数电实验之计数器
- 格式:doc
- 大小:121.50 KB
- 文档页数:5
第六次实验报告 实验十 计数器一、 实验目的要求掌握CC40192可予置数同步十进制加/减计数器逻辑功能及测试方法 二、 实验仪器、设备直流稳压电源、电子电路调试器、万用表、CC40192、CC4011、CC4547 三、 实验线路、原理框图 (一) C C40192的逻辑符号、功能表、管脚排列(1) CC40192可予置数同步十进制加/减计数器,它是中规模CMOS 集成电路。
它的逻辑符号如图1所示:图1(2) CC40192的管脚排列如图2所示:图2B C PE 0-+加法进位:0C =+CP Q Q 03即当加法计数器时,当Q 3Q 2Q 1Q 0=1001且+CP 在0(底电平)时,0C 输出负脉冲,向高位进位。
减法进位:0B =-•CP Q Q Q Q 0123即当减法计数时,在Q3Q2Q1Q0=0000且-CP 在0(底电平)时0B 出负脉冲,向高位借位。
(二)CC4011是CMOS 四2输入与非门,它具有4个独立的2输入与非门。
管脚排列图如 图3所示:图3(三)CC4547是七段数码锁存/译码/驱动器,它的管脚排列和逻辑功能与CC4513相同 (1)CC4513的管脚排列如图4所示:图4(2)CC4513的逻辑功能表如下表所示:1A 1B 1Y 2Y 2B 2A V SS的实验线路图如图5所示:图5四、 实验方法步骤1、 按图5接线:清零端R 、置数端PE 、数据输入端D A 、D B 、D C 、D D 分别接逻辑开关,输出端Q A 、Q B 、Q C 、Q D 分别接实验台上译码器(CC4547)对应输入端A 、B 、C 、D ,CP 接单次脉冲源。
本实验采用2输入与非门CC4011。
2、 测试CC40192的逻辑功能 (1) 清除令R=1,其它输入为任意状态,这时Q D Q C Q B Q A =0000,译码显示为0字。
清除功能完成后,置R=0。
(2) 置数令R=0,+CP ,-CP 任意,数据输入端输入任意一组二进制数D A D B D C D D =dcba ,令PE=0,观脉冲察计数器输出dcba 是否已被置入。
数电计数器实验报告
《数电计数器实验报告》
实验目的:通过实验,掌握计数器的工作原理及其应用。
实验仪器:数电实验箱、示波器、计数器芯片、电源等。
实验原理:计数器是一种能够记录输入脉冲信号次数的电子设备,它能够实现数字信号的计数功能。
在实验中,我们将使用计数器芯片来实现二进制计数器的功能,通过观察输出信号的变化来了解计数器的工作原理。
实验步骤:
1. 将计数器芯片连接到数电实验箱上,并接入示波器以观察输出信号。
2. 将电源接通,调节示波器参数,观察计数器的输出波形。
3. 输入不同的脉冲信号,观察计数器的计数变化。
4. 通过改变输入信号的频率和幅度,观察计数器的响应情况。
实验结果:通过实验观察,我们发现计数器能够准确地记录输入脉冲信号的次数,并且能够按照二进制的方式进行计数。
当输入信号的频率增加时,计数器的计数速度也相应增加,而当输入信号停止时,计数器的计数也停止。
实验结论:计数器是一种非常重要的数字电路元件,它在数字系统中具有广泛的应用。
通过本次实验,我们深入了解了计数器的工作原理及其特性,为今后的数字电路设计和应用打下了坚实的基础。
总结:本次实验通过实际操作,让我们对计数器有了更深入的了解,同时也增强了我们对数字电路的理解和应用能力。
希望通过今后的实验和学习,我们能够更加熟练地掌握数字电路的相关知识,为今后的工程实践打下坚实的基础。
数电计数器实验报告数电计数器实验报告引言:数电计数器是数字电路中常见的一种组合逻辑电路,用于实现对输入信号进行计数的功能。
在本次实验中,我们将通过搭建一个四位二进制计数器的电路,来深入了解计数器的工作原理和应用。
实验目的:1. 熟悉计数器的基本原理和工作方式;2. 掌握计数器的设计与搭建方法;3. 理解计数器在数字系统中的应用。
实验器材:1. 74LS161四位二进制同步计数器芯片;2. 74LS47七段数码管芯片;3. 电路连接线、电源等。
实验步骤:1. 按照电路原理图,连接74LS161计数器芯片和74LS47七段数码管芯片;2. 将74LS161的CLK输入引脚连接到一个可调的方波发生器,用于提供时钟信号;3. 将74LS161的RST引脚连接到一个开关,用于手动复位计数器;4. 将74LS161的QA~QD引脚连接到74LS47的A~D引脚,用于输出计数结果;5. 将74LS47的LT引脚连接到一个LED灯,用于指示计数溢出。
实验原理:计数器是由触发器和逻辑门组成的组合逻辑电路。
在本次实验中,我们使用74LS161芯片作为计数器,它具有四位二进制计数功能。
74LS161芯片内部包含四个D触发器,每个触发器的输出与下一个触发器的时钟输入相连,形成级联的工作方式。
当时钟信号上升沿到来时,触发器会根据输入信号的状态进行状态转移,从而实现计数功能。
实验结果:通过调节方波发生器的频率,我们可以观察到七段数码管上显示的数字不断变化。
当计数器达到最大值时,LED灯会亮起,指示计数溢出。
通过手动复位开关,我们可以将计数器重新复位为0,重新开始计数。
实验分析:1. 在实验过程中,我们发现计数器的工作稳定性较好,能够准确地进行计数;2. 通过改变方波发生器的频率,我们可以调整计数器的计数速度,从而实现不同的计数效果;3. 计数器的应用非常广泛,比如在时钟、计时器、频率分频器等数字系统中都有广泛的应用。
实验总结:通过本次实验,我们深入了解了数电计数器的工作原理和应用。
数电计数器实验报告数电计数器实验报告引言:数电计数器是数字电路中常见的一种组合逻辑电路,用于计数和记录输入脉冲的次数。
本实验旨在通过搭建一个基本的二进制计数器电路,探究计数器的工作原理,并验证其计数功能的正确性。
实验装置和步骤:实验中所用的装置包括集成电路、数字示波器、电源等。
首先,我们按照电路原理图搭建计数器电路,并连接相应的输入和输出信号线。
然后,我们通过给计数器电路提供时钟信号,观察输出信号的变化情况。
最后,我们通过改变输入信号的频率和幅度,测试计数器的稳定性和可靠性。
实验结果:在实验中,我们观察到计数器电路的输出信号随着时钟信号的输入而变化。
当时钟信号的边沿触发计数器时,计数器按照设定的计数规则进行计数,并输出相应的二进制码。
例如,当计数器为4位二进制计数器时,输入一个时钟脉冲,计数器的输出变化为0001、0010、0011、0100,依次类推。
当计数器达到最大计数值时,会自动归零重新计数。
实验分析:通过实验我们发现,计数器的计数规则是按照二进制码进行计数的。
每一位计数器都有两种状态,0和1,通过时钟信号的输入,计数器的状态会发生变化。
当计数器达到最大计数值时,会自动归零,这是因为计数器的位数是有限的,无法继续计数。
计数器的位数越多,能够计数的范围就越大。
此外,我们还发现计数器的计数速度与输入时钟信号的频率有关。
当时钟信号的频率较高时,计数器的计数速度也会相应增加。
然而,当时钟信号的频率过高时,计数器可能无法跟上时钟信号的输入,导致计数器的计数出错。
因此,在实际应用中,我们需要根据具体的需求来选择合适的计数器和时钟频率。
实验总结:通过本次实验,我们深入了解了数电计数器的工作原理和计数功能。
计数器作为一种常见的组合逻辑电路,广泛应用于各种计数和测量系统中。
在实际应用中,我们需要根据具体的需求选择合适的计数器和时钟频率,以确保计数器的稳定性和可靠性。
未来展望:随着科技的不断发展,计数器的功能和性能也在不断提升。
计数器一实验目的1、掌握中规模集成计数器的逻辑功能及使用方法。
2、学习运用集成电路芯片计数器构成N位十进制计数器的方法。
二实验原理计数器是一个用以实现计数功能的时序器件,它不仅可以用来记忆脉冲的个数,还常用于数字系统的定时、分频和执行数字运算以及其它特定的逻辑功能。
计数器种类很多,按构成计数器中的各个触发器输出状态更新是否受同一个CP脉冲控制来分,有同步和异步计数器,根据计数制的不同,分为二进制、十进制和任意进制计数器。
根据计数的增减趋势分,又分为加法、减法和可逆计数器。
另外,还有可预置数和可编程功能的计数器等。
目前,无论是TTL还是CMOS集成电路,都有品种较齐全的中规模集成计数器芯片。
如:异步十进制计数器74LS90,4位二进制同步计数器74LS93,CD4520,4位十进制计数器74LS160、74LS162;4位二进制可预置同步计数器CD40161、74LS161、74LS163;4位二进制可预置同步加/减计数器CD4510、CD4516、74LS191、74LS193;BCD码十进制同步加/减计数器74LS190、74LS192、CD40192等。
使用者只要借助于器件手册提供的功能表和工作波形图以及引出端的排列就能正确使用这些器件。
例如74LS192同步十进制可逆计数器,具有双时钟输入十进制可逆计数功能;异步并行置数功能;保持功能和异步清零功能。
74192功能见表表19.1*表中符号和引脚符号的对应关系:CR = CLR—清零端;LD= LOAD—置数端(装载端)CP U = UP—加计数脉冲输入端CP D = DOWN—减计数脉冲输入端CO——非同步进位输出端(低电平有效)BO——非同步借位输出端(低电平有效)D3 D2 D1 D0 = D C B A—计数器数据输入端Q D Q C Q B Q A—计数器数据输出端根据功能表我们可以设计一个特殊的12进制的计数器,且无0数。
如图19.1所示:当计数器计到13时,通过与非门产生一个复位信号,使第二片74LS192(时十位)直接置成0000,而第一片74LS192计时的个位直接置成0001;从而实现了1——12的计数。
数电实验报告:计数器及其应用数字电子技术实验报告实验四:计数器及其应用一、实验目的:1、熟悉常用中规模计数器的逻辑功能。
2、掌握二进制计数器和十进制计数器的工作原理和使用方法。
二、实验设备:1、数字电路实验箱;2、74LS90。
三、实验原理:1、计数是一种最简单基本运算,计数器在数字系统中主要是对脉冲的个数进行计数,以实现测量、计数和控制的功能,同时具有分频功能。
计数器按计数进制分有:二进制计数器,十进制计数器和任意进制计数器;按计数单元中触发器所接收计数脉冲和翻转顺序分有:异步计数器,同步计数器;按计数功能分有:加法计数器,减法计数器,可逆(双向)计数器等。
2、74LS90是一块二-五-十进制异步计数器,外形为双列直插,NC表示空脚,不接线,它由四个主从JK触发器和一些附加门电路组成,其中一个触发器构成一位二进制计数器;另三个触发器构成异步五进制计数器。
在74LS90计数器电路中,设有专用置“0”端R0(1),R0(2)和置“9”端S9(1)S9(2)。
其中前两个为异步清0端,后两个为异步置9端。
CP1, CP2为两个时钟输入端;Q0 ~Q3为计数输出端。
当R1=R2=S1=S2=0时,时钟从CP1引入,Q0输出为二进制;从CP2引入,Q3输出为五进制。
时钟从CP1引入,二Q0接CP1,则Q3Q2Q1Q0输出为十进制(8421码);时钟从CP2引入,而Q3接CP1,则Q0Q3Q2Q1输出为十进制(5421码)。
四、实验原理图及实验结果:1、实现0~9十进制计数。
1)实验原理图如下:(函数信号发生器:5V 3Hz 偏移2.5V方波)2)实验结果:解码器上依次显示0~9十个数字。
2、实现六进制计数。
1)实验原理图如下:(函数信号发生器:5V 3Hz 偏移2.5V方波)2)实验结果:解码器上依次显示0~5六个数字。
3、实现0、2、4、6、8、1、3、5、7、9计数。
1)实验原理图如下:(函数信号发生器:5V 3Hz 偏移2.5V方波)2)实验结果:解码器上依次显示0、2、4、6、8、1、3、5、7、9十个数字。
实验四计数器及其应用一、实验目的1、掌握中规模集成计数器的使用及功能测试方法2、运用集成计数计构成1/N分频器二、实验原理计数器是一个用以实现计数功能的时序部件,它不仅可用来计脉冲数,还常用作数字系统的定时、分频和执行数字运算以及其它特定的逻辑功能。
1、中规模十进制计数器CC40192(74LS192)是同步十进制可逆计数器,具有双时钟输入,并具有清除和置数等功能,其引脚排列及逻辑符号如图9-2所示。
图9-2 CC40192引脚排列及逻辑符号图中LD—置数端 CPU —加计数端 CPD—减计数端CO—非同步进位输出端BO—非同步借位输出端D0、D1、D2、D3—计数器输入端Q0、Q1、Q2、Q3—数据输出端 CR—清除端CC40192(同74LS192,二者可互换使用)的功能如表9-1,说明如下:表9-1当清除端CR 为高电平“1”时,计数器直接清零;CR 置低电平则执行其它功能。
当CR 为低电平,置数端LD 也为低电平时,数据直接从置数端D 0、D 1、D 2、D 3 置入计数器。
当CR 为低电平,LD 为高电平时,执行计数功能。
执行加计数时,减计数端CP D 接高电平,计数脉冲由CP U 输入;在计数脉冲上升沿进行 8421 码十进制加法计数。
执行减计数时,加计数端CP U 接高电平,计数脉冲由减计数端CP D 输入,表9-2为8421码十进制加、减计数器的状态转换表。
表9-2加法计数减计数2、计数器的级联使用一个十进制计数器只能表示0~9十个数,为了扩大计数器范围,常用多个十进制计数器级联使用。
同步计数器往往设有进位(或借位)输出端,故可选用其进位(或借位)输出信号驱动下一级计数器。
图9-3是由CC40192利用进位输出CO 控制高一位的CP U 端构成的加数级联图。
图9-3 CC40192级联电路3、实现任意进制计数(1) 用复位法获得任意进制计数器假定已有N进制计数器,而需要得到一个M进制计数器时,只要M<N,用复位法使计数器计数到M时置“0”,即获得M进制计数器。
实验报告实验七实验七 计数器原理测试及其设计计数器原理测试及其设计2.7.1 实验目的实验目的1.掌握中规模集成计数器74LS160、74LS161、74LS163的逻辑功能及使用方法。
2.掌握同步清零与异步清零的区别及74LS160计数器的级联方法。
计数器的级联方法。
3.学习用中规模集成计数器设计任意进制计数器。
学习用中规模集成计数器设计任意进制计数器。
2.7.2 实验仪器设备与主要器件实验仪器设备与主要器件实验箱一个;双踪示波器一台;稳压电源一台;函数发生器一台。
实验箱一个;双踪示波器一台;稳压电源一台;函数发生器一台。
74LS160,74LS161和74LS163。
2.7.3 实验原理实验原理计数器的功能是记录输入脉冲的个数。
他所能记忆的最大脉冲个数称为该计数器的模。
计数器不仅能统计输入脉冲的个数,还可以用作分频、定时、产生节拍脉冲等。
根据进位方式,可分为同步和异步两类。
根据进制,可分为二进制、十进制和任意进制等。
制和任意进制等。
根据逻辑功能,根据逻辑功能,根据逻辑功能,可分为加法计数器、可分为加法计数器、可分为加法计数器、减法计数器和可逆计数器减法计数器和可逆计数器等。
根据电路集成度,可分为小规模集成计数器和中规模集成计数器。
等。
根据电路集成度,可分为小规模集成计数器和中规模集成计数器。
2.7.4 实验内容实验内容1.分别用74LS161和74LS163设计模13计数器,采用清零法实现,并用数码管显示实验结果。
显示实验结果。
设计思路:74LS161是十六进制计数器,所以我在它计数到13(1101)清零就行了,再利用二进制数与BCD 码对应关系,即利用74LS283的逻辑功能使数码管显示实验结果。
计数时电路状态转换关系:显示实验结果。
计数时电路状态转换关系:0000→00010001→→00100010→→00110011→→01000100→→01010101→→01100110→→0111→10001000→→10011001→→1010→10111011→→11001100→→0000设计思路:74LS163接法与74LS161基本一样,只是163的清零信号是12不是13,如图:2.设计一个用3位数码管指示的六十进制计数器,位数码管指示的六十进制计数器,并用三只开关控制计数器的数并用三只开关控制计数器的数据保持、计数及清零功能。
数电计数器实验报告实验名称:数电计数器实验实验目的:通过实验,了解和掌握数电计数器的原理和工作方式,以及计数器的应用。
实验原理:计数器是一种能够实现数字计数功能的电子元件。
主要由触发器、逻辑门和时钟信号组成。
触发器主要用于储存和传递信号,逻辑门用于控制和处理信号,时钟信号用于控制计数时间。
实验器材:1. 7400四路或五路与门2. 7432四路或五路或六路或七路与非门3. 7474触发器4. 555定时器5. LED灯6. 电源实验步骤:1. 将触发器与逻辑门按照电路图连接,并确保连接正确无误。
2. 将555定时器连接到电路中,并设置合适的时钟频率。
3. 将LED灯连接到电路中,用于显示计数结果。
4. 打开电源,观察LED灯的亮灭情况,并记录计数结果。
5. 可以尝试改变定时器的频率,观察LED灯的计数速度。
实验结果分析:通过实验观察和记录计数结果,可以得出计数器的工作原理和特点。
可以发现,当时钟信号输入时,计数器会根据触发器和逻辑门的控制逻辑实现数字计数功能。
实验结论:1. 数电计数器是一种能够实现数字计数功能的电子元件。
2. 计数器由触发器、逻辑门和时钟信号组成,触发器用于储存和传递信号,逻辑门用于控制和处理信号,时钟信号用于控制计数时间。
3. 数电计数器在实际应用中具有广泛的用途,如计时器、频率计等。
实验中可能遇到的问题和解决方法:1. 连接错误:检查电路连接,确保连接正确无误。
2. LED灯未亮起:检查电路连接,确保连接正确无误。
3. 计数不准确:检查时钟信号的频率,确保设置合适的计数速度。
实验改进思路:1. 尝试使用不同型号的触发器和逻辑门,比较它们的计数效果和特点。
2. 尝试使用其他电子元件,如译码器、多路选择器等,扩展计数器的功能和应用场景。
3. 尝试使用计数器的级联连接,实现更复杂的计数功能和应用。
数电实验报告计数器计数器是数字电路中常见的一种电路元件,用于计数和显示数字。
在数电实验中,我们通常会设计和实现各种类型的计数器电路,以探究其工作原理和性能特点。
本文将介绍数电实验中的计数器的设计和实验结果,并探讨其应用和改进。
一、设计和实现在数电实验中,我们通常使用逻辑门和触发器来实现计数器电路。
逻辑门用于控制计数器的输入和输出,而触发器则用于存储和更新计数器的状态。
以4位二进制计数器为例,我们可以使用四个触发器和适当的逻辑门来实现。
触发器的输入端连接到逻辑门的输出端,而逻辑门的输入端连接到触发器的输出端。
通过适当的控制信号,我们可以实现计数器的正向计数、逆向计数、清零和加载等功能。
在实验中,我们需要根据设计要求选择适当的逻辑门和触发器,并将其连接起来。
然后,通过给逻辑门和触发器提供适当的输入信号,我们可以观察计数器的输出结果,并验证其正确性和稳定性。
二、实验结果在实验中,我们设计了一个4位二进制计数器,并通过适当的输入信号进行了测试。
实验结果表明,计数器能够正确地进行正向计数和逆向计数,并能够在达到最大计数值或最小计数值时自动清零。
此外,我们还观察到计数器的输出信号在计数过程中保持稳定,并且能够及时响应输入信号的变化。
这说明计数器具有较高的稳定性和响应速度,适用于各种计数应用场景。
三、应用和改进计数器在数字电路中有广泛的应用,例如频率分频、时序控制、计时器等。
通过适当的设计和连接,我们可以实现各种复杂的计数功能,满足不同的应用需求。
在实验中,我们还可以对计数器进行改进和优化,以提高其性能和功能。
例如,我们可以增加计数器的位数,以扩大计数范围;我们还可以添加输入输出接口,以实现与其他电路元件的连接和通信。
此外,我们还可以使用更高级的计数器电路,如同步计数器、环形计数器等,以实现更复杂的计数功能。
这些改进和扩展将进一步提高计数器的灵活性和实用性。
总结:通过数电实验,我们了解了计数器的设计和实现原理,并验证了其在实际应用中的性能和功能。
计数器
一实验目的
1、掌握中规模集成计数器的逻辑功能及使用方法。
2、学习运用集成电路芯片计数器构成N位十进制计数器的方法。
二实验原理
计数器是一个用以实现计数功能的时序器件,它不仅可以用来记忆脉冲的个数,还常用于数字系统的定时、分频和执行数字运算以及其它特定的逻辑功能。
计数器种类很多,按构成计数器中的各个触发器输出状态更新是否受同一个CP脉冲控制来分,有同步和异步计数器,根据计数制的不同,分为二进制、十进制和任意进制计数器。
根据计数的增减趋势分,又分为加法、减法和可逆计数器。
另外,还有可预置数和可编程功能的计数器等。
目前,无论是TTL还是CMOS集成电路,都有品种较齐全的中规模集成计数器芯片。
如:异步十进制计数器74LS90,4位二进制同步计数器74LS93,CD4520,4位十进制计数器74LS160、74LS162;4位二进制可预置同步计数器CD40161、74LS161、74LS163;4位二进制可预置同步加/减计数器CD4510、CD4516、74LS191、74LS193;BCD码十进制同步加/减计数器74LS190、74LS192、CD40192等。
使用者只要借助于器件手册提供的功能表和工作波形图以及引出端的排列就能正确使用这些器件。
例如74LS192同步十进制可逆计数器,具有双时钟输入十进制可逆计数功能;异步并行置数功能;保持功能和异步清零功能。
74192功能见表
表19.1
*表中符号和引脚符号的对应关系:
CR = CLR—清零端;
LD= LOAD—置数端(装载端)
CP U = UP—加计数脉冲输入端
CP D = DOWN—减计数脉冲输入端
CO——非同步进位输出端(低电平有效)
BO——非同步借位输出端(低电平有效)
D3 D2 D1 D0 = D C B A—计数器数据输入端
Q D Q C Q B Q A—计数器数据输出端
根据功能表我们可以设计一个特殊的12进制的计数器,且无0数。
如图19.1所示:当计数器计到13时,通过与非门产生一个复位信号,使第二片74LS192(时十位)直接置成0000,而第一片74LS192计时的个位直接置成0001;从而实现了1——12的计数。
注:将第一片74LS192的输出Q D Q C Q B Q A接到实验箱中显示译码器的输入端D、C、B、A;其它按下图连接即可验证电路的正确性。
图19.1
三实验器件
数字实验箱
集成电路芯片74LS160×2 ;74LS192×2;74LS00 ;74LS163×2
集成电路引脚如图19.2所示
图19.2
四实验内容
1.测试74LS163计数器的逻辑功能。
74LS163为二进制4位并行输出的计数器,它有并行装载输入和同步清零输入端。
74LS163的技术参数:
电源电压V CC=+5V;
应用、测试温度范围0—74℃;
输入时钟频率25MHz;
时钟脉冲宽度25ns;
清零时钟脉冲宽度20ns。
74LS163功能见表19.2:
输入输出CLR LOAD ENP ENT CP D3 D2D1 D0
Q3n+1Q2n+1Q1n+1Q0n+1 RCO
0X X X ↑X X X X 1 1 X X ↑ d3 d2 d1 d0 1 1 1 1 ↑X X X X 1 1 0 X X X X X X 1 1 X 0 X X X X X 0 0 0 0
d3 d2 d1 d0
计数
保持
保持
表19.2
1、根据功能表依次验证74LS163的逻辑功能。
2、改变这个二进制计数器为十进制计数器,连接线如下图,即用一个与非门,其两个输入取自Q A和Q D,输出接清零端CLR。
当第九个脉冲结束时,Q A和Q D都为“1”信号输出,则与非门输出为低电平“0”加到CLR端,但因CLR 为同步清零端,此时虽已建立清零信号,并不执行清零,只有第十个时钟脉冲到来后74LS163才被清零,这就是同步的意义所在。
并验证你搭的电路如图19.3是否如同一个模10计数器。
图19.3
3、用两个74LS163连接成一个两位十进制计数器如图19.4。
图19.4
因为在级联同步计数器时,可用低位的计数器的进位端(RCO)加到高位计数器的片选端(ENT或ENP)来完成。
因此,如果K级有一个进位输出时,表明它计数计到了最大值。
下一级,即K+1级应该被启动,下一个时钟应使K+1级增加1同时K级复位为0,进位输出被清零,电路如图19.4。
2.测试74LS192同步十进制可逆计数器的逻辑功能。
计数脉冲由单次脉冲源提供,清零端CLR、置数端LOAD、数据输入端A、B、C、D分别接逻辑开关,输出端Q D Q C Q B Q A接实验箱中的一个七段显示器件的译码器输入端A、B、C、D,CO和BO接0—1指示器插口,按74LS192的功能表逐项测试并判断该集成电路的逻辑功能。
1、清零
令CR=1,其它输入为任意状态,这时Q D Q C Q B Q A=0000,译码数字显示为0。
清零后令CLR=0。
2、置数
CLR=0,DOWN和UP为任意态,数据输入端输入任意一组二进制数,令LOAD=0,观察计数译码显示输出,预置的功能是否正确,即输出显示是否为输入的一组二进制数。
若是,则置LOAD=1。
3、加计数
令CLR=0,LOAD=DOWN=1,UP接单次脉冲源,清零后送入10个脉冲,观察输出状态变化是否发生在UP(CP U)的上升沿。
4、减计数
令CLR=0,LOAD=UP=1,DOWN(CP D)接单次脉冲源,清零后送入10个脉冲,观察输出状态变化是否为减计数并是否发生在DOWN脉冲的上升沿。
3.测试74LS160计数器的逻辑功能。
74LS160功能表:(与74LS161的功能表相同,所不同的仅在于74LS160是CLK CLR LOAD ENP ENT 工作状态
X 0 X X X 置零
↑ 1 0 X X 预置数
五实验预习要求
1. 复习有关计数器的内容
2. 画出实验内容的线路图
3. 写出实验内容的测试记录表格
六实验报告及作业
1. 画出实验线路图
2. 总结使用集成计数器的体会。