第1章 渗流的基本概念和基本规律
- 格式:ppt
- 大小:3.60 MB
- 文档页数:75
第十二章渗流流体在孔隙介质中的运动称为渗流。
流体包括水、石油、天然气等。
孔隙介质是指由颗粒或碎块材料组成的内部包含许多互相连通的孔隙和裂隙的物质。
常见的孔隙介质包括土壤、岩层等多孔介质和裂隙介质。
有些水工建筑物本身就是由孔隙介质构成的,如土坝、河堤等。
研究渗流的运动规律及其工程应用的一门科学便是渗流力学。
在水利工程中,渗流主要是指水在地表以下土壤或岩层孔隙中的运动,这种渗流也称为地下水运动。
研究地下水流动规律的学科常称为地下水动力学,是渗流力学的一个分支。
在社会的许多部门都会遇到渗流问题。
例如,石油开采中油井的布设,水文地质方面地下水资源的探测,采矿、化工等。
在水利部门常见的渗流问题有以下几方面:(1)经过挡水建筑物的渗流,如土坝、围堰等。
(2)水工建筑物地基中的渗流。
(3)集水建筑物的渗流,井、排水沟、廊道等。
(4)水库及河渠的渗流。
上述几方面的渗流问题,就其水力学内容来说,归纳起来不外乎是要求解决以下几方面的问题:(1)确定渗流量;(2)确定浸润线位置;(3)确定渗流压力;(4)估计渗流对土壤的破坏作用。
第一节渗流的基本概念渗流既是水在土壤孔隙中的流动,其运动规律当然与土壤和水的特性有关。
一、土壤的分类一切土壤及岩层均能透水,但不同的土壤或岩层的透水能力是不同的,有时甚至相差很大。
这主要是由于各种土壤的的颗粒组成不同而引起的。
此外,在低水头下不透水的材料,在高水头作用下仍可能透水。
本章重点研究的土壤中的渗流,故可以根据土壤的透水能力在整个流动区内有无变化对土壤进行分类。
任一点处各个方向的透水能力相同的土壤称为各向同性土壤,否则称为各向异性土壤。
所有各点在同一方向上透水能力都相同的土壤称为均质土壤,否则称为非均质土壤。
显然,均质土壤可以是各向同性土壤,也可以是各向异性土壤。
均质且各向同性的土壤就透水能力而言是一种最为简单的土壤。
严格说来,只有当土壤由等直径的圆球颗粒组成时,其透水能力才不随空间位置及方向变化,才符合均质及各向同性条件。
目录第一章渗流理论基础 (1)1.1渗流的基本概念 (1)1.2渗流基本定律 (7)1.3岩层透水特征及水流折射定律 (11)1.4流网及其应用 (14)1.5渗流连续方程 (19)1.6渗流基本微分方程 (24)1.7数学模型的建立及求解 (32)第一章渗流理论基础1.1 渗流的基本概念1.1.1 多孔介质及其特性1.1.1.1多孔介质的概念多孔介质(Porous medium):地下水动力学中具有空隙的岩石。
广义上包括孔隙介质、裂隙介质和岩溶不十分发育的由石灰岩和白云岩组成的介质,统称为多孔介质。
孔隙介质:含有孔隙的岩层,砂层、疏松砂岩等;裂隙介质:含有裂隙的岩层,裂隙发育的花岗岩、石灰岩等。
1.1.1.2 多孔介质的性质(1) 孔隙性:有效孔隙和死端孔隙。
孔隙度(Porosity)是多孔介质中孔隙体积与多孔介质总体积之比(符号为n),可表示为小数或百分数,n=Vv/V。
有效孔隙(Effective pores)是多孔介质中相互连通的、不为结合水所占据的那一部分孔隙。
有效孔隙度(Effective Porosity)是多孔介质中有效孔隙体积与多孔介质总体积之比(符号为n e),可表示为小数或百分数,n e=V e/V。
死端孔隙(Dead-end pores )是多孔介质中一端与其它孔隙连通、另一端是封闭的孔隙。
(2) 连通性:封闭和畅通,有效和无效。
(3) 压缩性:固体颗粒和孔隙的压缩系数推导。
(4) 多相性:固、液、气三相可共存。
其中固相的成为骨架,气相主要分布在非饱和带中,液相的地下水可以吸着水、薄膜水、毛管水和重力水等形式存在。
固相—骨架matrix气相—空气,非饱和带中液相—水:吸着水Hygroscopic water薄膜水pellicular water毛管水capillary water重力水gravitational water1.1.1.3多孔介质中的地下水运动比较复杂,包括两大类,运动特点各不相同,分别满足于孔隙水和裂隙岩溶水的特点。
第一章渗流理论基础一、名词解释1. 渗透速度:表示水流在过水断面上的平均流速,不能代表任何真实水流的速度。
2. 实际速度:表示地下水在孔隙中的真实速度。
3. 水力坡度:把大小等于梯度值,方向沿着等水头面的法线,指向水头降低方向的矢量称为水力坡度。
4. 贮水系数:当水头变化1m时,从单位水平面积,高度为承压含水层厚度的柱体中释放或贮存的水量。
5. 贮水率:当水头下降1m时,单位体积承压含水层释放出来的水量。
6. 渗透系数:也称水力传导系数,当水力坡度J=1时,渗透系数在数值上等于渗透速度。
7. 渗透率:表示多孔介质能使气体或液体通过介质本身的能力,只与岩石性质有关,与液体性质无关。
8. 导水系数:T=KM,是一个水文地质参数,即水力坡度J=1时,通过整个含水层厚度上的单宽流量。
二、填空题1.地下水动力学是研究地下水在、、和中运动规律的科学。
(孔隙岩石、裂隙岩石、岩溶岩石)2.通常把具有连通性的孔隙岩石称为多孔介质,而其中的岩石颗粒称为。
(骨架)3.地下水在多孔介质中存在的主要形式有、薄膜水、毛管水和重力水,而地下水动力学主要研究的运动规律。
(吸着水、重力水)4.在多孔介质中,不连通的或一端封闭的孔隙对地下水运动来说是,但对贮水来说却是。
(无效、有效)5.地下水的过水断面包括空隙和固体颗粒所占据的面积,渗透流速是上的平均速度,而实际速度是的平均速度。
(过水断面、空隙面积)6.在渗流场中,把大小等于,方向沿着的法线,并指向水头降低方向的矢量,称为水力坡度。
(梯度值、等水头面)7.渗流运动要素包括流量Q、、压强p和等。
(渗流速度v、水头H)8.根据地下水与的关系,将地下水运动分为一维、二维和三维运动。
(运动方向、空间坐标轴)9.渗透率是表征的参数,而渗透系数是表征岩层的参数。
(岩层渗透性能、透水能力)10.影响渗透系数大小的主要因素是以及。
(岩石性质、渗透液体的物理性质)11.导水系数是描述含水层的参数,它是定义维流中的水文地质参数。
渗流力学绪论多孔介质:由固体骨架和相互连通的孔隙,裂缝,溶洞或各种类型的毛细管体系所组成的材料。
渗流力学与其他力学的区别:介质的不同。
第一章渗流的基本概念和基本规律油气藏:油气储集的场所和流动的空间。
油气藏按圈闭形成的类型:构造油气藏,地层油气藏,岩性油气藏。
构造油气藏的分类:背斜油气藏,断层油气藏,刺穿接触油气藏。
油气藏根据流体流动空间的特点:层状隐藏,块状油藏。
层状油藏的特点:1:油层平缓,分布面积大。
2:多油层,多旋回。
3:只考虑在水平方向上流动的流体。
块状油气藏得特点:有限的圈闭面积内相当厚的油藏,考虑纵向上流体的流动和交换;考虑毛管力和重力的作用。
纵向上分为三个区:纯油区,过渡区,纯水区。
过渡区:含束缚水过渡带,油水同生过渡带,残余油过渡带。
多孔介质的特点:孔隙性,渗透性,比表面积大及孔隙结构复杂。
渗透性:多孔介质允许流体通过的能力。
K= ;渗流:流体在多孔介质中的流动。
绝对渗透率:当岩石中的孔隙流体为一项时,岩石允许流体通过的能力。
有效渗透率:当岩石中有两种以上流体存在时,岩石桂其中一相的通过的能力。
相对渗透率:岩石的有效渗透率与绝对渗透率的比值。
比表面积:单位体积岩石所有岩石颗粒的总表面积或孔隙内表面积。
孔隙类型:粒间孔隙,裂缝,溶洞。
多孔介质巨大的比面和复杂的孔隙结构,使得渗流具有阻力大,流动速度慢的特点。
油气层孔隙结构分为:单纯介质(粒间孔隙结构和纯裂缝结构),双重介质(裂缝-孔隙结构和溶洞-孔隙结构),三重介质(大洞或大裂缝和微裂缝、微孔隙共生)。
理想结构模型:将岩石的孔隙空间看成是由一束等直径的微毛细管组成。
修正理想结构模型:变截面弯曲毛细管模型。
重力(动力或阻力),惯性力(阻力),粘滞力(阻力),弹性力(动力),毛管力(动阻力)原始地层压力:油藏开发前流体所受的压力。
供给压力:油藏中存在液源供给区时,在供给边缘上的压力。
井底压力:油井正常工作时,在生产井井底所测得的压力。
1.渗流:流体在多孔介质中流动叫做渗流。
渗透率为压力梯度为1时,动力黏滞系数为l的液体在介质中的渗透速度。
是表征土或岩石本身传导液体能力的参数。
其大小与孔隙度、液体渗透方向上空隙的几何形状、颗粒大小以及排列方向等因素有关,而与在介质中运动的液体性质无关。
渗透率(k)用来表示渗透性的大小。
在一定压差下,岩石允许流体通过的性质称为渗透性;在一定压差下,岩石允许流体通过的能力叫渗透率。
2.开敞式油藏:如果油气藏外围与天然水源相连通,可向油气藏供液就是开敞式油气藏。
如果外围封闭且边缘高程与油水界面高程一致则称为封闭式油藏。
3.原始地层压力:油气藏开发以前,一般处于平衡状态,此时油层的流体所承受的压力叫原始地层压力。
4.供给压力:油气藏中存在液源供给区时,在供给边缘上的压力称为供给压力。
5.驱动方式可分为:水压驱动,弹性驱动,溶解气驱动和重力驱动。
6.在渗流过程中,如果运动的各主要元素只随位置变化而与时间没有关系,则称为稳定流。
反之,若各主要元素之一与时间有关,则称为非定常渗流或者不稳定渗流。
7.渗流的基本方式:平面一维渗流,平面径向渗流,和球面渗流。
8.绘制渗流图时规定这样的原则:任何相邻两条等压线之间的压差必须相等,同时,任何两条流线之间的流量必须相等。
9.井底结构和井底附近地区油层性质发生变化的井称为渗流不完善井。
不完善井可以分为打开程度不完善,打开性质不完善,双重不完善井。
10.试井:直接从实测的产量压力数据反求地层参数,然后用求得的地层参数来预测新的工作制度下的产量。
11.井间干扰:油水井工作制度的变化以及新井的投产会使原来的压力分布状态遭受到破坏引起整个渗流场发生变化,自然会影响到邻井的产量,这种井间相互影响的现象称为井间干扰。
12.压降叠加原理:多井同时工作时,地层中任一点外的压降等于各井以各自不变的产量单独工作时在该点处造成的压降代数和。
13.势的叠加原理:如果均质等厚不可压缩无限大底层上有许多点源,点汇同时工作,我们自然会想到地层上任一点的势应该等于每个点源点汇单独工作时在该点所引起的势的代数和,这就是势的叠加原理。