拉格朗日插值_逐次线性插值法概论
- 格式:ppt
- 大小:2.48 MB
- 文档页数:53
拉格朗日插值法总结拉格朗日插值法2008-05-12 16:44一、问题的背景在实际问题中常遇到这样的函数y=f(x),其在某个区间[a,b]上是存在的。
但是,通过观察或测量或试验只能得到在区间[a,b]上有限个离散点x0,x1,…,xn上的函数值yi=f(xi),(i=0,1,…,n)。
或者f(x)的函数f(x)表达式是已知的,但却很复杂而不便于计算;希望用一个既能反映函数f(x)的特性,又便于计算的简单函数来描述它。
二、插值问题的数学提法:已知函数在n+1个点x0,x1,…,xn上的函数值yi=f(xi),(i=0,1,…,n)求一个简单函数y=P(x),使其满足:P(xi)=yi,(i=0,1,…,n)。
即要求该简单函数的曲线要经过y=f(x)上已知的这个n+1个点:(x0,y0),(x1,y1),…,(xn,yn),同时在其它x∈[a,b]上要估计误差:R(x)=f(x)-P(x)其中P(x)为f(x)的插值函数,x0,x1,…,xn称为插值节点,包含插值节点的区间[a,b]称为插值区间,求插值函数P(x)的方法称为插值法。
若P(x)是次数不超过n的代数多项式,就称P(x)为插值多项式,相应的插值法称为多项式插值。
若P(x)是分段的多项式,就是分段插值。
若P(x)是三角多项式,就称三角插值。
三、插值方法面临的几个问题第一个问题:根据实际问题选择恰当的函数类。
本章我们选择代数多项式类,其原因有两个:(1)代数多项式类简单;微分、积分运算易于实行;(2)根据著名的Weierstrass逼近定理,任何连续的函数都可以用代数多项式作任意精确的逼近。
第二个问题:构造插值函数P(x),使其满足:P(xi)=yi,(i=0,1,…,n)与此相关的问题是:插值问题是否可解(存在性的问题),如果有解,是否唯一?(唯一性的问题)第三个问题:插值误差R(x)=f(x)-P(x)的估计问题。
与此相关的问题是插值过程的收敛性的问题。
举例来看:可以认为某水文要素T 随时间t 的变化是连续的,某一个测点的水文要素T 可以看作时间的函数T=f(t),这样在实际水文观测中,对测得的(n+1)个有序值进行插值计算来获取任意时间上的要素值。
①平均值法:若求T i 和T i+1之间任一点T ,则直接取T 为T i 和T i+1的平均值。
插值公式为:T=T i +T i+12②拉格朗日(Lagrange )插值法:若求T i 和T i+1之间任一点T ,则可用T i-1、T 1、T i+1三个点来求得,也可用T i 、T i+1、T i+2这三个点来求得。
前三点内插公式为:T=(t-t i )(t-t i+1)(t i-1-t i )(t i-1-t i+1) T i-1+(t-t i-1)(t-t i+1)(t-t i-1)(t-t i+1) T i +(t-t i )(t-t i-1)(t i+1-t i )(t i+1-t i-1) T i+1后三点内插公式为:T=(t-t i+1)(t-t i+2)(t i -t i+1)(t i -t i+2) T i +(t-t i )(t-t i+2)(ti-t i )(t i -t i+2) T i+1+(t-t i )(t-t i+1)(t i+2-t i )(t i+2-t i+1) T i+2为提高插值结果可靠性,可将前后3点内插值再进一步平均。
③阿基玛(Akima )插值法:对函数T=f(t)的n+1个有序型值中任意两点T i 和T i+1满足:f(t i )=T i df dt |t-ti =k i f’(t i+1)=T’i df dt|t-ti+1=k i+1 式中k i ,k i+1为曲线f(t)在这两点的斜率,而每点的斜率和周围4个点有关,插值公式为:T=P 0+P 1(t-t i )+P 2(t-t i )2+P 3(t-t i )3,来对T i 和T i+1之间的一点T 进行内差。
拉格朗日插值法5.2 拉格朗日(Lagrange)插值可对插值函数选择多种不同的函数类型,由于代数多项式具有简单和一些良好的特性,例如,多项式是无穷光滑的,容易计算它的导数和积分,故常选用代数多项式作为插值函数。
5.2.1 线性插值问题5.1给定两个插值点其中,怎样做通过这两点的一次插值函数?过两点作一条直线,这条直线就是通过这两点的一次多项式插值函数,简称线性插值。
如图5.1所示。
图5.1 线性插值函数在初等数学中,可用两点式、点斜式或截距式构造通过两点的一条直线。
下面先用待定系数法构造插值直线。
设直线方程为,将分别代入直线方程得:当时,因,所以方程组有解,而且解是唯一的。
这也表明,平面上两个点,有且仅有一条直线通过。
用待定系数法构造插值多项式的方法简单直观,容易看到解的存在性和惟一性,但要解一个方程组才能得到插值函数的系数,因工作量较大和不便向高阶推广,故这种构造方法通常不宜采用。
当时,若用两点式表示这条直线,则有:(5.1)这种形式称为拉格朗日插值多项式。
,,称为插值基函数,计算,的值,易见(5.2)在拉格朗日插值多项式中可将看做两条直线,的叠加,并可看到两个插值点的作用和地位都是平等的。
拉格朗日插值多项式型式免除了解方程组的计算,易于向高次插值多项式型式推广。
线性插值误差定理5.1记为以为插值点的插值函数,。
这里,设一阶连续可导,在上存在,则对任意给定的,至少存在一点,使(5.3)证明令,因是的根,所以可设对任何一个固定的点,引进辅助函数:则。
由定义可得,这样至少有3个零点,不失一般性,假定,分别在和上应用洛尔定理,可知在每个区间至少存在一个零点,不妨记为和,即和,对在上应用洛尔定理,得到在上至少有一个零点,。
现在对求二次导数,其中的线性函数),故有代入,得所以即5.2.2 二次插值问题5.2给定三个插值点,,其中互不相等,怎样构造函数的二次的(抛物线)插值多项式?平面上的三个点能确定一条次曲线,如图5.2所示。