高中数学必修2教材介绍
- 格式:ppt
- 大小:138.00 KB
- 文档页数:21
疱丁巧解牛知识·巧学一、直线的点斜式方程1.已知直线过点P 0(x 0,y 0),斜率为k ,则其方程为y-y 0=k(x-x 0).2.注意公式的应用前提是直线的斜率存在,若斜率不存在,则不能应用此式.3.当直线与x 轴平行或重合时,直线的倾斜角为0°,斜率k=0,仍可用上述公式.此时可简写为y-y 0=0或y=y 0.特别地,x 轴的方程是y=0.当直线与y 轴平行或重合时,直线的倾斜角为90°,斜率不存在,不能应用点斜式方程.此时根据直线上每个点的横坐标都相等,可将方程写成x-x 0=0或x=x 0.特别地,y 轴的方程是x=0.点斜式方程中的点只要是直线上的点,哪一个都可以.辨析比较 过点P(x 0,y 0)的所有直线是x=x 0或y-y 0=k(x-x 0).k x x y y =--00与y-y 0=k(x-x 0)的区别:前者不包含点P(x 0,y 0),后者包含点P(x 0,y 0). 二、直线的斜截式方程1.已知直线过点P 0(0,b),斜率为k ,则其方程为y=kx+b ,其中b 叫做直线在y 轴上的截距,也叫纵截距.2.“截距”不同于日常生活中的“距离”,截距是一个点的(纵)坐标,是一个实数,可以是正数,也可以是负数或零;而距离是一个非负数.3.斜截式方程的应用前提也是直线的斜率存在,并且给出的已知点是直线与y 轴的交点.当b=0时,y=kx 表示过原点的直线;当k=0时,y=b 表示与x 轴平行(或重合)的直线;当k=0且b=0时,y=0即表示x 轴.辨析比较 斜截式方程与一次函数的解析式相同,都是y=kx+b,但有区别:当斜率不为0时,y=kx+b 即为一次函数,当k=0时,y=b 不是一次函数;一次函数y=kx+b(k≠0)必是一条直线的斜截式方程.问题·探究问题1 若直线l经过点P 0(x 0,y 0),且与x 轴垂直,其直线方程怎样表示?若直线l经过点P 0(x 0,y 0),且与y 轴垂直,其直线方程怎样表示?探究:与x 轴垂直的直线上的所有点的横坐标都相等且等于x 0,纵坐标任意,方程可表示为x=x 0;与y 轴垂直的直线上的所有点的纵坐标都为y 0,而横坐标任意,所以方程可表示为y=y 0. 问题2 是否任何直线都存在y 轴上的截距?探究:不是任何直线都存在y 轴上的截距,平行于y 轴的直线与y 轴没有交点,所以不存在纵截距,其他的直线都有y 轴上的截距,即纵截距.问题3 直线的斜截式方程的截距指纵截距,是否也可以导出横截距的直线方程?探究:直线的斜截式方程是由点斜式自然推出y=kx+b.若k≠0,可化为x=k 1(y-b)=k b y k -1,这时对k 的要求更多,而当k 不存在时,也存在在x 轴上有截距的直线;k=0时,这样的直线与x 轴或者平行或者重合,此时在x 轴上的截距不存在.典题·热题例1 分别求出经过点P(3,4)且满足下列条件的直线方程,并画出图形.(1)斜率k=2;(2)与x 轴平行;(3)与x 轴垂直.思路解析:经过一个点求直线的方程,若所求直线与x 轴或y 轴垂直,则可直接写出所求直线的方程,其他情形可直接用公式求出.过一点求直线的方程,若斜率不存在或斜率为零时,可直接写出直线的方程,将此作为一种特殊情况熟练掌握.解:(1)这条直线经过点P(3,4),斜率k=2,点斜式方程为y-4=2(x-3),可化为2x-y-2=0.如图3-2-1(1)所示.(2)由于直线经过点P(3,4)且与x 轴平行,所以直线方程为y=4.如图3-2-1(2)所示.(3)由于直线经过点P(3,4)且与x 轴垂直,所以直线方程为x=3.如图3-2-1(3)所示.图3-2-1深化升华 本题是对直线的点斜式方程公式的直接应用,在倾斜角不为90°,即斜率存在时,直接代入直线的点斜式方程即可.若直线倾斜角为90°时方程可直接写出.例2 已知直线l 1:(m 2-m-2)x+2y+m-2=0,l 2:2x+(m-2)y+2=0,求m取何值时,l 1∥l 2?l 1⊥l 2? 思路解析:可以通过两直线斜率的关系来判断,但要注意直线斜率不存在的情况. 解:当m=2时,直线l 2的斜率不存在,可验证l 1的斜率为0,此时两直线垂直.当m≠2时,可把直线方程化为斜截式求出直线斜率和在y 轴上的截距,k 1=222---m m ,k 2=m -22.所以当k 1=k 2时解得m=3或m=0.但m=0时可得两直线方程相同,即直线重合.所以当m=3时l 1∥l 2.当k 1k 2=-1时两直线垂直,解得m=-2.综上可知,当m=3时l 1∥l 2;当m=±2时两直线垂直.拓展延伸 在前面我们已研究了两直线的平行与判定,如果给出两条直线的斜截式方程l 1:y=k 1x+b 1,l 2:y=k 2x+b 2,来判断两直线位置关系,则l 1∥l 2⇔k 1=k 2且b 1≠b 2,l 1⊥l 2⇒k 2k 1=-1.当一直线的斜率不存在时,若两直线平行,则另一直线的斜率也不存在;若两直线垂直,则另一直线的斜率等于0.如果给出的方程不是斜截式,可先化为斜截式,在化时要注意等价性(不要丢解).利用此性质,也可求与已知直线平行或垂直的直线.变式:直线2x-y+k=0和4x-2y+1=0的位置关系是( )A.平行B.垂直C.平行或重合D.既不平行也不重合解析:把两直线的方程化为斜截式为y=2x+k 和y=212+x ,其斜率相等.当k=21时,两直线重合,当k≠21时,两直线平行. 答案:C例3 直线经过点A(2,1),B(0,-3),求此直线的斜截式方程.若将A(2,1)换成A(2+a 2,1+a 2),要使k AB 最大,其直线方程又怎样?思路解析:已知两点,可先求出斜率,再写出斜截式方程.要使k AB 最大,需对参数进行取值研究.解:先求出此直线的斜率k AB =2231=+,再由斜截式写出方程y=2x-3.当A(2,1)变成A(2+a 2,1+a 2)时,k AB =221231222++=+++a a a ,当a 2=0时,k AB 取最大值2.此时直线的方程仍为y=2x-3.误区警示 由于斜截式方程和点斜式方程都是用斜率k 表示的,故这两类直线方程不能用来表示垂直于x 轴的直线,这在解题中应注意,否则会产生漏解.。
新高一数学教材必修二
新高一数学教材必修二包括以下几个部分:
1. 集合:集合中元素的个数。
2. 函数及其表示:包括函数的基本性质和信息技术应用,如用计算机绘制函数图象。
3. 指数函数:信息技术应用,借助信息技术探究指数函数的性质。
4. 对数函数:阅读与思考对数的发明,探究互为反函数的两个函数图象之间的关系。
5. 幂函数。
6. 空间几何体:包括空间几何体的结构、三视图和直观图、表面积与体积,以及探究祖暅原理与柱体、椎体、球体的体积。
7. 点、直线、平面之间的位置关系:包括空间点、直线、平面之间的位置关系,直线、平面平行的判定及其性质,直线、平面垂直的判定及其性质。
8. 直线与方程:包括直线的倾斜角与斜率,直线的方程,直线的交点坐标与距离公式。
9. 圆的方程:包括直线、圆的位置关系,空间直角坐标系。
此外,新高一数学教材必修二可能还会包括一些其他的内容,具体可以参照教材目录或咨询相关教师。
高中数学必修2《直线和平面平行的判定》说课稿一、教材内容分析教材内容的地位和作用:直线与平面平行的判定是江苏版普通高中课程标准实验教科书《数学》必修2第一章第二节第三部分内容;它在第一章线与线、线与面、面与面的知识结构中起着承上启下的作用,也是今后学习共面向量的基础。
在此之前,学生已学习了空间两直线的位置关系,这为过渡到本节的学习起着铺垫作用。
本节的主要内容有直线和平面的三种位置关系和直线与平面平行的判定两部分。
平行关系是全章的主要内容之一,而直线与平面平行的判定是平行关系的初步。
因此,在立体几何中,占据重要的地位。
作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中让学生首先借助长方体模型和演示实验,直接认识和理解直线和平面平行的理由和条件。
学生在应用观察、猜想等手段探索研究判定定理时,能获得视觉上的愉悦,增强探求的好奇心,激发出潜在的创造力,形成创新意识。
教学重点、难点因为新课标教材重视展现知识发生和发展的过程,因此本节教学重点是两个过程的教学:(1)直线和平面的三种位置关系的发现过程;(2)直线和平面平行关系的判定的形成过程。
通过直观类比、探究发现、观察实验来突出重点。
由于新课标对判定定理的证明没有要求,而要求学生直接通过直观感知、操作确认,认识和理解判定定理;并能运用定理证明一些空间位置关系的简单命题。
因此我把难点定为直线和平面平行的判定定理理解及应用,通过分组讨论、设计练习循序渐进等教学手段来突破难点二、教学目标根据上述教材内容分析,并结合学生的认知水平和思维特点,我将教学目标分为三部分进行说明:1、知识与技能目标(1)通过直观感知、操作确认归纳出直线与平面的三种位置关系;(2)掌握直线和平面平行的判定定理;(3)能较灵活运用判定定理解决有关问题。
2、过程与方法目标(1)通过学生观察实物,培养学生抽象概括能力;(2)通过学生对图形的分析,培养学生空间想象能力3、情感态度与价值观目标(1)通过教学使学生认识到研究直线和平面的位置关系以及直线与平面平行是实际生产的需要,充分体现了理论来源于实践并应用于实践,充分体现了理论联系实际的原则;(2)在师生对数学图形分析的过程中,培养学生积极进行数学交流、乐于探索创新的科学精神。
高中数学必修2《解析几何初步》教材分析及教学建议之一三明九中李宇宙一、解析几何内容的设计:1. 几何的内容按三个层次设计(1)必修课程中的几何,主要包括:立体几何初步、解析几何初步、平面向量、解三角形等。
(2)选修系列1、系列2中的几何,主要包括:圆锥曲线与方程、空间向量与立体几何。
(3)选修系列3、系列4(专题)中的几何.主要包括:球面上的几何、坐标系与参数方程、几何证明选讲等。
2.解析几何内容的变化突出了用代数方法解决几何问题的过程,同时也强调代数关系的几何意义。
解析几何的内容也是分层次设计的:在必修课程中,主要是直线与方程、圆与方程;圆锥曲线与方程的内容则放在选修系列1、系列2中。
3.必修2削弱的内容两条直线的位置关系(删除了两条直线的夹角)等。
4.必修2增删的内容(1) 解析几何增加的内容:直线与圆、圆与圆的位置关系;空间直角坐标系(2) 解析几何删除的内容:曲线与方程;圆的参数方程;圆锥曲线;线性规划移至必修5(第三章)不等式部分二、数学必修2《解析几何初步》的教学建议认真把握教学要求教学中,注意控制教学的难度,避免进行综合性强、难度较大的数学题的训练,避免在解题技巧上做文章。
关注重要数学思想方法的教学重要的数学思想方法不怕重复。
《标准》要求“坐标法”应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合”的思想方法。
在教学中应自始至终强化这一思想方法,这是解析几何的特点。
教学中注意“数”与“形”的结合,在通过代数方法研究几何对象的位置关系以后,还可以画出其图形,验证代数结果;同时,通过观察几何图形得到的数学结论,对结论进行代数证明,即用解析方法解决某些代数问题,不应割断它们之间的联系,应避免只强调“形”到“数”的方面,而忽视“数”到“形”的方面。
关注学生的动手操作和主动参与学习方式的转变是课程改革的重要目标之一。
教学中,注意适当给学生数学活动和交流的机会,引导他们在自主探索的过程中获得知识、增强技能、掌握基本的数学思想方法。
人教版高中数学必修二教材分析一、教材概述人教版高中数学必修二教材是一本适用于高中二年级学生的数学教材,是我国教育部规定的高中数学必修课程教材之一。
该教材主要包含了数学的基础概念、知识和解题方法,涵盖了代数、函数、三角函数、数列和数学证明等内容。
通过学习该教材,学生可以进一步巩固和拓展他们在初中数学学习中所掌握的知识,为高中阶段的数学学习打下坚实的基础。
二、教材结构1. 单元划分人教版高中数学必修二教材共分为六个单元,每个单元都围绕一个特定的主题展开。
这六个单元分别是:函数与导数、三角函数、数列与数学归纳法、不等式、平面向量、几何证明。
2. 章节内容每个单元又被细分为若干章节,每个章节都包含了具体的数学概念、定义、定理和解题方法。
教材还配有大量的例题和习题,供学生进行练习和巩固。
1. 反应大纲要求人教版高中数学必修二教材紧密结合了高中数学基础课程大纲的要求,内容全面、深入,并提供了丰富的例题和习题,以帮助学生理解和掌握数学知识。
2. 强调基本概念和思想教材注重培养学生的基本概念和思想,引导学生探索和发现数学的规律和方法。
通过举例、归纳和推理等方式,培养学生的数学思维能力和解决问题的能力。
3. 强化实际应用教材在教学内容中注重实际应用,将抽象的数学概念与实际问题相结合,使学生能够将数学理论应用于实际生活和工作中。
4. 突出数学证明教材对数学证明的学习和应用进行了突出。
通过引入数学证明的方法和技巧,培养学生的逻辑思维和推理能力,提高他们的数学思维水平。
人教版高中数学必修二教材作为一本高中数学教材具有以下优点:1. 结构严谨教材的整体结构清晰合理,单元与章节之间的划分有助于学生对知识的理解和掌握。
2. 内容全面教材内容覆盖了高中数学的各个重要章节,既包括基础概念与知识点的讲解,也包含了实际应用和数学证明等内容。
3. 真实生活应用教材中的许多例题和习题都融入了真实生活中的问题,使学生能够理解数学在现实生活中的应用价值。