最新MIDAS箱涵计算例题
- 格式:ppt
- 大小:1.51 MB
- 文档页数:12
Civil&Civil Designer一、钢箱梁操作例题资料1概要钢桥是高强、轻型薄壁结构,截面和自重比混凝土桥小,跨越能力大,因而在实际工程中有广泛应用。
钢桥按形式可大致分为钢箱梁、钢板梁(工字钢)、钢桁梁、组合梁桥等类型。
钢桥在使用时不仅要求钢材具有较高的强度,而且还要求具有良好的塑性。
钢桥的刚度相对比较小,变形和振动比混凝土桥大。
为了保证车辆行驶安全和舒适性、避免过大的变形和振动对钢桥结构产生不利的影响,钢桥必须有足够的整体刚度[2] 。
钢桥缺点除容易腐蚀影响耐久性外,另一缺点是疲劳。
影响疲劳的因素很多,除钢材品质、连接的构造与方法等外,与荷载性质、疲劳细节关系也很大。
钢箱梁除钢材等力学特性外,还具有箱梁的受力特点,广泛应用于市政高架、匝道、大跨度斜拉桥、悬索桥、拱桥加劲梁、大跨连续钢箱梁及人行桥钢箱梁等方面。
本专题将通过介绍工程概况、结合规范构造检查、midas Civil详细建模过程以及midas Civil Designer设计平台及结果查看等操作流程,希望能为读者结合实际项目学习程序,通过程序了解钢箱梁提供帮助。
钢箱梁操作例题资料2 钢桥概况及构造检查2.1 钢桥概况主梁为20+30+40+30m单箱单室正交钢箱梁,钢材为Q345;桥面宽8m,梁高2.335m,翼缘板长1.8m;顶板、腹板、翼缘板均厚16mm,底板标准段厚16mm,支座两侧3~3.5m范围内加厚为24mm;顶板设置闭口U型加劲肋;翼缘板、腹板均设置板型加劲肋;底板标准段设置板型加劲肋,桥墩两侧5~7m范围内设置T型加劲肋;横隔板等设置距离详见图1~图3所示。
建模之前,应按照《公路钢结构桥梁设计规范》(JTG D64—2015)[1] (以下简称规范)对钢桥面板、加劲肋、翼缘板及腹板等尺寸进行构造检查。
2.2构造检查2.2.1钢桥面板近年来正交异性钢桥面板出现疲劳和桥面铺装损伤的现象较为普遍,为保证钢桥面板具有足够的刚度,需对最小厚度有要求;为减小应力集中和避免采用疲劳等级过低的构造细节,需对纵向闭口加劲肋尺寸进行规定[1]。
Civil&Civil Designer一、钢箱梁操作例题资料1概要钢桥是高强、轻型薄壁结构,截面和自重比混凝土桥小,跨越能力大,因而在实际工程中有广泛应用。
钢桥按形式可大致分为钢箱梁、钢板梁(工字钢)、钢桁梁、组合梁桥等类型。
钢桥在使用时不仅要求钢材具有较高的强度,而且还要求具有良好的塑性。
钢桥的刚度相对比较小,变形和振动比混凝土桥大。
为了保证车辆行驶安全和舒适性、避免过大的变形和振动对钢桥结构产生不利的影响,钢桥必须有足够的整体刚度[2] 。
钢桥缺点除容易腐蚀影响耐久性外,另一缺点是疲劳。
影响疲劳的因素很多,除钢材品质、连接的构造与方法等外,与荷载性质、疲劳细节关系也很大。
钢箱梁除钢材等力学特性外,还具有箱梁的受力特点,广泛应用于市政高架、匝道、大跨度斜拉桥、悬索桥、拱桥加劲梁、大跨连续钢箱梁及人行桥钢箱梁等方面。
本专题将通过介绍工程概况、结合规范构造检查、midas Civil详细建模过程以及midas Civil Designer设计平台及结果查看等操作流程,希望能为读者结合实际项目学习程序,通过程序了解钢箱梁提供帮助。
钢箱梁操作例题资料2 钢桥概况及构造检查2.1 钢桥概况主梁为20+30+40+30m单箱单室正交钢箱梁,钢材为Q345;桥面宽8m,梁高2.335m,翼缘板长1.8m;顶板、腹板、翼缘板均厚16mm,底板标准段厚16mm,支座两侧3~3.5m范围内加厚为24mm;顶板设置闭口U型加劲肋;翼缘板、腹板均设置板型加劲肋;底板标准段设置板型加劲肋,桥墩两侧5~7m范围内设置T型加劲肋;横隔板等设置距离详见图1~图3所示。
建模之前,应按照《公路钢结构桥梁设计规范》(JTG D64—2015)[1] (以下简称规范)对钢桥面板、加劲肋、翼缘板及腹板等尺寸进行构造检查。
2.2构造检查2.2.1钢桥面板近年来正交异性钢桥面板出现疲劳和桥面铺装损伤的现象较为普遍,为保证钢桥面板具有足够的刚度,需对最小厚度有要求;为减小应力集中和避免采用疲劳等级过低的构造细节,需对纵向闭口加劲肋尺寸进行规定[1]。
目录1 计算依据与基础资料 (1)1.1 工程概况 (1)1.1.1截面尺寸 (1)1.1.2填土情况 (1)1.2 标准与规范 (1)1.2.1 标准 (1)1.2.2 规范 (1)1.3 主要材料 (2)1.4 设计要点与参数 (2)1.5 计算软件 (2)2 计算模型简介 (3)2.1 计算模型 (3)2.2 荷载施加 (3)3 箱涵结构计算 (4)3.1 荷载组合 (4)3.2 箱涵受力计算 (4)3.2.1 箱涵弯矩 (4)3.2.2 箱涵剪力 (5)3.2.3 箱涵轴力 (6)3.2.4 箱涵配筋验算 (7)4地基承载力验算 (31)4.1荷载计算 (31)4.2地基应力 (32)1 计算依据与基础资料1.1 工程概况道路在桩号K1+000处设置两孔6x3.5m箱涵,箱涵结构中心线与道路中线的法线逆交13.5度,箱涵全长46m1.1.1截面尺寸净跨径:6m净高:3.5m顶板厚:0.6m底板厚:0.65m侧墙厚:0.6m倒角:0.15x0.15m基础:15cmC15素混凝土垫层;50cm浆砌片石垫层;基础宽度:14.8m1.1.2填土情况箱涵覆土厚度:1.729m土的内摩擦角:30°填土容重:18KN/m31.2 标准与规范1.2.1 标准桥梁结构安全等级为一级;设计荷载:汽车荷载:公路-I级,人群荷载:根据《桥梁设计准则》要求。
跨径:2孔6.0x3.5m钢筋砼箱涵;箱涵总长:46m;横坡:根据道路设计进行设置。
地震烈度:7度;环境条件Ⅰ类;地震荷载:地震基本烈度为7度,动荷载峰值加速度0.1g,Ⅱ类场地。
1.2.2 规范《公路桥涵设计通用规范》(JTG D60-2004);《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004);《公路桥涵地基与基础设计规范》(JTG D63-2007); 《公路桥梁抗震设计细则》(JTG/T B02-01-2008); 《公路涵洞设计细则》(JTG/T D65-04-2007); 《公路桥梁抗震设计细则》(JTJ041-2000); 《城市道路设计规范》(CJJ 37-90); 1.2.3 参考资料《公路桥涵设计手册》桥梁上册(人民交通出版社2004.03) 《公路小桥涵设计示例》(人民交通出版社2005.01)1.3 主要材料1)混凝土:箱涵采用C30混凝土。
Civil&Civil Designer一、单箱多室钢箱梁操作例题1概要钢桥是高强、轻型薄壁结构,截面和自重比混凝土桥小,跨越能力大,因而在实际工程中有广泛应用。
钢桥按形式可大致分为钢箱梁、钢板梁(工字钢)、钢桁梁、组合梁桥等类型。
钢桥在使用时不仅要求钢材具有较高的强度,而且还要求具有良好的塑性。
钢桥的刚度相对比较小,变形和振动比混凝土桥大。
为了保证车辆行驶安全和舒适性、避免过大的变形和振动对钢桥结构产生不利的影响,钢桥必须有足够的整体刚度[2] 。
钢桥缺点除容易腐蚀影响耐久性外,另一缺点是疲劳。
影响疲劳的因素很多,除钢材品质、连接的构造与方法等外,与荷载性质、疲劳细节关系也很大。
钢箱梁除钢材等力学特性外,还具有箱梁的受力特点,广泛应用于市政高架、匝道、大跨度斜拉桥、悬索桥、拱桥加劲梁、大跨连续钢箱梁及人行桥钢箱梁等方面。
本专题将通过介绍工程概况、结合规范构造检查、midas Civil详细建模过程以及midas Civil Designer设计平台及结果查看等操作流程,希望能为读者结合实际项目学习程序,通过程序了解钢箱梁提供帮助。
1 / 572 钢桥概况及构造检查2.1 钢桥概况本桥上部结构主梁为(35+60+35)m单箱双室正交变高钢箱梁,钢材为Q345;桥面宽为0.75m(护栏)+10.5m(行车道)+0.75m(护栏)=12.0m,梁高由2.0m变化为2.6m,曲线类型为二次抛物线。
钢箱梁顶板及翼缘板厚20mm、底板厚25mm、腹板厚20mm。
加劲肋布置形式包括T型加劲肋、板型加劲肋和U型加劲肋,其中顶板设置闭口U型加劲肋、翼缘板与腹板均设置板型加劲肋、底板设置T型加劲肋。
另外,腹板纵向加劲肋数量在梁高较高处发生变化(建模时需注意)。
本桥结构一般构造详见图1.1-1~1.1-2所示。
建模之前,应按照《公路钢结构桥梁设计规范》(JTG D64—2015)[1] (以下简称规范)对钢桥面板、加劲肋、翼缘板及腹板等尺寸进行构造检查。
)203(45h)tg (H e 21p2-+γ=可编辑修改精选全文完整版箱涵结构计算一、设计资料净跨径L 0为4.5m ,净高位2m ,箱涵填土高H 为0.7m ,土的摩擦角ϕ为30,土的容重γ1=19KN/m ³,设箱涵采用C20砼和HRB335钢筋。
二、设计计算(一)截面尺寸拟定(见图1) 顶板、底板厚度δ=40cm (C 1=15cm )侧墙厚度 t=36cm (C 2=15cm ) 故 L p =L 0+t=4.5+0.36=4.86mh p =h o +δ=2.0+0.4=2.4m(二)荷载计算 1.恒载 恒载竖向压力P =γ1 H+γ2δ=19×0.7+25×0.4 = 23.2 KN/㎡ 恒载水平压力 顶板处=19×0.7×tg ²30º=4.43 KN/㎡底板处:=19 ×(0.7+2.8)×tg ²30 =22.16 KN/㎡2.活载公里-Ⅱ级车辆荷载由《公路桥涵设计通用规范》(JTG D60-2004)第4.3.4条计算 一个汽车后轮横向分布宽>1.32m 0.62+0.7tg30°=0.704m <1.82m 故,两列车相邻车轴有荷载重叠,应按如下计算横向分布宽度a=(0.62+0.7tg30°)×2+1.3=2.708 m 同理,纵向:0.22+0.7tg30°=0.504<1.4/2m 故b=(0.22+ 0.7tg30°)×2=1.008m车辆荷载垂直压力q 车= 1402.708×1.008= 51.29 KN/㎡车辆荷载水平压力e 车=51.29tg ²30°=17.10 KN/㎡ )203(45h)tg (H e 21p2-+γ=三、 内力计算 1 .构件刚度比677.086.44.236.011214.01121I e 22121p1=⨯⨯⨯⨯⨯=⨯=p L h I2 .节点弯矩和轴向力计算 (1)α种荷载作用下(图2) 涵洞四角节和弯矩: M aA =M aB =M aC =M aD = - 1K+1 · PLp²12N a1=N a2=0 N a3= N a4= PLp2恒载(p=P )M aA = -10.677+1 · 23.3×4.86²12 = -27.351 KN ·mN a3= 23.3×4.862 = 56.62KN车辆荷载(p=q 车)M aA = -10.677+1 · 51.29×4.86²12 = 60.56 KN ·mN a3= 51.29×4.862 = 124.63KN(2)b 种荷载作用下(图3) M aA =M aB =M aC =M aD = -K K+1 · Php²12N b1=N b2= Php2N a3= N a4=0 恒载(p=eP1) M bA = -0.6770.677+1 ·4.43×2.4²12=-0.858 KN ·mN b1= 4.43×2.42 =5.316KN(3)C 种荷载作用下(图4)60Ph )3K )(1K ()8K 3(K M M 2p cD cA •+++-== 60Ph )3K )(1K ()7K 2(K M M 2p cC cB •+++-== p cBcA p 1h M M 6Ph Nc -+=pcBcA p 2h M M 3Ph Nc --=恒载(p=ep2-ep1=22.16-4.43=17.73 KN )604.273.17)3677.0)(1677.0()8677.03(677.0M M 2cD cA ⨯⨯+++⨯-== = -1.875 KN ·m604.273.17)3677.0)(1677.0()7677.02(677.0M M 2cC cB ⨯⨯+++⨯-== = -1.561 KN ·mKN 96.64.2561.1875.164.273.17Nc 1=+-+⨯=KN 315.144.2561.1875.134.273.17Nc 2=+--⨯=(4)d 种荷载作用下(图5)4Ph ]5K 152K 10)3K 4K (6)3K (K [M 2p 2dA ⋅++++++-= 4Ph ]5K 153K 5)3K 4K (6)3K (K [M 2p 2dB ⋅++-+++-= 4Ph ]5K 153K 5)3K 4K (6)3K (K [M 2p 2dC ⋅++++++-= 4Ph ]5K 152K 10)3K 4K (6)3K (K [M 2p 2dA⋅++-+++-= pDCdD d1h M M N -=pDCdD p d2h M M Ph N -=-车辆荷载(P=e 车=17.10 KN/m ²)0673.05677.0153677.05)3677.04677.0(6)3677.0(677.05K 153K 5)3K 4K (6)3K (K 22=+⨯+⨯++⨯++=++++++5797.05677.0152677.0105K 152K 10=+⨯+⨯=++4213.05677.0153677.055K 153K 5=+⨯+⨯=++m KN 932.1544.210.17)5297.00673.0(M 2dA ⋅-=⨯⨯+-=m KN 717.844.210.17)4213.00673.0(M 2dB ⋅=⨯⨯--=m KN 113.2544.210.17)4213.00673.0(M 2dC ⋅-=⨯⨯+-=pCdB d4d3h M d M N N --==m KN 617.1244.210.17)5297.00673.0(M 2dA ⋅=⨯⨯--=KN 72.154.2113.25617.12N d1=+=KN 32.2572.154.210.17N d2=-⨯=KN 96.686.4113.25717.8N N d4d3-=+-==(5)节点弯矩和和轴力计算汇总表(6)荷载效应组合。
midas建模计算(预应力混凝土连续箱梁桥)midas建模计算(预应力混凝土连续箱梁桥)纵向计算模型的建立1.设置操作环境1.1打开新项目,输入文件名称,保存文件1.2在工具-单位体系中将单位体系设置为“m”,“KN”,“kj”和“摄氏”。
2.材料与截面定义2.1 材料定义右键-材料和截面特性-材料。
C50材料定义如下图所示。
需定义四种材料:主梁采用C50混凝土,立柱、盖梁及桥头搭板采用C30混凝土,基桩采用C25混凝土。
预应力钢绞线采用1860级高强低松弛s 15.24钢绞线。
钢绞线定义时,设计类型:钢材;规范:JTG04(S);数据库:strand 1860,名称:预应力钢筋2.2 截面定义2.2.1 利用SPC(截面特性值计算器)计算截面信息(1)在CAD中x-y平面内,以mm为单位绘制主梁所有的控制截面,以DXF 格式保存文件;绘图时注意每个截面必须是闭合的,不能存在重复的线段,并且对于组成变截面组的线段,其组成线段的个数应保持一致。
(2)在midas工具中打开截面特性计算器(SPC),在Tools-Setting中将单位设置为“KN”和“mm”;(3)从File-Import-Autocad DXF导入DXF截面;(4)从Model-Section-Generate中选择“Type-Plane”;不勾选“Merge Straight Lines”前面的复选框;Name-根据截面所在位置定义不同的截面名称从而生成截面信息;(5)在Property-Calculate Section Property 中设置划分网格的大小和精度,然后计算各截面特性;(6)从File-Export-MIDAS Section File导出截面特性文件,指定文件目录和名字,以备使用。
2.2.2 建立模型截面(1)右键-材料和截面特性-截面-添加-设计截面,选择设计用数值截面。
单击“截面数据”选择“从SPC导入”,选择刚导出的截面特性文件,并输入相应的设计参数。
修改最终版_restore计算书设计:_____________________校对:_____________________审核:_____________________2015-5-12目录一、基本信息 (3)1.1 工程概况 (3)1.2 技术标准 (3)1.3 主要规范 (3)1.4 结构概述 (3)1.5 主要材料及材料性能 (3)1.6 计算原则、内容及控制标准 (4)二、模型建立与分析 (4)2.1 计算模型 (4)2.2 主要钢筋布置图及材料用表 (5)2.3 截面特性及有效宽度 (5)2.4 荷载工况及荷载组合 (6)三、内力图 (8)3.1 内力图 (9)四、持久状况承载能力极限状态验算结果 (9)4.1 截面受压区高度 (9)4.2 正截面抗弯承载能力验算 (9)4.3 斜截面抗剪承载能力验算 (10)4.4 抗扭承载能力验算 (10)4.5 支反力计算 (11)五、持久状况正常使用极限状态验算结果 (12)5.1 结构正截面抗裂验算 (12)5.2 结构斜截面抗裂验算 (13)六、持久状况构件应力验算结果 (13)6.1 正截面混凝土法向压应力验算 (13)6.2 正截面受拉区钢筋拉应力验算 (14)6.3 斜截面混凝土的主压应力验算 (14)七、短暂状况构件应力验算结果 (15)7.1 短暂状况构件应力验算 (15)一、基本信息1.1 工程概况1.2 技术标准1.3 主要规范1)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)2)《公路桥涵设计通用规范》(JTG D60-2004)3)《公路工程技术标准》(JTG B01-2003)4)《公路桥梁抗震设计细则》(JTG/T B02-01-2008)5)《公路桥涵地基与基础设计规范》(JTG D63-2007)6)《城市桥梁设计规范》(CJJ11-2011)1.4 结构概述1.5 主要材料及材料性能1)混凝土表格 1 混凝土表格2)普通钢筋表格 2 普通钢筋表格3)预应力材料表格 3 预应力材料表格1.6 计算原则、内容及控制标准计算书中将采用midas Civil对桥梁进行分析计算,并以《公路桥涵设计通用规范》(JTG D60-2004)和《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)为标准,按A类预应力混凝土结构进行验算。