解三角形专题(完整资料).doc
- 格式:doc
- 大小:1.34 MB
- 文档页数:16
《解三角形》知识点、题型与方法归纳、知识点归纳(★☆注重细节,熟记考点☆★)1正弦定理及其变形a sin A变式: b c —— — 2R (R 为三角形外接圆半径)sin B sin C (1 a 2RsinA,b 2Rsin B,c 2RsinC (边化角公式) (2) si nA,si nB ,si nC (角化边公式)2R 2R2R(3 a: b: c sin A:si nB:si nC一、a sin A a sin A b sin Bb sin Bc sin C c sin C2 •正弦定理适用情况:(1) 已知两角及任一边;(2) 已知两边和一边的对角(需要判断三角形解的情况) 3 •余弦定理及其推论2 22ab c 2bccosAb ac 2accosB 222cab 2abcosC4.余弦定理适用情况: (1)已知两边及夹角;注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作 用),统一成边的形式或角的形式•7. 实际问题中的常用角 (1)仰角和俯角b 22c 2 a2bc222ac b2ac2.22ab c (2)已知三边.5. 常用的三角形面积公式1(1) S ABC 底2 1(2) S 二一 absi nC26. 三角形中常用结论 1 1 acsin B bcsin A 24c R 为ABC 外接圆半径(两边夹一角);(1) a b c, b c (2) 在 ABC 中, A (3) 在 ABC 中,A Ba, a ③ tan A B tanC ;b(即两边之和大于第三边,两边之差小于第三边) b si nA si n B(即大边对大角,大角对大边) ,所以 ① sin A B sinC :② cos A B cosC ;A B C AB. C ④ sin cos ,⑤ cos sin2 2 2 2cos AcosB cosC 2ab在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下文的叫俯角(如图 ①)从指北方向顺时针转到目标方向线的水平角,如 B 点的方位角为a (如图②) 注:仰角、俯角、方位角的区别是:三者的参照不同。
完整版)高考解三角形大题(30道)1.在三角形ABC中,已知内角A,B,C的对边分别为a,b,c,且有以下等式:frac{\cos A - 2\cos C}{2c-a} = \frac{\cos B b}{\sin C}$$求该等式右侧的值,以及:2)若$\cos B=\frac{1}{4}$,$b=2$,求三角形ABC的面积S。
2.在三角形ABC中,角A,B,C的对边分别为a,b,c,已知$\sin C+\cos C=1$,求:1)$\sin C$的值;2)若$a+b=4a-8$,求边c的值。
3.在三角形ABC中,角A,B,C的对边分别为a,b,c。
1)若$\sin(A+\frac{2}{3}\pi)=2\cos A$,求角A的值;2)若$\cos A=\frac{3}{c}$,求$\sin C$的值。
4.在三角形ABC中,D为边BC上的一点,且$BD=\frac{3}{3}$,$\sin B=\frac{5}{3}$,$\cos\angleADC=\frac{\sqrt{3}}{5}$,求AD。
5.在三角形ABC中,角A,B,C的对边分别为a,b,c,已知$a=1$,$b=2$,$\cos C=-\frac{1}{4}$,求:1)三角形ABC的周长;2)$\cos(A-C)$的值。
6.在三角形ABC中,角A,B,C的对边分别为a,b,c,已知$\sin A+\sin C=\frac{1}{2}\sin B$,且$ac=\frac{1}{2}b$。
1)求a,c的值;2)若角B为锐角,求p的取值范围,其中$p=\frac{1}{5}$,$b=1$。
7.在三角形ABC中,角A,B,C的对边分别为a,b,c,且$2a\sin A=(2b+c)\sin B+(2c+b)\sin C$。
1)求角A的值;2)求$\sin B+\sin C$的最大值。
8.在三角形ABC中,角A,B,C的对边分别为a,b,c,已知$\cos 2C=-\frac{1}{4}$。
)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等
)余弦定理:三角形任何一边的平方等于另两边平方的和减去其与它们夹角的余弦的积的两倍
-2
角形中的复杂运算可使用计算器
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙
+
点评:本题考查了三角形的基本性质,要求通过观察、分析、判断明确解题思路和变形方向,通畅解题途径
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙
间距离与另外哪两点间距离相等,然后求B ,D 的距离(计算结果精确到
,20
62315ACsin60+=
b .
故当B=30°时,sinB+sinC取得最大值1。
解三角形(理)知识要点:一、正弦定理及其变形: sin a A= (R 为三角形外接圆半径) 变形1:=C B A sin :sin :sin 变形2:⎪⎪⎩⎪⎪⎨⎧======)(sin ;)(sin ;)(sin ;C c B b A a 二、余弦定理及其推论:=2a=2b=2c推论:=A cos =B cos =C cos三、三角形面积公式=∆ABC S l r S ABC ⋅=∆21(r 是内切圆的半径,l 是三角形的周长) 1sin cos 22=+A A π=++C B A重要习题1、在△ABC 中,b =22,B =45°,则A=60°a =______;2、在△ABC 中,已知bc c b a ++=222,则角A 为 ;3、在△ABC 中,已知bc b c a =--2222123且32π=A △ABC 是 三角形. 4、在△ABC 中,a =3,b =7,c =2,那么B 等于 ;最大角的余弦值为 ; △ABC 的面积为 ;5、在△ABC 中,4:3:2sin :sin :sin =C B A 且14=+c b 则△ABC 的面积为 。
6、在ABC ∆中,若其面积222S =C ∠=_______;7、已知△ABC 中,a =8,b =7,B =60°,求边c 及S △ABC ‘《不等式》(理)一、一元二次不等式的解法:1、解一元二次不等式的步骤:当0a ≠时求解不等式:20ax bx c ++>(或20axbx c ++<)(1)将原不等式化为一般式(a ).(2)判断 的符号.(3)求 (4)根据 写解集. 顺口溜:在二次项系数为正的前提下:大于 ,小于 。
2、分式不等式求解步骤: , , , ,如:⇒>a x g x f )()(⇒≤a x g x f )()( 3、一元二次不等式恒成立情况小结:20ax bx c ++>(0a ≠)恒成立⇔20ax bx c ++<(0a ≠)恒成立⇔4、[]n m x x f a ,)(∈<,恒成立⇔[]n m x x f a ,)(∈≥,恒成立⇔三.线性规划1、解线性规划问题的一般步骤:第一步:在平面直角坐标系中作出可行域;第二步:在可行域内找到最优解所对应的点;第三步:解方程的最优解,从而求出目标函数的最大值或最小值。
专题一正余弦定理知识梳理1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即:2sin sin sin a b cR A B C===(R 为△ABC 外接圆的半径)常见的变形有:①::sin :sin :sin a b c A B C =;②sin sin a A b B =,sin sin a A c C =,sin sin b Bc C=;③sin sin sin sin sin sin a b c a b cA B C A B C++===++;④边化角公式:2sin a R A =,2sin b R B =,2sin c R C =;⑤角化边公式:sin 2a A R =,sin 2b B R =,sin 2c C R=;⑥sin sin sin sin sin sin A B a b A BA B a b A B A B a b A B <⇔<⇔<⎧⎪=⇔=⇔=⎨⎪>⇔>⇔>⎩;2.解三角形:一般地,把三角形的三个角A,B,C 和它们的对边a,b,c 叫做三角形的元素,已知三角形的几个元素求其他元素的过程叫做解三角形。
利用正弦定理可以解两类三角形:①已知三角形的任意两个角与一边,求其他两边和另一角。
②已知三角形的两边与其中一边的对角,计算另一边的对角,进而计算出其他的边和角。
剖析:已知两角与一边,用正弦定理,有解时,只有一解。
已知两边及其中一边的对角,用正弦定理,可能有两解、一解、或无解,一般常用的方法是利用大边对大角,小边对小角定理来验证。
3.在△ABC 中常见的公式:(如图)①111sin sin sin 222S ab C ac B bc A===②111222a b c S ah bh ch ===AcbaBCh aAcbaBC③4abcS R=(R 表示三角形外接圆的半径)④22sin sin sin S R A B C =⑤1()2S r a b c =++(r 表示三角形内切圆的半径)⑥海伦公式:S =,其中1()2p a b c =++.4.余弦定理定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍。
专题解三角形大题(含答案)靠自己打拼出来的天下,才是最美的;靠自己获得的一切,才是最珍贵的。
今天,你,做数学题了吗?1.在△ABC中,已知bcosA+a=c,求B的大小和△ABC的面积。
根据正弦定理和余弦定理,可以得到sinBcosA+sinA=sinC和cosB=(c-a2-b2)/2ab。
代入已知条件,解得B=π/3,S△ABC=absinB=√3/4.2.在△ABC中,已知(b-a)sinB+asinA=csinC,且c=2,求角C的度数和△ABC面积的最大值。
同样利用正弦定理和余弦定理,可以得到a2+b2-c2=ab和cosB=(c-a2-b2)/2ab。
解得C=π/3,S△ABC=absinC=√3.3.在△ABC中,已知a+b+c=2,求sinC和如果△ABC是钝角三角形,求其面积。
根据余弦定理,可以得到cosC=(a2+b2-c2)/2ab。
代入已知条件,解得sinC=√3/2,若△ABC是钝角三角形,面积为0.4.在△ABC中,已知2cosC(acosB+bcosA)=c,求角C和如果c=2,求△ABC面积的最大值。
根据余弦定理,可以得到cosC=(a2+b2-c2)/2ab。
代入已知条件,解得C=π/3,S△ABC=absinC=√3.当c=2时,代入面积公式,解得S△ABC=√3.5.在四边形ABCD中,已知∠D=2∠B,且AD=2,CD=6,cosB=1/3,求△ACD的面积和AB的长。
根据余弦定理,可以得到AC2=40-24cosB=32,再根据海龙公式和正弦定理,可以解得S△ACD=8√3和AB=2√7.6.在△ABC中,已知bsin(A+C)=asinC,且a=2c,求sinB和△ABC的周长。
代入正弦定理和已知条件,解得sinB=1/2,周长为3c。
1.由$a^2+b^2-c^2=ab$,得到$ab+4=a^2+b^2$。
由不等式$a^2+b^2\geq 2ab$,得到$ab+4\geq 2ab$,因此$ab\leq 4$。
解三角形题型分类解析1、正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径)12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式)2sin ,sin ,sin 222a b c A B C R R R===()(角化边公式)3::sin :sin :sin a b c A B C=()sin sin sin (4),,sin sin sin a A a A b B b B c C c C===做题大法:1)边化角:遇到分式或等式如(切记必须为齐次式,高B A b a BA b sin sin ,sin sin a =→=→考常考点)思考:若是否可行C B A bc sin sin sin a 22=−−−→−=是否可化为2)角化边形如这样的分式或等式b a B A bB A =→=→sin sin ,a sin sin 思路总结: 此为以上转换依据sin sin a b A B =2sin c R C ==⇒2、正弦定理适用情况:(1)已知两角及任一边;(2)已知两边和一边的对角(需要判断三角形解的情况);已知a ,b 和A ,不解三角形,求B 时的解的情况:AR sin 2a =B R sin 2b =B Rsin 2c =如果sin A ≥sin B ,则B 有唯一解;如果sin A <sin B <1,则B 有两解;如果sin B =1,则B 有唯一解;如果sin B >1,则B 无解.3、余弦定理及其推论2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C=+-=+-=+-222222222cos 2cos 2cos 2b c a A bca cb B aca b c C ab +-=+-=+-=4、余弦定理适用情况:(1)已知两边及夹角; (2)已知三边。
第一章解三角形一、选择题1.己知三角形三边之比为5∶7∶8,则最大角与最小角的和为().A.90°B.120°C.135°D.150°2.在△ABC中,下列等式正确的是().A.a∶b=∠A∶∠B B.a∶b=sin A∶sin BC.a∶b=sin B∶sin A D.a sin A=b sin B3.若三角形的三个内角之比为1∶2∶3,则它们所对的边长之比为( ).A.1∶2∶3 B.1∶3∶2C.1∶4∶9 D.1∶2∶34.在△ABC中,a=5,b=15,∠A=30°,则c等于( ).A.25B.5C.25或5D.10或55.已知△ABC中,∠A=60°,a=6,b=4,那么满足条件的△ABC的形状大小 ( ).A.有一种情形B.有两种情形C.不可求出D.有三种以上情形6.在△ABC中,若a2+b2-c2<0,则△ABC是( ).A.锐角三角形B.直角三角形C.钝角三角形D.形状不能确定7.在△ABC中,若b=3,c=3,∠B=30°,则a=( ).A.3B.23C.3或23D.28.在△ABC中,a,b,c分别为∠A,∠B,∠C的对边.如果a,b,c成等差数列,∠B=30°,△ABC的面积为23,那么b=().A.231+B.1+3C.232+D.2+39.某人朝正东方向走了x km后,向左转150°,然后朝此方向走了3 km,结果他离出发点恰好3km,那么x的值是( ).A.3B.23C.3或23D.310.有一电视塔,在其东南方A处看塔顶时仰角为45°,在其西南方B处看塔顶时仰角为60°,若AB=120米,则电视塔的高度为( ).A .603米B .60米C .603米或60米D .30米 二、填空题11.在△ABC 中,∠A =45°,∠B =60°,a =10,b = .12.在△ABC 中,∠A =105°,∠B =45°,c =2,则b = .13.在△ABC 中,∠A =60°,a =3,则C B A c b a sin sin sin ++++= . 14.在△ABC 中,若a 2+b 2<c 2,且sin C =23,则∠C = . 15.平行四边形ABCD 中,AB =46,AC =43,∠BAC =45°,那么AD = .16.在△ABC 中,若sin A ∶sin B ∶sin C =2∶3∶4,则最大角的余弦值= .三、解答题17. 已知在△ABC 中,∠A =45°,a =2,c =6,解此三角形.18.在△ABC 中,已知b =3,c =1,∠B =60°,求a 和∠A ,∠C .19. 根据所给条件,判断△ABC 的形状.(1)a cos A =b cos B ;(2)A a cos =B b cos =Cc cos .20.△ABC 中,己知∠A >∠B >∠C ,且∠A =2∠C ,b =4,a +c =8,求a ,c 的长.第一章 解三角形参考答案一、选择题1.B解析:设三边分别为5k ,7k ,8k (k >0),中间角为, 由cos =k k k k k 85249-64+25222⨯⨯=21,得 =60°,∴最大角和最小角之和为180°-60°=120°.2.B 3.B4.C5.C6.C7.C8.B解析:依题可得:⎪⎪⎩⎪⎪⎨⎧︒︒30cos 2-+=23=30sin 212=+222ac c a b ac b c a ⇒⎪⎩⎪⎨⎧ac ac c a b ac b c a 3-2-)+(=6=2=+22 代入后消去a ,c ,得b 2=4+23,∴b =3+1,故选B .9.C10.A二、填空题11.56.12.2.13.23.解析:设A a sin =B b sin =C c sin =k ,则C B A c b a +sin +sin sin ++=k =A a sin =︒60sin 3=23. 14.32π.15.43.16.-41.三、解答题17.解析:解三角形就是利用正弦定理与余弦定理求出三角形所有的边长与角的大小.解法1:由正弦定理得sin C =26sin 45°=26·22=23. ∵c sin A =6×22=3,a =2,c =6,3<2<6, ∴本题有二解,即∠C =60°或∠C =120°,∠B =180°-60°-45°=75°或∠B =180°-120°-45°=15°.故b =Aa sin sin B ,所以b =3+1或b =3-1, ∴b =3+1,∠C =60°,∠B =75°或b =3-1,∠C =120°,∠B =15°.解法2:由余弦定理得b 2+(6)2-26b cos 45°=4,∴b 2-23b +2=0,解得b =3±1. 又(6)2=b 2+22-2×2b cos C ,得cos C =±21,∠C =60°或∠C =120°,所以∠B =75°或∠B =15°.∴b =3+1,∠C =60°,∠B =75°或b =3-1,∠C =120°,∠B =15°.18.解析:已知两边及其中一边的对角,可利用正弦定理求解. 解:∵B b sin =Cc sin , ∴sin C =b B c sin ⋅=360sin 1︒⋅=21. ∵b >c ,∠B =60°,∴∠C <∠B ,∠C =30°,∴∠A =90°.由勾股定理a =22+c b =2,即a =2,∠A =90°,∠C =30°.19.解析:本题主要考查利用正、余弦定理判断三角形的形状.(1)解法1:由余弦定理得a cos A =b cos B ⇒a ·(bc a c b 2222-+)=b ·(acc b a 2222+-)⇒a 2c 2-a 4-b 2c 2+b 4=0, ∴(a 2-b 2)(c 2-a 2-b 2)=0,∴a 2-b 2=0或c 2-a 2-b 2=0,∴a =b 或c 2=a 2+b 2.∴△ABC 是等腰三角形或直角三角形.解法2:由正弦定理得sin A cos A =sin B cos B⇒sin 2A =sin 2B⇒2∠A =2∠B 或2∠A =-2∠B ,∠A ,∠B ∈(0,)⇒∠A =∠B 或∠A +∠B =2π, ∴△ABC 是等腰三角形或直角三角形.(2)由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C 代入已知等式,得A A R cos sin 2=BB R cos sin 2=C C R cos sin 2, ∴A A cos sin =B B cos sin =CC cos sin , 即tan A =tan B =tan C .∵∠A ,∠B ,∠C ∈(0,π),∴∠A =∠B =∠C,∴△ABC 为等边三角形.20.解析:利用正弦定理及∠A =2∠C 用a ,c 的代数式表示cos C ;再利用余弦定理,用a ,c 的代数式表示cos C ,这样可以建立a ,c 的等量关系;再由a +c =8,解方程组得a ,c . 解:由正弦定理A a sin =Cc sin 及∠A =2∠C ,得 C a 2sin =C c sin ,即C C a cos sin 2⋅=Cc sin , ∴cos C =ca 2. 由余弦定理cos C =abc b a 2222-+, ∵b =4,a +c =8,∴a +c =2b ,∴cos C =)()(c a a c c a a +-4++222=)())((c a a c a c a +4+3-5=a c a 43-5, ∴c a 2=ac a 43-5, 整理得(2a -3c )(a -c )=0,∵a ≠c ,∴2a =3c . 又∵a +c =8,∴a =524,c =516.。
解三角形(正、余弦定理)一、正弦定理1.在ABC ∆中,下列等式总能成立的是 ( )()A cos cos a C c A = ()B sin sin b C c A = ()C sin sin ab C bc B = ()D sin sin a C c A = 2.在△ABC 中,,33A BC π==,则△ABC 的周长为 ( )A.)33B π++ B .)36B π++ C.6sin()33B π++ D.6sin()36B π++3.在ABC ∆C 中,060,1,sin sin sin ABC a b cA b S AB C++∠===++ 则= .4.在△ABC 中,若00105,45A B ∠=∠=, b =,则c = . 5.在△ABC 中,若b =1,c =3,C =2π3,则a =________.6.在△ABC 中,a =15,b =10,A =60°,则cos B =________.7.△ABC 的三个内角A 、B 、C 所对边的长分别为a 、b 、c ,已知c =3,C =π3,a =2b ,则b 的值为________.8.已知圆的半径为4,a 、b 、c 为该圆的内接三角形的三边,若abc =162,则三角形的面积为9.在△ABC 中,a =3,b =2,B =45°.求角A 、C 和边c .10.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则角A 的大小为________.二、余弦定理1.,,a b c 是ABC ∆三边长,若满足等式()()a b c a b c ab +-++=,则角C 的大小为2.在ABC ∆中,若∠C =60°,则ca bc b a +++=_______. 3.在锐角ABC ∆中,边长a =1,b =2,则边长c 的取值范围是_______.4.已知ABC ∆的三个内角A 、B 、C 成等差数列,且AB =1,BC =4,则边BC 上的中线AD 的长为 .5.在△ABC 中,7,8,9a b c ===,则AC 边上的中线BD 长为 .6.在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos B cos C =-b 2a +c .(1)求角B 的大小; (2)若b =13,a +c =4,求△ABC 的面积.7.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos A 2=255,AB →·AC →=3.(1)求△ABC 的面积; (2)若b +c =6,求a 的值.三、面积问题1.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,如果a 、b 、c 成等差数列,∠B =30°,△ABC 的面积为23,那么b 等于( )A.231+ B.1+3 C.232+ D.2+32.在△ABC 中,2b =,c =ABC 面积32S =,由A ∠= . 3.在ABC △,角,,A B C ∠∠∠所对的边分别是,,a b c ,若三角形的面积14S =()222a b c +-,则∠C 的度数是_______.4.ABC ∆中,内角,,A B C 成等差数列,边长8,7a b ==,求边c 及ABC ∆面积.5.已知△ABC 中,22(sin 2A -sin 2C )=(a -b )sin B ,△ABC 外接圆半径为2.(1)求∠C ; (2)求△ABC 面积的最大值.6.如图,已知ABC △是边长为1的正三角形,M 、N 分别是边AB 、AC 上的点,线段MN 经过ABC △的中心G ,设MGA α∠=(233ππα≤≤) (1)试将AGM △、AGN △的面积(分别记为S 1与S 2)表示为α的函数; (2)求221211S S y =+的最大值与最小值. NM GD CBA四、判角形状问题1.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是 ( )A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形2.在△ABC 中,若2222()sin()()sin a b A B a b C +-=-,则△ABC 是( )A 等腰三角形B 直角三角形C 等腰直角三角形D 等腰三角形或直角三角形3.在△ABC 中,已知t a n t a n 3t a n t a n A B A B +⋅且sin cos 4A A =,则△ABC 是 ( )A 正三角形B 正三角形或直角三角形C 直角三角形D 等腰三角形 4.若钝角三角形三边长为1a +、2a +、3a +,则a 的取值范围是 . 5.在ABC △中,sin A =CB CB cos cos sin sin ++,判断这个三角形的形状.6.在△ABC 中,,,A B C ∠∠∠所对的边分别为,,a b c ,若,,a b c 成等比数列,且2cos28cos 50B B -+=,求角B 的大小并判断△ABC 的形状.7.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c .(1)若c =2,C =π3,且△ABC 的面积为3,求a ,b 的值;(2)若sin C +sin(B -A )=sin 2A ,试判断△ABC 的形状.五、多解问题1.在ABC ∆中,由已知条件解三角形,其中有两解的是 ( )A.0020,45,80b A C ===B.030,28,60a c B ===C.014,16,45a b A ===D. 012,15,120a c A === 2.在ABC ∆中,已知5cos 13A =,3sin 5B =,则cosC 的值为( ) A 、1665 B 、5665 C 、1665或 5665D 、1665-六、应用问题1.某人朝正东方走x km 后,向左转1500,然后朝新方向走3km ,结果它离出发点恰好3km ,那么x 等于( ) (A )3(B )32(C )3或32 (D )32.甲、乙两楼相距20m ,从乙楼底望甲楼顶的仰角为060,从甲楼顶望乙楼顶的俯角为030,则甲、乙两楼的高分别是 ( )A.B.,C. ,mD. 3.某兴趣小组测量电视塔AE 的高度H (单位m ),如示意图,垂直放置的标杆BC 高度4m h =,仰角ABE α∠=,ADE β∠=⑴ 该小组已经测得一组α、β的值,tan 1.24α=,tan 11.20β=,请据此算出H 的值; ⑵ 该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d (单位m ),使α与β之差较大,可以提高测量精度,若电视塔实际高度为125m ,试问d 为多少时,a β-最大?4.如图,A ,B是海面上位于东西方向相聚(53海里的两个观测点,现位于A 点北偏东45︒,B 点北偏西60︒的D 点有一艘轮船发出求救信号,位于B 点南偏西60︒且与点B相距C 点的救援船立即前往营救,其航行速度为30海里/小时,该救援船达到D 点需要多长时间?C 第3题 αβBC EADd5.在某海滨城市附近海面有一台风,据检测,当前台风中心位于城市O(如图)的东偏南(cos 10θθ=方向300 km 的海面P 处,并以20 km / h 的速度向西偏北 45的方向移动,台风侵袭的范围为圆形区域,当前半径为60 km ,并以10 km / h 的速度不断增加,问几小时后该城市开始受到台风的侵袭?持续多长时间?6.如图,半圆O 的直径为2,A 为直径延长线上的一点,OA=2,B 为半圆上任意一点,以AB 为一边作等边三角形ABC 。
专题 解三角形【考点知识整理】1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,,则有2sin sin sin a b c R C ===A B (R 为C ∆AB 的外接圆的半径).2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =; ①sin 2a R A =,sin 2b R B =,sin 2c C R =;①::sin :sin :sin a b c C =A B ;①R SinC SinB SinA c b a 2=++++.3、三角形面积公式:111sin sin sin 222CS bc ab C ac ∆AB =A ==B .4、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A , 推论:222cos 2b c a bc+-A =;变形:A bc a c b cos 2222=-+. 【重要结论】1、解三角形所涉及的其它知识(1)三角形内角和定理:A+B+C=π.(2)三角形边角不等关系:B A B A B A b a cos cos sin sin <⇔>⇔∠>∠⇔>.2、诱导公式在ABC ∆中的应用(1)()()C B A C B A C B A tan )tan(;cos cos ;sin sin -=+-=+=+;(2)2sin 2cos ,2cos 2sinC B A C B A =+=+; 3、已知三边(或三边之比,或三内角正弦之比)判定三角形的形状 设a 是三角形中最长的边,则(1)若0222>-+a c b ,则ABC ∆是锐角三角形;(2)若0222=-+a c b ,则ABC ∆是直角三角形;(3)若0222<-+a c b ,则ABC ∆是钝角三角形;或(1)若0sin sin sin 222>-+A C B ,则ABC ∆是锐角三角形;(2)若0sin sin sin 222=-+A C B ,则ABC ∆是直角三角形;(3)若0sin sin sin 222<-+A C B ,则ABC ∆是钝角三角形;4、三角形中,最大的角不小于3π,最小的角不大于3π. 【易错警示】1.同角关系应用错误:利用同角三角函数的平方关系开方时,忽略判断角所在的象限或判断出错,导致三角函数符号错误.2.诱导公式的应用错误:利用诱导公式时,三角函数名变换出错或三角函数值的符号出错.3.忽视解的多种情况如已知a,b和A,应先用正弦定理求B,由A+B+C=π,求C,再由正弦定理或余弦定理求边c,但解可能有多种情况.4.忽略角的范围应用正、余弦定理求解边、角等量的最值(范围)时,要注意角的范围.5.忽视解的实际意义求解实际问题,要注意解得的结果要与实际相吻合.。
【最新整理,下载后即可编辑】【最新整理,下载后即可编辑】解三角形专题一、基础知识:1、正弦定理:2sin sin sin a b c R ABC===,其中R 为ABC 外接圆的半径正弦定理的主要作用是方程和分式中的边角互化。
其原则为关于边,或是角的正弦值是否具备齐次的特征。
如果齐次则可直接进行边化角或是角化边,否则不可行 例如:(1)222222sin sin sin sin sin A B A B C a b ab c +-=⇔+-=(2)cos cos sin cos sin cos sin b C c B a B C C B A +=⇒+=(恒等式) (3)22sin sin sin bc B Ca A=2、余弦定理:2222cos a b c bc A =+-变式:(1)222cos 2b c a A bc+-=① 此公式通过边的大小(角两边与对边)可以判断出A 是钝角还是锐角当222b c a +>时,cos 0A >,即A 为锐角;当222b c a +=(勾股定理)时,cos 0A =,即A 为直角; 当222b c a +<时,cos 0A <,即A 为钝角② 观察到分式为齐二次分式,所以已知,,a b c 的值或者::a b c 均可求出cos A(2)()()2221cos a b c bc A =+-+ 此公式在已知b c +和bc 时不需要计算出,b c 的值,进行整体代入即可 3、三角形面积公式:(1)12S a h =⋅ (a 为三角形的底,h 为对应的高) (2)111sin sin sin 222S ab C bc A ac B ===(3)()12S a b c r =++⋅ (r 为三角形内切圆半径,此公式也可用于求内切圆半径)(4)海伦公式:()()()()1,2S p p a p b p c p a b c =---=++(5)向量方法:()()22S a ba b=⋅-⋅ (其中,a b 为边,a b 所构成的向量,方向任意) 证明:()2222222111sin sin 1cos 244S ab C S a b C a b C =⇒==-S ∴=cos a b ab C ⋅=∴ ()()22S a ba b=⋅-⋅坐标表示:()()1122,,,a x y b x y =,则122112S x y x y =-4、三角形内角和A B C π++=(两角可表示另一角)。
()sin()sin sin A B C C π+=-= ()cos()cos cos A B C C π+=-=-5、确定三角形要素的条件: (1)唯一确定的三角形: ① 已知三边(SSS ):可利用余弦定理求出剩余的三个角 ② 已知两边及夹角(SAS ):可利用余弦定理求出第三边,进而用余弦定理(或正弦定理)求出剩余两角 ③ 两角及一边(AAS 或ASA ):利用两角先求出另一个角,然后利用正弦定理确定其它两条边 (2)不唯一确定的三角形 ① 已知三个角(AAA ):由相似三角形可知,三个角对应相等的三角形有无数多个。
由正弦定理可得:已知三个角只能求出三边的比例:::sin :sin :sin a b c A B C = ② 已知两边及一边的对角(SSA ):比如已知,,a b A ,所确定的三角形有可能唯一,也有可能是两个。
其原因在于当使用正弦定理求B 时,sin sin sin sin a b b AB A B a =⇒=,而0,,22B πππ⎛⎫⎛⎫∈ ⎪⎪⎝⎭⎝⎭时,一个sin B 可能对应两个角(1个锐角,1个钝角),所以三角形可能不唯一。
(判定是否唯一可利用三角形大角对大边的特点,具体可参考例1) 6、解三角形的常用方法:(1)直接法:观察题目中所给的三角形要素,使用正余弦定理求解(2)间接法:可以根据所求变量的个数,利用正余弦定理,面积公式等建立方程,再进行求解7、三角形的中线定理与角平分线定理 (1)三角形中线定理:如图,设AD 为ABC 的一条中线,则()22222AB AC AD BD +=+ (知三求一)证明:在ABD 中2222cos AB AD BD AD BD ADB =+-⋅①2222cos AC AD DC AD DC ADC =+-⋅ ② D 为BC 中点 BD CD ∴=ADB ADC π∠+∠= cos cos ADB ADC ∴=-∴ ①+②可得:()22222AB AC AD BD +=+(2)角平分线定理:如图,设AD 为ABC 中BAC ∠的角平分线,则AB BDAC CD=证明:过D 作DE ∥AC 交AB 于EBD BEDC AE∴=EDA DAC ∠=∠AD 为BAC ∠的角平分线EAD DAC ∴∠=∠EDA EAD ∴∠=∠EAD ∴为等腰三角形 EA ED ∴=BD BE BEDC AE ED ∴==而由BED BAC 可得:BE ABED AC=AB BDAC CD ∴=二、典型例题:例1:(1)ABC 的内角,,A B C 所对的边分别为,,a b c,若60c b B ===,则C =_____(2))ABC 的内角,,A B C 所对的边分别为,,a b c,若30c b C ===,则B =_____BB思路:(1)由已知,,B b c 求C 可联想到使用正弦定理:sin sin sin sin b c c BC B C b=⇒=代入可解得:1sin 2C =。
由c b <可得:60C B <=,所以30C = 答案:30C =(2)由已知,,C b c 求B 可联想到使用正弦定理:sin sin sin sin b c b CB BC c=⇒=代入可解得:sin 2B =,则60B =或120B =,由c b <可得:C B <,所以60B =和120B =均满足条件 答案:60B =或120B =小炼有话说:对比(1)(2)可发现对于两边及一边的对角,满足条件的三角形可能唯一确定,也有可能两种情况,在判断时可根据“大边对大角”的原则,利用边的大小关系判断出角之间的大小关系,判定出所求角是否可能存在钝角的情况。
进而确定是一个解还是两个解。
例2:在ABC 中,2,60BC B ==,若ABC AC 边长为_________ 思路:通过条件可想到利用面积S 与,BC B ∠求出另一条边AB ,再利用余弦定理求出AC 即可解:11sin 22222ABCSAB BC B AB =⋅⋅⇒⋅⋅= 1AB ∴=22212cos 142232AC AB BC AB BC B ∴=+-⋅=+-⋅⋅=AC ∴=例3:(2012课标全国)已知,,a b c 分别为ABC 三个内角,,A B C 的对边,且有cos sin 0a C C b c +--=(1)求A(2)若2a =,且ABC ,b c(1)思路:从等式cos sin 0a C C b c +--=入手,观察每一项关于,,a b c 齐次,考虑利用正弦定理边化角:cos sin 0sin cos sin sin sin 0a C C b c A C A C B C +--=⇒+--=,所涉及式子与,A C 关联较大,从而考虑换掉()sin sin B A C =+,展开化简后即可求出A 解:cos sin 0a C C b c +--=sin cos sin sin sin 0A C A C B C ⇒+--=()sin cos sin sin sin 0A C A C A C C ⇒-+-=sin cos sin sin cos sin cos sin 0A C A C A C C A C ⇒+---=1cos 12sin 1sin 662A A A A ππ⎛⎫⎛⎫-=⇒-=⇒-= ⎪ ⎪⎝⎭⎝⎭66A ππ∴-=或566A ππ-=(舍)3A π∴=(2)思路:由(1)可得3A π=,再由ABC S =2a =可想到利用面积与关于A 的余弦定理可列出,b c 的两个方程,解出,b c 即可A解:1sin 42ABCSbc A bc ==⇒= 222222cos 4a b c bc A b c bc =+-⇒=+-22224844b c bc b c bc bc ⎧⎧+-=+=∴⇒⎨⎨==⎩⎩ 可解得22b c =⎧⎨=⎩小炼有话说:通过第(1)问可以看出,在遇到关于边角的方程时,可观察边与角正弦中是否具备齐次的特点,以便于进行边角互化。
另一方面当角,,A B C 同时出现在方程中时,通常要从所给项中联想到相关两角和差的正余弦公式,然后选择要消去的角 例4:如图,在ABC 中,D 是边AC上的点,且,2,2AB AD AB BC BD ===,则sin C 的值为___________思路:求sin C 的值考虑把C 放入到三角形中,可选的三角形有ABC 和BDC ,在BDC 中,已知条件有两边,BD BC ,但是缺少一个角(或者边),看能否通过其它三角形求出所需要素,在ABD 中,三边比例已知,进而可求出BDA ∠,再利用补角关系求出BDC ∠,从而BDC 中已知两边一角,可解出C解:由2AB =可设2BD k =则AB =,4AD BC k ∴==∴在ADB中,()2222222cos 2k AD BD ABADB AD BD+-+-===⋅coscos 3BDC ADB ∴=-=-sin 3BDC ∴=在BDC 中,由正弦定理可得:sin sin sin sin 6BD BC BD BDC C C BDC BC ⋅=⇒==小炼有话说:(1)在图形中求边或角,要把边和角放入到三角形当中求解,在选择三角形时尽量选择要素多的,并考虑如何将所缺要素利用其它条件求出。
(2)本题中给出了关于边的比例,通常对于比例式可考虑引入一个字母(例如本题中的k ),这样可以将比例转化为边的具体数值,便于计算例5:已知ABC 中,,,a b c 分别是角,,A B C 所对边的边长,若ABC 的面积为S ,且()222S a b c =+-,则tan C 等于___________思路:由已知()222S a b c =+-可联想到余弦定理关于cos C 的内容,而1sin 2S ab C =,所以可以得到一个关于sin ,cos C C 的式子,进而求出tan C解:()22222122sin 22S a b c ab C a b c ab =+-⇔⋅=+-+而2222cos c a b ab C =+- 2222cos a b c ab C ∴+-=代入可得:sin 22cos sin 22cos ab C ab ab C C C =+⇒=+224sin sin 22cos 53sin cos 1cos 5C C C C C C ⎧=⎪=+⎧⎪∴⇒⎨⎨+=⎩⎪=-⎪⎩4tan 3C ∴=-答案:4tan 3C =-例6:在ABC ∆ 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为,12,cos ,4b c A -==- 则a 的值为 .思路:已知cos A 求a 可以联想到余弦定理,但要解出,b c 的值,所以寻找解出,b c的条件,1sin 2ABCS bc A ==而sin 4A ==代入可得24bc =,再由2b c -=可得()22222cos 22cos 64a b c bc A b c bc bc A =+-=-+-=,所以8a =答案:8例7:设ABC 的内角,,A B C所对边的长分别为,,a b c,若sin cos 0b A B -=,且2b ac =,则a cb+的值为( )A.2B.C. 2D. 4思路:由sin cos 0b A B -=可得:sin sin cos 0B A A B -=,从而tan B =,解得3B π=,从2b ac=可联想到余弦定理:222222cos b a c ac B a c ac =+-=+-,所以有()2220a c ac ac a c +-=⇒-=,从而a c =再由2b ac =可得a b c ==,所以a cb+的值为2答案:C小炼有话说:本题的难点在于公式的选择,2b ac =以及所求a cb+也会让我们想到正弦定理。