰甘油和脂质膜。
脂肪酸是由羧基和长链碳水化合物构成的脂肪酸,是构成三酰甘油和磷脂等脂质的基本组成部分。
三酰甘油是由三个脂肪酸和一个甘油分子经酯化反应而成,是储存体内能量的主要途径。
脂质膜是由脂质和蛋白质构成的生物膜结构,是生物体内细胞结构的基本单位,具有选择透过性和双层膜状结构。
第四章:核酸的结构与功能本章主要介绍了核酸的结构与功能。
核酸是生物体内存储和传递遗传信息的重要分子,包括DNA和RNA两种类型。
DNA是双螺旋结构的分子,能够稳定地存储生物体内的遗传信息,而RNA则是单链结构的分子,参与了蛋白质的合成和其他生物化学反应。
核酸的功能主要包括遗传信息传递和细胞代谢调控。
第一章绪论一、生物化学的的概念:生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。
二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。
2.动态生物化学阶段:是生物化学蓬勃发展的时期。
就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。
3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。
三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。
2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。
其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。
3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。
4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。
5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。
第二章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。
构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。
2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His)。
二、肽键与肽链:肽键(peptide bond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO -NH-)。
生化知识点总结归纳一、生物大分子结构与功能1. 蛋白质蛋白质是生物体内最丰富的大分子,具有多种功能。
蛋白质的结构包括一级、二级、三级和四级结构,通过氨基酸的序列和侧链相互作用构成。
蛋白质的功能涉及到酶的催化作用、携氧作用、运输作用、膜通道作用等多个方面。
2.核酸核酸是生物体内携带遗传信息的分子,包括DNA和RNA两种。
DNA通过碱基配对形成双螺旋结构,携带了生物体的遗传信息。
RNA参与到蛋白质的合成、修复和调控等多个生物学过程中。
3.多糖多糖是由许多单糖分子通过糖苷键连接而成的高分子化合物。
在生物界中,多糖的重要功能包括能量储存(如糖原)、结构支持(如纤维素)、细胞间质物质(如透明质酸)、免疫相关(如多糖抗原)等。
4.脂质脂质是多种异质的大分子化合物,包括脂肪酸、甘油和其他非蛋白质成分。
脂质在生物体内具有能量储存、结构支持、细胞膜结构和调节等多种重要功能。
5.酶酶是生物体内催化生物化学反应的特殊蛋白质,具有高度的专一性和高效的催化作用。
酶在生物体内参与到代谢、合成、降解、信号传导等多个生物过程中。
6.细胞膜细胞膜是细胞的外部大分子结构,具有选择性通透、信号传递和细胞识别等重要功能。
细胞膜主要由脂质双层和膜蛋白构成,参与到细胞内外物质的交换和信息传导。
二、生物代谢1. 糖代谢糖是生物体内最主要的来源能,糖代谢涉及到醣和糖原的合成、分解、糖酵解、糖异生、葡萄糖酸环等多个反应途径。
2. 脂肪代谢脂肪是生物体内的主要能量储存分子,脂肪代谢包括脂质的合成、降解和调控等多个反应。
β-氧化、脂肪酸合成、胆固醇合成等是脂肪代谢中的重要反应过程。
3. 蛋白质代谢蛋白质是生物体内最丰富的大分子结构,蛋白质代谢包括蛋白质的合成、修复、降解、调控等多个反应过程。
翻译、蛋白质合成、蛋白质降解和泛素化等是蛋白质代谢中的重要反应过程。
4. 核酸代谢核酸是生物体内携带遗传信息的大分子,核酸代谢包括核苷酸的合成、分解、修复和调控等多个反应过程。
生化精华记忆总结一蛋白质的结构与功能1.蛋白质的含氮量平均为16%.2.氨基酸是蛋白质的基本组成单位,除甘氨酸外属L-α-氨基酸。
3.酸性氨基酸:天冬氨酸、谷氨酸;碱性氨基酸:赖氨酸、精氨酸、组氨酸。
4.半胱氨酸巯基是GSH的主要功能基团。
5.一级结构的主要化学键是肽键。
6.维系蛋白质二级结构的因素是氢键7.并不是所有的蛋白质都有四级结构。
8.溶液pH>pI时蛋白质带负电,溶液pH<PI时蛋白质带正电。
9.蛋白质变性的实质是空间结构的改变,并不涉及一级结构的改变。
二核酸的结构和功能XXX和DNA水解后的产物。
2.核苷酸是核酸的基本单位。
3.核酸一级结构的化学键是3′,5′-磷酸二酯键。
XXX的二级结构的特点。
主要化学键为氢键。
碱基互补配对原则。
A与T,C与G.XXX为熔点,与碱基组成有关XXX二级结构为三叶草型、三级结构为倒L型。
XXX是体内能量的直接供应者。
cAMP、cGMP为细胞间信息传递的第二信使。
三酶1.酶蛋白决定酶特异性,辅助因子决定反应的种类与性质。
2.酶有三种特异性:绝对特异性、相对特异性、立体异构特异性酶活性中心概念。
3.B族维生素与辅酶对应关系。
XXX含义5.竞争性抑制特点。
四糖代谢1.限速酶:己糖激酶,磷酸果糖激酶,丙酮酸激酶;净生成ATP;2分子ATP;产物:乳酸2.糖原合成的关键酶是糖原合成酶。
糖原分解的关键酶是磷酸化酶。
3.能进行糖异生的物质主要有:甘油、氨基酸、乳酸、丙酮酸。
糖异生的四个关键酶:丙酮酸羧化酶,磷酸烯醇式丙酮酸羧激酶,果糖二磷酸酶,葡萄糖-6-磷酸酶。
4.磷酸戊糖途径的关键酶,6-磷酸葡萄糖脱氢酶,6-磷酸葡萄糖脱氢酶。
5.血糖浓度:3.9~6.1mmol/L.6.肾糖域概念及数值。
五氧化磷酸化XXX是体内能量的直接供应者。
2.细胞色素aa3又称为细胞色素氧化酶。
3.线粒体内有两条重要的呼吸链:NADH氧化呼吸链和琥珀酸氧化呼吸链。
4.呼吸链中细胞色素的排列顺序为:bclcaa3.5.氰化物中毒的机制是抑制细胞色素氧化酶。
生物化学笔记第一章蛋白质的结构与功能第一节蛋白质的分子组成一、蛋白质的元素组成碳50~55%、氢6%~7%、氧19%~24%、氮13%~19%,硫0~4%。
有的蛋白质含有磷、碘。
少数含铁、铜、锌、锰、钴、钼等金属元素。
蛋白质的含氮量平均为16%,每克样品中含氮克数×6.25×100=100克样品中蛋白质含量(克%)二、蛋白质的基本组成单位——氨基酸(amino acid)1、氨基酸的结构通式天然蛋白质的基本氨基酸共20种。
为L-α-氨基酸(甘氨酸除外)生物界中也发现一些D系氨基酸,主要存在于某些抗菌素以及个别植物的生物碱中。
2、氨基酸的分类按其α-碳原子上侧链R的结构和理化特性的不同可分为:1)非极性疏水性氨基酸:氨基酸的R基团不带电荷或极性极微弱的,如:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、蛋氨酸、苯丙氨酸、色氨酸、脯氨酸。
R基团具有疏水性。
2)极性中性氨基酸:R基团有极性,但不解离,或仅极弱地解离,它们的R基团有亲水性。
如:丝氨酸、苏氨酸、半胱氨酸、酪氨酸、谷氨酰胺、天门冬酰胺。
3)酸性氨基酸:R基团有极性,且解离,在中性溶液中显酸性,亲水性强。
如天门冬氨酸、谷氨酸。
4)碱性氨基酸:R基团有极性,且解离,在中性溶液中显碱性,亲水性强。
如组氨酸、赖氨酸、精氨酸。
3、氨基酸的理化性质1)两性解离及等电点氨基酸分子都含有碱性的α-氨基和酸性的α-羧基,因而是一种两性电解质。
在溶液中其所带电荷取决于溶液的pH值,当氨基酸分子带有相等正、负电荷,即所带净电荷为零时,溶液的pH值称为该氨基酸的等电点(pI)。
2)紫外吸收性质色氨酸、酪氨酸吸收峰在280nm左右,苯丙氨酸吸收峰在254nm。
可利用此性质采用紫外分分光度法测定溶液中蛋白质的含量,该法简便快捷。
3)茚三酮反应氨基酸可与茚三酮缩合产生蓝紫色化合物,其最大吸收峰在570nm。
可利用此性质测定氨基酸的含量。
四、蛋白质的分类(一)组成:单纯蛋白质及结合蛋白质(二)蛋白质分子形状:球状蛋白质及纤维状蛋白质(三)蛋白质的功能:活性蛋白质:酶、激素蛋白质、运输和贮存蛋白质等非活性蛋白质:胶原、角蛋白等第二节蛋白质的分子结构蛋白质为生物高分子物质,具有三维空间结构,执行复杂的生物学功能。
.蛋白质合成抑制剂蛋白合成的抑制剂很多,但作用机理各不相同,有些只对原核细胞,有些只对真核细胞。
(1)原核细胞蛋白合成抑制剂 大多抗生素属于此类如:①氯霉素 可与70S核糖体结合;②四环素类 四环素封闭A位;②链霉素类 抑制翻译过程,链霉素类与30S核糖体结合,引起密码错误;④红霉素类 与50S结合⑤嘌呤霉素 与50S结合,抑制原核细胞。
(2)真核蛋白合成抑制剂 如环已亚胺酮(放线菌酮)、、白喉毒素等,还有很多未发现。
四、真核细胞与原核细胞肽链合成的主要区别真核细胞肽链合成与原核相似,但也有很多处不同。
1.核糖体不同,真核更大些80S,40S+60S。
2.起始氨酸仍为蛋酸,但未有甲酰化,起始tRNAfMet含TψC序列?3.起始密码上游也未见富含嘌呤序列。
4.起始复合物中辅助因子更多,起始复合物更大。
5.蛋白激酶参与蛋白合成调节,对起始因子进行磷酸化。
终止因子差不多,但称信号释放因子。
五、肽链合成后的定向运输和加工修饰1.定向运输蛋白质的合成是在细胞质中核糖体上进行,但新合成的蛋白质或多肽,要送往细胞的各个部位,例如各细胞器,有的分泌到细胞外或膜间隙。
如此,新的多肽必须准确地定向输送到指定部位,这就是定向输送问题。
一般蛋白多肽是不能自行跨膜转运的。
现在研究看来,定向输送是由信号肽及导肽来实现的。
(1)信号肽 信号假说是1975年由Blobel和Dobberstein提出的,大意是定位于每个亚细胞区域的多肽都带有能确定其最终位置的信号,如同信封上地址一样,已标明了去向。
这种信号是由一段氨基酸顺序表达的,所以称信号肽。
由信号肽来指导多肽的定向转运,这主要发生在真核细胞内。
信号肽位于多肽的首端N–端,长度约13~26个氨酸,至少含有一个带正电荷的氨酸。
中部有一段高度疏水性氨酸组成,约10~15氨酸,此疏水区极为重要。
信号肽C–端有一个可被信号肽酶识别的位点,以便于水解。
此位点上游常有一段疏水性强的5肽,水解位点上游第1及第3(-1和-3)氨酸常为侧链小的氨酸组成。
生化重点知识归纳总结生化学(生物化学)是研究生物体内化学成分、化学反应和化学转化的一门科学。
在这篇文章中,将对生化学中的重点知识进行归纳总结,以帮助读者更好地理解和掌握这一领域的知识。
1. 分子生物学1.1 DNA与RNADNA是生物体内存储遗传信息的分子,决定了生物的遗传特征。
RNA则参与了蛋白质的合成过程。
DNA由四种碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶和鸟嘌呤)组成,而RNA中胸腺嘧啶是由腺嘌呤与尿嘧啶二聚而成。
1.2 蛋白质合成蛋白质合成是通过转录和翻译过程实现的。
转录将DNA的信息转录成mRNA,然后mRNA与核糖体进行翻译,合成蛋白质。
2. 代谢途径2.1 糖酵解糖酵解是将葡萄糖分解为乳酸或乙醇等产物,同时释放能量。
它分为糖原酵解和无氧酵解两种类型。
2.2 糖异生糖异生是指从非糖类物质合成葡萄糖的过程。
这在饥饿或低碳水化合物摄入的情况下起关键作用。
2.3 脂肪酸合成与分解脂肪酸合成是指在胞质内,将乙酰辅酶A逐步合成长链脂肪酸的过程。
脂肪酸分解则是将脂肪酸分解为乙酰辅酶A,释放能量。
2.4 氨基酸代谢氨基酸代谢包括氨基酸降解和合成两个方面。
氨基酸在生物体内经过一系列反应,最终被降解为尿素,并通过尿液排出体外。
3. 酶与酶动力学3.1 酶的性质酶是在生物体内催化化学反应的蛋白质。
它们能够降低反应的活化能,加快反应速率。
3.2 酶的分类酶根据催化反应的方式,可分为氧化还原酶、转移酶、水解酶等不同类型。
3.3 酶动力学酶动力学研究酶催化反应速率与底物浓度、温度和pH等因素之间的关系。
其中,酶的最适温度和最适pH是使酶活性最大的温度和pH 值。
4. 代谢调节生物体内的代谢途径受到许多调节机制的控制。
4.1 负反馈调节负反馈调节是通过逆向调节酶的活性来调节代谢途径。
当代谢物浓度增加时,酶活性会被抑制,从而减少代谢途径产物的合成。
4.2 激酶与磷酸酶激酶和磷酸酶是参与调节代谢途径的重要酶。
激酶能够增加酶的活性,而磷酸酶则能够降低酶的活性。
生化总结知识点一、生物分子结构和性质1. 蛋白质结构和功能(1)蛋白质的组成:蛋白质由氨基酸残基通过肽键连接而成,氨基酸的种类和排列决定了蛋白质的结构和功能。
(2)蛋白质的结构:蛋白质的主要结构包括一级结构(氨基酸序列)、二级结构(α-螺旋、β-折叠)、三级结构(空间结构的折叠)、四级结构(多个多肽链的组合)。
(3)蛋白质的功能:蛋白质在生物体内具有多种功能,如酶、结构蛋白、运输蛋白、激素等。
2. 糖类的结构和功能(1)单糖、双糖和多糖:单糖是由一个糖基组成的简单糖类,如葡萄糖、果糖等;双糖是由两个糖基连接而成的复合糖类,如蔗糖、乳糖等;多糖是由多个糖基连接而成的高聚糖类,如淀粉、纤维素等。
(2)糖类的功能:糖类在生物体内具有能量供应、结构支持和细胞识别等功能。
3. 脂质的结构和功能(1)脂质的分类:脂质可分为甘油三酯、磷脂、类固醇等。
(2)脂质的结构:脂质主要由甘油酯和脂肪酸组成,磷脂还包括磷酸基和氨基醇基。
(3)脂质的功能:脂质在生物体内具有储能、细胞膜构成、激素合成等功能。
4. 核酸的结构和功能(1)核酸的组成:核酸由核苷酸组成,核苷酸由含氮碱基、糖、磷酸组成。
(2)核酸的结构:核酸分为DNA和RNA,其结构包括双螺旋和单链结构。
(3)核酸的功能:DNA负责遗传信息的传递和储存,RNA负责基因的表达和蛋白质的合成。
二、酶的特性和调控1. 酶的特性(1)酶的性质:酶是生物体内催化反应的蛋白质,具有高效、高专一性、可逆性等特点。
(2)酶的活性中心:酶的活性中心是其催化作用的关键部位,可与底物特异性结合。
(3)酶的底物与产物:酶对底物催化反应产生产物,反应受限于酶的底物浓度、酶浓度、反应条件等因素。
2. 酶的调控(1)酶的遗传调控:包括共同调控、底物诱导、反馈抑制等机制。
(2)酶的非遗传调控:包括磷酸化、去磷酸化、蛋白质降解等机制。
(3)酶与激素:激素通过调节酶的合成和活性来控制生物体内的代谢和生理功能。
生化笔记完全版-核酸的降解和核苷酸代谢核酸的生物功能DNA、RNA核苷酸的生物功能①合成核酸②是多种生物合成的活性中间物糖原合成,UDP-Glc。
磷脂合成,CDP-乙醇胺,CDP-二脂酰甘油。
③生物能量的载体A TP、GTP④腺苷酸是三种重要辅酶的组分NAD、FAD、CoA⑤信号分子cAMP、cGMP食物中的核酸,经肠道酶系降解成各种核苷酸,再在相关酶作用下,分解产生嘌呤、嘧啶、核糖、脱氧核糖和磷酸,然后被吸收。
吸收到体内的嘌呤和嘧啶,大部分被分解,少部分可再利用,合成核苷酸。
人和动物所需的核酸无须直接依赖于食物,只要食物中有足够的磷酸盐,、糖和蛋白质,核酸就能在体内正常合成。
核酸的分解代谢:第一节核酸和核苷酸的分解代谢一、核酸的酶促降解核酸是核苷酸以3’、5’-磷酸二酯键连成的高聚物,核酸分解代谢的第一步就是分解为核苷酸,作用于磷酸二酯键的酶称核酸酶(实质是磷酸二脂酶)。
根据对底物的专一性可分为:核糖核酸酶、脱氧核糖核酸酶、非特异性核酸酶。
根据酶的作用方式分:内切酶、外切酶。
1、核糖核酸酶只水解RNA磷酸二酯键的酶(RNase),不同的RNase专一性不同。
牛胰核糖核酸酶(RNaseI),作用位点是嘧啶核苷-3’-磷酸与其它核苷酸间的连接键。
核糖核酸酶T1(RNaseT1),作用位点是3’-鸟苷酸与其它核苷酸的5’-OH间的键。
图只能水解DNA磷酸二酯键的酶。
DNase牛胰脱氧核糖核酸酶(DNaseI)可切割双链和单链DNA。
产物是以5’-磷酸为末端的寡核苷酸。
牛胰脱氧核糖核酸酶(DNaseⅠ),降解产物为3’-磷酸为末端的寡核苷酸。
限制性核酸内切酶:细菌体内能识别并水解外源双源DNA的核酸内切酶,产生3ˊ-OH和5ˊ-P。
图PstⅠ切割后,形成3ˊ-OH 单链粘性末端。
EcoRⅠ切割后,形成5ˊ-P单链粘性末端。
3、非特异性核酸酶既可水解RNA,又可水解DNA磷酸二酯键的核酸酶。
小球菌核酸酶是内切酶,可作用于RNA或变性的DNA,产生3’-核苷酸或寡核苷酸。
绪论1.生命有机体的特征:①化学成分复杂但条理性很强;②新陈代谢;③能自我繁殖。
2.细胞是生物体基本的结构和功能单位。
3.生化研究内容:①生物体的化学组成及生物分子的结构与功能;②代谢及其调节;③遗传信息的表达及调控;4.自然界化合物:①有机物:糖、脂、蛋白质、核酸;②无机物:水、无机盐5.生物分子:①有机小分子:维生素、辅酶、激素、有机酸、色素;②生物大分子:糖、脂、蛋白质、核酸生物复杂多样,但在分子水平具有简单同一性6.生物大分子的基本特征:①由结构简单的小分子聚合而成②都有非常复杂的结构③作为信息分子的基础④生物分子之间相互作用和识别特性7.代谢及其调节特点:①细胞内发生②包括物质和能量代谢③需要精细的相互协调8.发展简史:①叙述生物化学;②动态生物化学;③分子生物化学。
生物活动的化学基础1.化学键:相邻原子或离子之间强烈的相互作用,分离子键和共价键。
2.次级键:氢键和范德华力等较弱化学键的总称。
3.官能团:决定性质的原子或基团。
4.基本化学反应类型:氧化、还原、中和、置换、合成等。
5.氧化反应:有机物反应时加氧或脱氢的作用。
6.还原反应:有机物反应时加氢或脱氧的作用。
7.正常血液PH:7.35~7.45糖化学1.糖:化学本质为多羟基醛或多羟基酮类及其衍生物、缩聚物。
2.单糖:不能在水解的糖。
3.寡糖:能水解生成几分子单糖的糖,各单糖之间借脱水缩合的糖苷键相连。
4.多糖:能水解生成多个分子单糖的糖,包括同多糖、杂多糖。
5.手性原子:结构具有不对称性、不能与其镜像重合的原子。
6.手性碳原子:所连接的四个化学基团完全不同的碳原子。
7.旋光性:使平面偏振光发生旋转的性质。
只有手性分子才有旋光性8.旋光度:平面偏振光旋转的角度。
9.比旋光度:手性分子的特征常数。
10.D、L构型:距离羰基最远的手性碳上-OH的位置,在左为L,在右为D。
自然界存在的单糖大多使D型11.变旋光现象:几种构型之间相互转换,动态平衡的现象。
生化笔记第一章糖类1.糖类是地球上数量最多的一类有机化合物。
2.葡萄糖——烯醇式——果糖和甘露糖3.异头体通过直链结构互变4.所有醛糖都是还原糖,部分酮糖也是还原糖,例如果糖。
5.Fehling试剂盒Benedict试剂可以作为氧化剂与还原糖反应,可定性,不可定量。
6.缓冲的溴水溶液能氧化醛糖为醛糖酸,与酮糖不反应。
7.鉴定酮糖:羟甲糠醛与间二苯酚——红色——Swliwanoff实验8.鉴定戊糖:戊糖脱水生成的糠醛+间苯三酚(地皮酚)——朱红色——间苯三酚实验9.鉴定戊糖:戊糖脱水生成的糠醛+甲基间苯二酚(地衣酚)——蓝绿色——Bial反应——测定RNA含量10.鉴定糖类:糠醛+α-萘酚——红紫色——Molisch实验11.测总糖量:糠醛+蒽酮——蓝绿色——蒽酮反应12.高碘酸:测定糖类呋喃型还是吡喃型、测平均相对分子质量、非还原末端残基数、多糖的分支数目。
13.单糖分子中一个羟基被氨基取代的称为氨基糖,胞壁酸和神经氨酸是氨基糖的衍生物,称为酸性氨基糖。
前者是细菌细胞壁的结构多糖的构件之一。
后者中,有三种神经氨酸统称为唾液酸。
唾液酸是动物细胞膜上的糖蛋白和糖脂的重要成分。
14.N-乙酰神经氨酸 = 唾液酸; NAG = N-乙酰葡糖胺; NAM = N-乙酰胞壁酸15.糖苷:乌本苷是Na+-K+—ATP酶的抑制剂;毛地黄毒苷(强心苷)16.所有二糖至少有一个单糖的异头碳参与成键(糖苷键)17.糖苷键在多数情况下只涉及一个单糖的异头碳,另一个单糖的异头碳是游离的。
18.二糖中还原糖:乳糖β1-4、麦芽糖α1-4、纤维二糖β1-419.二糖中非还原糖:蔗糖、海藻糖20.淀粉:直链:α1-4,一个还原端1’,一个非还原端4’分支:分支处α1-6,直链处α1-4。
一个还原端1’,多个非还原端4’α淀粉酶:随机作用于淀粉内部α1-4β淀粉酶:专一从非还原端α1-4脱支酶:α1-6,分支处21.糖原:α1-4和α1-622.纤维素:β1-4,自然界最丰富的多糖23.壳多糖:几丁质,自然界第二个最丰富的多糖24.肽聚糖:NAG + NAM NAG=N-乙酰葡糖胺;NAM=N-乙酰胞壁酸25.粘多糖:基本结构为己糖醛酸和己糖胺的二糖单位组成的长链多聚物。
生物化学重点笔记生物化学是研究生物体的化学组成、结构、性质、功能以及生命过程中化学变化规律的一门科学。
它是生命科学领域的重要基础学科,对于理解生命现象、疾病发生机制以及药物研发等都具有重要意义。
以下是为您整理的生物化学重点笔记。
一、蛋白质化学1、蛋白质的组成与结构组成:蛋白质主要由碳、氢、氧、氮、硫等元素组成,其基本组成单位是氨基酸。
结构:蛋白质具有一级结构(氨基酸的排列顺序)、二级结构(如α螺旋、β折叠等)、三级结构(整条肽链的空间构象)和四级结构(多条肽链形成的复合物)。
2、蛋白质的性质两性解离:在一定的 pH 条件下,蛋白质可以解离成带正电荷或负电荷的离子。
胶体性质:蛋白质溶液是一种胶体溶液,具有丁达尔现象、布朗运动等特性。
变性与复性:在某些物理或化学因素作用下,蛋白质的空间结构被破坏,导致其理化性质和生物活性改变,称为变性;变性后的蛋白质在适当条件下可以恢复其原有的空间结构和生物活性,称为复性。
3、蛋白质的分离与纯化沉淀法:如盐析、有机溶剂沉淀等。
层析法:包括凝胶过滤层析、离子交换层析、亲和层析等。
电泳法:如聚丙烯酰胺凝胶电泳、等电聚焦电泳等。
二、核酸化学1、核酸的组成与结构组成:核酸分为脱氧核糖核酸(DNA)和核糖核酸(RNA),它们由核苷酸组成,核苷酸包括碱基、戊糖和磷酸。
结构:DNA 是双螺旋结构,RNA 有单链、双链等多种结构形式。
2、 DNA 的复制与转录DNA 复制:以亲代 DNA 为模板,按照碱基互补配对原则合成子代DNA 的过程。
转录:以 DNA 为模板合成 RNA 的过程。
3、 RNA 的种类与功能mRNA(信使 RNA):携带遗传信息,指导蛋白质合成。
tRNA(转运 RNA):在蛋白质合成中转运氨基酸。
rRNA(核糖体 RNA):参与核糖体的组成。
三、酶1、酶的本质与特性本质:酶是具有催化活性的蛋白质或 RNA。
特性:高效性、专一性、可调节性、不稳定性。
2、酶的催化机制降低反应的活化能:通过形成酶底物复合物,使反应更容易进行。
【精品】生化几个章节总结笔记2010 级生工三班陈绍通学号:201030314 第一篇生物大分子的结构与功能第一章蛋白质结构和功能 1、各种蛋白质含量很接近, 平均为 16% 2、每克样品含氮量克数 X6.25X100=100 克样品中蛋白质含量(g%)一、组成人体蛋白质的 20 种氨基酸均属于 L- ɑ- 氨基酸(除甘氨酸)二、氨基酸可根据侧链结构和理化性质进行分类以下五类非极性脂肪族氨基酸极性中性氨基酸芳香族氨基酸酸性氨基酸碱性氨基酸一般而言, 非极性脂肪族氨基酸在水溶液中溶解度小于极性中性氨基酸;芳香族氨基酸中苯基的疏水性较强, 酚基和吲哚基在一定条件下可解离;酸性氨基酸的侧链都含有羧基;而碱性氨基酸的侧链分别含有氨基、胍基或咪唑基。
1、非极性氨基酸包括:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、苯丙氨酸、脯氨酸2、极性氨基酸极性中性氨基酸:色氨酸、酪氨酸、丝氨酸、半胱氨酸、蛋氨酸、天冬酰胺、谷氨酰胺、苏氨酸酸性氨基酸:天冬氨酸、谷氨酸碱性氨基酸:赖氨酸、精氨酸、组氨酸其中:1/ 3属于芳香族氨基酸的是:色氨酸、酪氨酸、苯丙氨酸属于亚氨基酸的是:脯氨酸含硫氨基酸包括:半胱氨酸、蛋氨酸注意:在识记时可以只记第一个字, 如碱性氨基酸包括:赖精组二、 20 种氨基酸具有共同或特异的理化性质1、两性解离及等电点(PI)氨基酸分子中有游离的氨基和游离的羧基, 能与酸或碱类物质结合成盐, 故它是一种两性电解质。
在某一PH的溶液中, 氨基酸解离成阳离子和阴离子的趋势及程度相等, 成为兼性离子, 呈电中性, 此时溶液的PH称为该氨基酸的等电点。
(多级的看有阴离子和阳离子数目相等)2、含共轭双键的氨基酸具有紫外吸收性质芳香族氨基酸在 280nm 波长附近有最大的紫外吸收峰, 由于大多数蛋白质含有这些氨基酸残基, 氨基酸残基数与蛋白质含量成正比, 故通过对 280nm 波长的紫外吸光度的测量可对蛋白质溶液进行定量分析。
生化:氨基酸的排列顺序,肽键维系,不属于空间结构蛋白质二级结构:局部主链的空间结构,a螺旋蛋白质三级结构:肽键中残基相对空间位置,三维空间结构,疏水、盐、二硫、氢键维系蛋白质四级结构:亚基间的相对空间位置,疏水、氢键、离子键维系蛋白质的含氮量平均为16%。
氨基酸是蛋白质的基本组成单位,除甘氨酸外属L-α-氨基酸。
半胱氨酸巯基是GSH的主要功能基团。
维系蛋白质二级结构的因素是氢键并不是所有的蛋白质都有四级结构。
丝氨酸不参与营养物质构成。
溶液pH>pI时蛋白质带负电,溶液pH<pl时蛋白质带正电。
蛋白质变性的实质是空间结构的改变,并不涉及一级结构的改变。
(1~3题共用备选答案)A.蛋白质一级结构 B.蛋白质二级结构C.蛋白质三级结构 D.蛋白质四级结构E.单个亚基结构1.不属于空间结构的是答案:A2.整条肽链中全部氨基酸残基的相对空间位置即是答案:C3.蛋白质变性时,不受影响的结构是答案:A 4.维系蛋白质分子一级结构的化学键是肽键5.变性蛋白质的主要特点是生物学活性丧失6.蛋白质二级结构是指分子中局部主链的空间构象7.下列关于肽键性质和组成的叙述正确的是肽键有一定程度双键性质(8~9题共用备选答案)A.一级结构破坏 B.二级结构破坏 C.三级结构破坏 D.四级结构破坏 E.空间结构破坏8.亚基解聚时答案:D9.蛋白酶水解时答案:A10.关于蛋白质二级结构的叙述正确的是指局部主链的空间构象核酸的结构和功能2.核苷酸是核酸的基本单位。
3.核酸一级结构的化学键是3′,5′-磷酸二酯键。
4. DNA的二级结构的特点。
主要化学键为氢键。
碱基互补配对原则。
A与T,C与G。
5. Tm为熔点,与碱基组成有关。
6. tRNA二级结构为三叶草型、三级结构为倒L型。
7.ATP是体内能量的直接供应者。
cAMP、cGMP为细胞间信息传递的第二信使。
【历年考题点津】1.下列有关RNA的叙述错误的是胞质中只有mRNA和tRNA 子量最小的一种:2.下列有关mRNA的叙述,正确的是可作为蛋白质合成的模板(3~5题共用备选答案)A.核苷酸在核酸长链上的排列顺序 B.tRNA的三叶草结构 C.DNA双螺旋结构 D.DNA的超螺旋结构 E. DNA的核小体结构3.属于核酸一级结构的描述是答案:A4.属于核糖核酸二级结构的描述是答案:B5.属于真核生物染色质中DNA的三级结构的描述是 E 6. DNA碱基组成的规律是[A]=[T];[C]=[G]7.核酸对紫外线的最大吸收峰是260nm8.组成多聚核苷酸的骨架成分是戊糖与磷酸9.组成核酸分子的碱基主要有5种10.下列关于DNA碱基组成的的叙述正确的是不同生物来源的DNA碱基组成不同11. DNA变性时其结构变化表现为对应碱基间氢键断裂12.核酸中含量相对恒定的元素是磷第三章酶1.酶蛋白决定酶特异性,辅助因子决定反应的种类与性质。
2.酶有三种特异性:绝对特异性、相对特异性、立体异构特异性酶活性中心概念。
【历年考题点津】1.下列有关酶的叙述,正确的是能显著地降低反应活化能2.辅酶和辅基的差别在于经透析方法可使辅酶与酶蛋白分离,辅基则不能3.Km值是指反应速度为0.5Vmax时的底物浓度4.下列含有核黄素的辅酶是FMN5.关于酶活性中心的叙述,正确的是E:含结合基团和催化基团6.酶的催化高效性是因为酶能降低反应的活化能17.辅酶在酶促反应中的作用是A.起运载体的作用8.关于酶竞争性抑制剂的叙述错误的是增加底物浓度也不能达到最大反应速度9.下列为含有B族维生素的辅酶,例外的是细胞色素b10.关于酶的正确叙述是能大大降低反应的活化能第四章糖代谢1.限速酶:己糖激酶,磷酸果糖激酶,丙酮酸激酶;净生成ATP;2分子ATP;产物:乳酸2.糖原合成的关键酶是糖原合成酶。
糖原分解的关键酶是磷酸化酶。
3.能进行糖异生的物质主要有:甘油、氨基酸、乳酸、丙酮酸。
糖异生的四个关键酶:丙酮酸羧化酶,磷酸烯醇式丙酮酸羧激酶,果糖二磷酸酶,葡萄糖-6-磷酸酶。
4.磷酸戊糖途径的关键酶,6-磷酸葡萄糖脱氢酶,6-磷酸葡萄糖脱氢酶。
5.血糖浓度:3.9~6.1mmol/L。
【历年考题点津】1.不能异生为糖的是A.甘油 B.氨基酸C.脂肪酸 D.乳酸 E.丙酮2.1mol丙酮酸在线粒体内彻底氧化生成ATP的mol数量是15(3~7题共用备选答案)A.果糖二磷酸酶-1 B.6-磷酸果糖激酶C.HMGCoA还原酶 D.磷酸化酶E. HMGCoA合成酶3.糖酵解途径中的关键酶是答案:B4.糖原分解途径中的关键酶是答案:D5.糖异生途径中的关键酶是答案:A6.参与酮体和胆固醇合成的酶是答案:E 7.胆固醇合成途径中的关键酶是答案:C8.糖酵解的关键酶是磷酸果糖激酶一1(9~12题共用备选答案)A.6-磷酸葡萄糖脱氢酶B.苹果酸脱氢酶C.丙酮酸脱氢酶D. NADH脱氢酶E.葡萄糖-6-磷酸酶价9.呼吸链中的酶是答案:D10.属三羧酸循环中的酶是答案:B11.属磷酸戊糖通路的酶是答案:A12.属糖异生的酶是答案:E13.下列关于己糖激酶叙述正确的是使葡萄糖活化以便参加反应14.在酵解过程中催化产生NADH和消耗无机磷酸的酶3-磷酸甘油醛脱氢酶15.进行底物水平磷酸化的反应是琥珀酰CoA→琥珀酸16.乳酸循环所需的NADH主要来自糖酵解过程中3-磷酸甘油醛脱氢产生的NADH(17~18题共用备选答案)A.6-磷酸葡萄糖脱氢酶B.苹果酸脱氢酶C.丙酮酸脱氢酶D. NADH脱氢酶E.葡萄糖-6-磷酸酶17.属于磷酸戊糖通路的酶是答案:A18.属于糖异生的酶是答案:E五章氧化磷酸化1. ATP是体内能量的直接供应者。
2.细胞色素aa3又称为细胞色素氧化酶。
3.线粒体内有两条重要的呼吸链:NADH氧化呼吸链和琥珀酸氧化呼吸链。
4.呼吸链中细胞色素的排列顺序为:b cl c aa3。
5.氰化物中毒的机制是抑制细胞色素氧化酶。
【历年考题点津】1.通常生物氧化是指生物体内营养物氧化成H2O和CO2的过程2.生命活动中能量的直接供体是三磷酸腺苷3.下列有关氧化磷酸化的叙述,错误的是电子经呼吸链传递至氧产生3分子ATP第六章脂肪代谢1.必需脂肪酸指亚油酸、亚麻酸、花生四烯酸。
2 .脂肪的合成原料为乙酰辅酶A和NADPH。
3.脂肪分解的限速酶是激素敏感性甘油三酯脂肪酶。
4.酮体生成的限速酶是HMG-CoA合成酶。
5.酮体利用的酶是乙酰乙酸硫激酶和琥珀酸单酰CoA转硫酶。
6.肝内生酮肝外用。
【历年考题点津】1.下列属于营养必需脂肪酸的是亚麻酸2.体内脂肪天量动员时,肝内生成乙酰辅酶A主要生成酮体3.脂肪酸合成的原料乙酰CoA从线粒体转移至胞液的途径是柠檬酸-丙酮酸循环4.合成脂肪酸的乙酰CoA主要来自糖的分解代谢5.下列关于酮体的描述错误的是合成原料是丙酮酸氧化生成的乙酰CoA6.脂肪酸合成过程中,脂酰基的载体是CoA第七章磷脂、胆固醇及血浆脂蛋白1.磷脂的合成部位在内质网,合成原料为甘油、脂肪酸、磷酸盐、胆碱、丝氨酸、肌醇等。
2.胆固醇合成酶系存在于胞液及滑面内质网上。
合成胆固醇的原料为乙酰辅酶A和NADPH。
23.胆固醇合成的限速酶是HMG-CoA还原酶。
4.胰岛素和甲状腺素促进胆固醇的合成,胰高血糖素和皮质醇减少胆固醇的合成。
5.胆固醇的转化:①转化为胆汁酸;②转化为类固酮激素;③转化为维生素D3。
【历年考题点津】1.胆固醇不能转变成胆色素2.能激活血浆中LCAT的载脂蛋白是apoA I3.胆固醇合成的关键酶是HMG-CoA还原酶第八章氨基酸代谢1.人体内有8种必需氨基酸:苏氨酸、亮氨酸、缬氨酸、异亮氨酸、赖氨酸、蛋氨酸、苯丙氨酸、色氨酸。
2.转氨酶的辅酶是磷酸吡哆醛。
3.氨基酸的脱氨基方式包括:①氧化脱氨基;②转氨基作用;③联合脱氨基作用。
4.肌肉组织内的脱氨基方式是嘌呤核苷酸循环。
5.氨的来源:①脱氨基作用;②肠道产氨;③肾脏泌氨。
6.谷氨酰胺是体内储氨、运氨以及解氨毒的一种重要方式。
7.氨在体内的主要去路是在肝经鸟氨酸循环合成尿素。
8.谷氨酸脱羧生成GABA;组氨酸脱羧生成组胺。
9.一碳单位来源:丝、甘、组、色氨酸。
FH4为其载体。
一碳单位参与碱基的合成。
10. SAM是体内甲基的活性供体。
11.多巴胺、去甲肾上腺素统称为儿茶酚胺。
【历年考题点津】1.人体内合成尿素的主要脏器是肝2.下列氨基酸中能转化生成儿茶酚胺的是酪氨酸3.下列氨基酸在体内可以转化为γ-氨基丁酸 (GABA)的是谷氨酸4.转氨酶的辅酶是磷酸吡哆醛5.肌肉中最主要的脱氨基方式是嘌呤核苷酸循环 (6~7题共用备选答案)A.半胱氨酸 B.丝氨酸C.蛋氨酸 D.脯氨酸 E.鸟氨酸6.含巯基的氨基酸是答案:A7.天然蛋白质中不含有的氨基酸是答案:E第九章核苷酸代谢【历年考题点津】1.嘌呤碱在体内分解的终产物是尿酸2.男,51岁,近3年来出现关节炎症状和尿路结石,进食肉类食物时,病情加重。
该患者发生的疾病涉及的代谢途径是嘌呤核苷酸代谢第十章遗传信息的传递1.DNA的复制是半保留复制。
2.新链生成方向是从5′→3′。
3.反转录合成的DNA链称为互补DNA(cDNA)。
4.DNA损伤修复有多种方式,如切除修复、重组修复和SOS修复。
5.转录是一种不对称性转录。
6.模板链并非永远在一条单链上。
7. RNA的合成方向也是从5′→3′。
8. mRNA加工过程包括:①剪内含子连外显子;②5′末端加“帽”;③3′末端加“尾”;④碱基修饰。
9.tRNA加工过程包括:①剪切;②3′末端加CCA-OH;③碱基修饰。
10.起始密码子:AUG;终止密码子:UAA、UAG、UGA。
11.tRNA分子结构中有反密码子,与mRAN上的密码子互补。
【历年考题点津】1.RNA指导的DNA合成称反转录2.基因表达就是基因转录和转录/翻译的过程3.涉及核苷酸数目变化的DNA损伤形式是插入突变4.镰刀形红细胞贫血患者,其血红蛋白β链N端第六个氨基酸残基谷氨酸被下列哪种氨基酸代替缬氨酸5.反密码子UAG识别的mRNA上的密码子是CUA6.紫外线对DNA的损伤主要是引起嘧啶二聚体形成7. tRNA分子上3′一端序列的功能是提供-OH基与氨基酸结合8.逆转录的遗传信息流向是C.RNA→DNA9.关于DNA聚合酶的叙述,错误的是以NTP为原料 10.蛋白质合成后经化学修饰的氨基酸是羟脯氨酸11.关于原核RNA聚合酶叙述正确的是原核RNA聚合酶有3种第十一章基因表达调控1.基因表达就是指基因转录和翻译的过程。
2.基因表达调控是在多级水平上进行的,其中转录起始(转录激活)是基本控制点。
3.启动子由转录起始点、RNA聚合酶结合位点及控制转录的调节元件组成。