实验1拉格朗日插值与牛顿插值
- 格式:doc
- 大小:140.50 KB
- 文档页数:4
杜丁坤 20171506003 自动化1班实验二 插值法一、实验目的和要求(1)学会Langrange 插值、Newton 插值和Hermite 插值等基本插值方法.(2)学会Matlab 提供的插值函数的使用方法,会用这些函数解决实际问题(3) 按照题目要求完成实验内容、写出相应的Matlab 程序给出实验结果.(4)对实验结果进行分析讨论.(5)写出相应的实验报告.一、 实验内容1. Lagrange 插值公式.练习11=2=3=,利用Lagrange 拉格朗日插值的函数%%%%%%%%%function yi=Lagrange(x,y,xi)n=length(x);m=length(y);if n~=merror('The length of X must be equal!');endp=zeros(1,n);for k=1:nt=ones(1,n);for j=1:nif j~=kif abs(x(k)-x(j))<epserror('the DATA is error');return;endt(j)=(xi-x(j))/(x(k)-x(j));endendp(k)=prod(t);endyi=sum(y.*p);%%%%%主函数是:%%%%%X=[1 3 9];Y=[1 2 3];Xi=5;Lagrange(X,Y,xi)练习21=2=3=,利用Newton 进行比较。
牛顿插值函数%%%%%%%%function yi=Newton(x,y,xi)n=length(x);m=length(y);if n~=merror('The length of X must be equal!');endA=zeros(n,n);A(:,1)=y;for j=2:nfor i=1:n-j+1A(i,j)=(A(i+1,j-1)-A(i,j-1))/(x(i+j-1)-x(i));endendX1=xi*ones(1,n)-x;X=ones(1,n);for p=2:nfor q=1:p-1X(p)=X(p)*X1(q);endendY=zeros(1,n);for r=1:nY(r)=A(1,r)*X(r);endyi=sum(Y);%%%%%%%%%%主函数:X=[1 3 9];Y=[1 2 3];Xi=5;Newton(X,Y,xi)三、实验要求要求在实验前必须预习,将实验内容事先准备好,否则不允许上机。
一、实验目的通过本次综合实验,掌握数值分析中常用的插值方法、方程求根方法以及数值积分方法,了解这些方法在实际问题中的应用,提高数值计算能力。
二、实验内容1. 插值方法(1)拉格朗日插值法:利用已知数据点构造多项式,以逼近未知函数。
(2)牛顿插值法:在拉格朗日插值法的基础上,通过增加基函数,提高逼近精度。
2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,通过不断缩小区间来逼近根。
(2)Newton法:利用函数的导数信息,通过迭代逼近根。
(3)不动点迭代法:将方程转化为不动点问题,通过迭代逼近根。
3. 数值积分方法(1)矩形法:将积分区间等分,近似计算函数值的和。
(2)梯形法:将积分区间分成若干等分,用梯形面积近似计算积分。
(3)辛普森法:在梯形法的基础上,将每个小区间再等分,提高逼近精度。
三、实验步骤1. 拉格朗日插值法(1)输入已知数据点,构造拉格朗日插值多项式。
(2)计算插值多项式在未知点的函数值。
2. 牛顿插值法(1)输入已知数据点,构造牛顿插值多项式。
(2)计算插值多项式在未知点的函数值。
3. 方程求根方法(1)输入方程和初始值。
(2)选择求解方法(二分法、Newton法、不动点迭代法)。
(3)迭代计算,直到满足精度要求。
4. 数值积分方法(1)输入被积函数和积分区间。
(2)选择积分方法(矩形法、梯形法、辛普森法)。
(3)计算积分值。
四、实验结果与分析1. 插值方法(1)拉格朗日插值法:通过构造多项式,可以较好地逼近已知数据点。
(2)牛顿插值法:在拉格朗日插值法的基础上,增加了基函数,提高了逼近精度。
2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,计算简单,但收敛速度较慢。
(2)Newton法:利用函数的导数信息,收敛速度较快,但可能存在数值不稳定问题。
(3)不动点迭代法:将方程转化为不动点问题,收敛速度较快,但可能存在初始值选择不当的问题。
3. 数值积分方法(1)矩形法:计算简单,但精度较低。
插值法实验报告插值法实验报告一、引言插值法是一种常用的数值分析方法,用于通过已知数据点的函数值来估计在其他位置的函数值。
它在科学计算、图像处理、工程设计等领域有广泛的应用。
本实验旨在通过实际操作,深入理解插值法的原理和应用。
二、实验目的1. 掌握拉格朗日插值法和牛顿插值法的原理和计算方法;2. 通过实验比较不同插值方法的精度和效率;3. 分析插值法在实际问题中的应用。
三、实验步骤1. 收集实验数据:在实验室内设置几个测量点,记录它们的坐标和对应的函数值;2. 使用拉格朗日插值法计算其他位置的函数值:根据已知数据点,利用拉格朗日插值公式计算其他位置的函数值;3. 使用牛顿插值法计算其他位置的函数值:根据已知数据点,利用牛顿插值公式计算其他位置的函数值;4. 比较不同插值方法的精度和效率:通过计算误差和运行时间,比较拉格朗日插值法和牛顿插值法的性能差异;5. 分析插值法在实际问题中的应用:结合实验结果,探讨插值法在实际问题中的优势和局限性。
四、实验结果与分析1. 拉格朗日插值法的计算结果:根据已知数据点,利用拉格朗日插值公式计算其他位置的函数值;2. 牛顿插值法的计算结果:根据已知数据点,利用牛顿插值公式计算其他位置的函数值;3. 误差分析:比较插值结果与真实函数值之间的误差,分析误差的来源和影响因素;4. 运行时间分析:比较不同插值方法的运行时间,分析其效率和适用场景。
五、实验结论1. 拉格朗日插值法和牛顿插值法都是常用的插值方法,它们在不同场景下有各自的优势;2. 插值法在实际问题中的应用需要考虑数据的分布、函数的性质和计算效率等因素;3. 本实验结果表明,拉格朗日插值法和牛顿插值法在精度和效率上存在差异,具体选择哪种方法应根据实际需求进行权衡。
六、实验总结通过本次实验,我们深入了解了插值法的原理和应用。
实验结果表明,插值法在科学计算和工程设计中具有重要的作用。
在实际应用中,我们需要根据具体问题的要求和数据的特点选择合适的插值方法,以达到更好的效果。
计算方法与实习实验报告学院:电气工程学院指导老师:***班级:160093******学号:********实习题一实验1 拉格朗日插值法一、方法原理n次拉格朗日插值多项式为:L n(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+y n l n(x)n=1时,称为线性插值,L1(x)=y0(x-x1)/(x0-x1)+ y1(x-x0)/(x1-x0)=y0+(y1-x0)(x-x0)/(x1-x0)n=2时,称为二次插值或抛物线插值,精度相对高些L2(x)=y0(x-x1)(x-x2)/(x0-x1)/(x0-x2)+y1(x-x0)(x-x2)/(x1-x0)/(x1-x2)+y2(x-x0)(x-x1)/(x2-x0)/(x2-x1)二、主要思路使用线性方程组求系数构造插值公式相对复杂,可改用构造方法来插值。
对节点x i(i=0,1,…,n)中任一点x k(0<=k<=n)作一n 次多项式l k(x k),使它在该点上取值为1,而在其余点x i(i=0,1,…,k-1,k+1,…,n)上为0,则插值多项式为L n(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+y n l n(x) 上式表明:n 个点x i(i=0,1,…,k-1,k+1,…,n)都是l k(x)的零点。
可求得l k三.计算方法及过程:1.输入节点的个数n2.输入各个节点的横纵坐标3.输入插值点4.调用函数,返回z函数语句与形参说明程序源代码如下:#include<iostream>#include<math.h>using namespace std;#define N 100double fun(double *x,double *y, int n,double p);void main(){int i,n;cout<<"输入节点的个数n:";cin>>n;double x[N], y[N],p;cout<<"please input xiangliang x= "<<endl;for(i=0;i<n;i++)cin>>x[i];cout<<"please input xiangliang y= "<<endl;for(i=0;i<n;i++)cin>>y[i];cout<<"please input LagelangrichazhiJieDian p= "<<endl;cin>>p;cout<<"The Answer= "<<fun(x,y,n,p)<<endl;system("pause") ;}double fun(double x[],double y[], int n,double p){double z=0,s=1.0;int k=0,i=0;double L[N];while(k<n){ if(k==0){ for(i=1;i<n;i++)s=s*(p-x[i])/(x[0]-x[i]);L[0]=s*y[0];k=k+1;}else{s=1.0;for(i=0;i<=k-1;i++)s=s*((p-x[i])/(x[k]-x[i]));for(i=k+1;i<n;i++) s=s*((p-x[i])/(x[k]-x[i]));L[k]=s*y[k];k++;}}for(i=0;i<n;i++)z=z+L[i];return z;}五.实验分析n=2时,为一次插值,即线性插值n=3时,为二次插值,即抛物线插值n=1,此时只有一个节点,插值点的值就是该节点的函数值n<1时,结果都是返回0的;这里做了n=0和n=-7两种情况3<n<100时,也都有相应的答案常用的是线性插值和抛物线插值,显然,抛物线精度相对高些n次插值多项式Ln(x)通常是次数为n的多项式,特殊情况可能次数小于n.例如:通过三点的二次插值多项式L2(x),如果三点共线,则y=L2(x)就是一条直线,而不是抛物线,这时L2(x)是一次式。
第1篇在数值分析这门课程的学习过程中,我深刻体会到了理论知识与实践操作相结合的重要性。
通过一系列的实验,我对数值分析的基本概念、方法和应用有了更加深入的理解。
以下是我对数值分析实验的心得体会。
一、实验目的与意义1. 巩固数值分析理论知识:通过实验,将课堂上学到的理论知识应用到实际问题中,加深对数值分析概念和方法的理解。
2. 培养实际操作能力:实验过程中,我学会了使用Matlab等软件进行数值计算,提高了编程能力。
3. 增强解决实际问题的能力:实验项目涉及多个领域,通过解决实际问题,提高了我的问题分析和解决能力。
4. 培养团队协作精神:实验过程中,我与同学们分工合作,共同完成任务,培养了团队协作精神。
二、实验内容及方法1. 实验一:拉格朗日插值法与牛顿插值法(1)实验目的:掌握拉格朗日插值法和牛顿插值法的原理,能够运用这两种方法进行函数逼近。
(2)实验方法:首先,我们选择一组数据点,然后利用拉格朗日插值法和牛顿插值法构造插值多项式。
最后,我们将插值多项式与原始函数进行比较,分析误差。
2. 实验二:方程求根(1)实验目的:掌握二分法、Newton法、不动点迭代法、弦截法等方程求根方法,能够运用这些方法求解非线性方程的根。
(2)实验方法:首先,我们选择一个非线性方程,然后运用二分法、Newton法、不动点迭代法、弦截法等方法求解方程的根。
最后,比较不同方法的收敛速度和精度。
3. 实验三:线性方程组求解(1)实验目的:掌握高斯消元法、矩阵分解法等线性方程组求解方法,能够运用这些方法求解线性方程组。
(2)实验方法:首先,我们构造一个线性方程组,然后运用高斯消元法、矩阵分解法等方法求解方程组。
最后,比较不同方法的计算量和精度。
4. 实验四:多元统计分析(1)实验目的:掌握多元统计分析的基本方法,能够运用这些方法对数据进行分析。
(2)实验方法:首先,我们收集一组多元数据,然后运用主成分分析、因子分析等方法对数据进行降维。
插值运算实验报告通过实验掌握插值运算的原理和方法,并利用插值运算技术对离散数据进行插值和逼近。
实验设备:计算机、Matlab软件实验原理:插值是利用已知数据点之间的关系,使用某种函数表达式来逼近未知点的值。
插值方法可以分为多种,如拉格朗日插值、牛顿插值等。
本次实验主要涉及的是拉格朗日插值和牛顿插值。
实验步骤:1. 采集实验数据,得到需要进行插值运算的离散数据。
2. 根据所给的离散数据,选择合适的插值方法,如拉格朗日插值或牛顿插值。
3. 利用Matlab软件进行编程,实现所选择的插值方法。
4. 运行程序,得到插值结果。
5. 根据插值结果,可以确定对未知数据点的函数值,也可以进行曲线拟合和逼近。
实验结果:经过对实验数据的处理和插值运算,得到了以下结果:1. 插值函数的形式,可以通过该函数计算未知数据点的函数值。
2. 插值曲线的图像,可以通过该曲线来拟合和逼近实验数据。
实验分析:通过实验结果的分析,可以得出以下结论:1. 插值方法的选择对结果有重要影响,不同的插值方法适用于不同的数据类型。
2. 插值运算可以有效地处理离散数据,得到连续函数的逼近值。
3. 插值运算的精度也会受到数据点分布和插值方法的影响。
实验总结:通过本次实验,我对插值运算的原理和方法有了更深入的了解。
插值运算是一种常用的数值计算方法,可以在一定程度上解决离散数据的处理问题。
插值运算不仅可以用于求解未知数据点的函数值,还可以用于曲线拟合和逼近。
不同的插值方法适用于不同类型的数据,需要根据实际情况进行选择。
插值运算的精度也会受到数据点分布和插值方法的影响,需要注意选择合适的插值方法以及优化离散数据的分布。
第1篇一、实验目的1. 理解并掌握插值法的基本原理和常用方法。
2. 学习使用拉格朗日插值法、牛顿插值法等数值插值方法进行函数逼近。
3. 分析不同插值方法的优缺点,并比较其精度和效率。
4. 通过实验加深对数值分析理论的理解和应用。
二、实验原理插值法是一种通过已知数据点来构造近似函数的方法。
它广泛应用于科学计算、工程设计和数据分析等领域。
常用的插值方法包括拉格朗日插值法、牛顿插值法、样条插值法等。
1. 拉格朗日插值法拉格朗日插值法是一种基于多项式的插值方法。
其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等。
2. 牛顿插值法牛顿插值法是一种基于插值多项式的差商的插值方法。
其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等,并且满足一定的差商条件。
三、实验内容1. 拉格朗日插值法(1)给定一组数据点,如:$$\begin{align}x_0 &= 0, & y_0 &= 1, \\x_1 &= 1, & y_1 &= 4, \\x_2 &= 2, & y_2 &= 9, \\x_3 &= 3, & y_3 &= 16.\end{align}$$(2)根据拉格朗日插值公式,构造插值多项式:$$P(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}y_0 + \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}y_1 + \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}y_2 + \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}y_3.$$(3)计算插值多项式在不同点的函数值,并与实际值进行比较。
西华数学与计算机学院上机实践报告课程名称:计算方法年级:2012级上机实践成绩:指导教师:严常龙姓名:贺容英上机实践名称:拉格朗日插值和牛顿插值法学号:上机实践日期:yyyy.mm.dd 上机实践编号:1312012070102209 上机实践时间:2014.10.27一、目的1.通过本实验加深对拉格朗日插值和牛顿插值法构造过程的理解;2.能对上述两种插值法提出正确的算法描述编程实现。
二、内容与设计思想自选插值问题,编制一个程序,分别用拉格朗日插值法和牛顿插值法求解某点的函数近似值。
(从课件或教材习题中选题)已知y=f(三、使用环境操作系统:win7软件环境:vs2012四、核心代码及调试过程4.1核心代码1、拉格朗日插值法代码如下double lagrangesf(point points[],int t){int n=t;int i,j;double x,tmp=1,lagrange=0;printf("请输入需要计算的x的值:");scanf("%lf",&x);for(i=0;i<=n-1;i++){tmp=1;for(j=0;j<=n-1;j++){if(j!=i)tmp=tmp*(x-points[j].x)/(points[i].x-points[j].x);}lagrange=lagrange+tmp*points[i].y;}printf("lagrange(%lf)=%lf\n",x,lagrange);return 0;}2、牛顿插值法代码如下double newtonsf(point points[],int t){int n=t;int i,j;double d[maxt+1];double x,tmp,newton=0;printf("差商表\n");printf("***************************************************\n"); printf("x ");for(i=0;i<=n-1;i++){printf("%lf ",points[i].x);}printf("\n");printf("y ");for(i=0;i<=n-1;i++){d[i]=points[i].y;printf("%lf ",points [i].y);}printf("\n");for(i=0;i<n-1;i++){printf("%d阶差商",i+1);for(int t=1;t<=i+12;t++)printf(" ");for(j=n-1;j>i;j--){d[j]=(d[j]-d[j-1])/(points[j].x-points[j-i-1].x);//计算差商printf("%lf ",d[j]);}printf("\n");}printf("***************************************************\n"); printf("请输入需要计算的x的值:");scanf("%lf",&x);tmp=1;newton=d[0];for(i=0;i<n-1;i++){tmp=tmp*(x-points[i].x);newton=newton+tmp*d[i+1];}printf("newton(%lf)=%lf\n",x,newton);return 0;}3、主函数中负责输入被插值点的输入,以及拉格朗日插值法和牛顿插值法的调用,代码如下int n=0;int i,j;point points[maxt+1];double x,tmp=0,lagrange=0;do{printf("请输入被插值点数目:");scanf("%d",&n);if(n>maxt){printf("被插值点数超出范围%d",maxt);return 0;}}while(n<=0);printf("请输入被插值点:\n");for(i=0;i<=n-1;i++){scanf("%lf%lf",&points[i].x,&points[i].y);}printf("lagrange插值\n");lagrangesf(points,n);printf("newton插值\n");newtonsf(points,n);system("pause");4.2、调试过程1、在拉格朗日插值法调试过程中,累乘过程中用来承载累乘的tmp没有重新赋值为1,导致结果始终不正确。
拉格朗日插值法牛顿插值法
摘要:
1.插值法的概念和作用
2.拉格朗日插值法原理和应用
3.牛顿插值法原理和应用
4.两种插值法的优缺点比较
正文:
一、插值法的概念和作用
插值法是一种数学方法,通过已知的数据点来预测未知数据点的一种技术。
在科学计算和工程应用中,常常需要根据有限个已知数据点,来估计某个函数在其他点上的值。
插值法正是为了解决这个问题而诞生的。
二、拉格朗日插值法原理和应用
拉格朗日插值法是一种基于拉格朗日基函数的插值方法。
它的基本原理是:在给定的区间[a, b] 上,选取一个基函数,然后通过求解一组线性方程,得到基函数在各数据点上的值,最后用这些值来近似函数在待求点上的值。
拉格朗日插值法广泛应用于数值分析、工程计算等领域。
三、牛顿插值法原理和应用
牛顿插值法,又称为牛顿前向差分法,是一种基于差分的插值方法。
它的基本原理是:通过对已知数据点的函数值进行差分,然后使用牛顿迭代公式来求解差分后的函数在待求点上的值。
牛顿插值法具有较高的精度,适用于各种函数,特别是对于单调函数和多项式函数,效果尤为显著。
四、两种插值法的优缺点比较
拉格朗日插值法和牛顿插值法各有优缺点。
拉格朗日插值法的优点是适用范围广,可以插值任意类型的函数,但计算过程较为复杂;牛顿插值法的优点是计算简便,精度高,但对于非线性函数或多峰函数,效果可能不佳。
因此,在实际应用中,需要根据具体情况选择合适的插值方法。
matlab 拉格朗日插值法和牛顿插值法题目:MATLAB中的拉格朗日插值法和牛顿插值法引言在实际问题中,我们常常需要通过一系列已知数据点来估计未知数据点的值。
这种问题很常见,例如用温度测量数据来预测未来某一天的温度。
为了解决这种插值问题,拉格朗日插值法和牛顿插值法是常用的方法之一。
在本文中,我们将介绍这两种插值方法并详细解释如何在MATLAB中使用它们。
一、拉格朗日插值法拉格朗日插值法是基于拉格朗日多项式的一种插值方法。
该方法使用已知数据点的值和位置来构造一个多项式,进而估计未知数据点的值。
其基本思想是通过多项式与每个数据点相等,并利用拉格朗日插值公式来得到插值多项式。
1. 拉格朗日插值公式拉格朗日插值公式可以表示为:P(x) = Σ(yi * li(x))其中P(x)是插值多项式,yi是第i个数据点的值,li(x)是拉格朗日基函数。
拉格朗日基函数li(x)定义为:li(x) = Π((x-xj)/(xi-xj)) (j ≠i)2. MATLAB实现要在MATLAB中实现拉格朗日插值法,我们可以按照以下步骤进行:(1)首先定义数据点的横坐标x和纵坐标y;(2)使用for循环遍历每个数据点,并计算插值多项式的每一项;(3)将每个数据点的插值多项式项相加,得到最终的插值多项式;(4)通过给定的x值,计算插值多项式的值。
该过程可以通过以下MATLAB代码实现:matlab定义已知数据点的横坐标和纵坐标x = [1, 2, 3, 4];y = [2, 4, 1, 6];计算插值多项式的每一项n = length(x); 数据点数量P = 0; 初始化插值多项式for i = 1:n计算每一项的拉格朗日基函数li = ones(size(x));for j = 1:nif j ~= ili = li .* (xs - x(j)) / (x(i) - x(j));endend计算每一项的插值多项式项Pi = yi * li;将每一项相加得到最终的插值多项式P = P + Pi;end给定x值,计算插值多项式的值x_val = 2.5;y_val = polyval(P, x_val);二、牛顿插值法牛顿插值法是一种使用差商的插值方法。
拉格朗日插值公式和牛顿插值公式拉格朗日插值公式和牛顿插值公式是数值分析中常用的插值方法,用于通过已知数据点推导出未知数据点的近似值。
本文将分别介绍这两个插值方法的原理和应用,并比较它们的特点和优劣。
一、拉格朗日插值公式拉格朗日插值公式是由法国数学家拉格朗日于18世纪提出的,它通过构造一个多项式来逼近给定的数据点集合。
具体而言,拉格朗日插值多项式的形式为:P(x) = Σ(yi * Li(x))其中,P(x)表示待求的多项式,yi表示已知数据点的函数值,Li(x)称为拉格朗日基函数,它代表了每个数据点的贡献度。
拉格朗日插值公式的优点在于其简单易懂,计算过程相对简单快速。
但是,该方法的缺点是对于较大规模的数据集合,计算量会变得很大,同时当数据点之间的间距不均匀时,插值结果可能出现较大误差。
二、牛顿插值公式牛顿插值公式是由英国数学家牛顿于17世纪提出的,它采用了多项式的差商形式进行插值。
具体而言,牛顿插值多项式的形式为:P(x) = f[x0] + (x - x0)f[x0, x1] + (x - x0)(x - x1)f[x0, x1,x2] + ...其中,f[x0]表示已知数据点的函数值,f[x0, x1]表示x0和x1两个点之间的差商,以此类推。
牛顿插值公式的优点在于可以通过递推的方式计算差商,避免了重复计算,因此对于较大规模的数据集合,计算效率较高。
此外,牛顿插值公式对于不均匀间距的数据点也能够较好地逼近。
然而,牛顿插值公式的缺点在于其计算过程较为繁琐,需要额外计算差商。
三、比较与应用拉格朗日插值公式和牛顿插值公式都是常见的插值方法,它们在实际应用中各有优劣。
下面将对它们进行比较和应用分析。
1. 计算复杂度从计算复杂度的角度来看,牛顿插值公式在计算差商时需要递推计算,每次计算需要O(n)的复杂度,因此总的计算复杂度为O(n^2)。
而拉格朗日插值公式直接计算每个基函数,每次计算都需要O(n)的复杂度,因此总的计算复杂度也为O(n^2)。
拉格朗日插值法与牛顿插值法的比较一、 背景在工程和科学研究中出现的函数是多种多样的。
常常会遇到这样的情况:在某个实际问题中,虽然可以断定所考虑的函数)(x f 在区间],[b a 上存在且连续,但却难以找到它的解析表达式,只能通过实验和观测得到在有限个点上的函数值(即一张函数表)。
显然,要利用这张函数表来分析函数)(x f 的性态,甚至直接求出其他一些点上的函数值可能是非常困难的。
面对这些情况,总希望根据所得函数表(或结构复杂的解析表达式),构造某个简单函数)(x P 作为)(x f 的近似。
这样就有了插值法,插值法是解决此类问题目前常用的方法。
如设函数)(x f y =在区间],[b a 上连续,且在1+n 个不同的点b x x x a n ≤≤,,,10 上分别取值n y y y ,,,10 。
插值的目的就是要在一个性质优良、便于计算的函数类Φ中,求一简单函数)(x P ,使 ),,1,0()(n i y x P i i ==而在其他点i x x ≠上,作为)(x f 的近似。
通常,称区间],[b a 为插值区间,称点n x x x ,,,10 为插值节点,称式i i y x P =)(为插值条件,称函数类Φ为插值函数类,称)(x P 为函数)(x f 在节点n x x x ,,,10 处的插值函数。
求插值函数)(x P 的方法称为插值法。
插值函数类Φ的取法不同,所求得的插值函数)(x P 逼近)(x f 的效果就不同。
它的选择取决于使用上的需要,常用的有代数多项式、三角多项式和有理函数等。
当选用代数多项式作为插值函数时,相应的插值问题就称为多项式插值。
本文讨论的拉格朗日插值法与牛顿插值法就是这类插值问题。
在多项式插值中,最常见、最基本的问题是:求一次数不超过n 的代数多项式 n n x a x a a x P +++= 10)(使),,1,0()(n i y x P i i n ==,其中,n a a a ,,,10 为实数。
拉格朗日插值公式和牛顿插值公式拉格朗日插值公式和牛顿插值公式是数值分析中常用的插值方法,用于根据给定的一些数据点,推断出未知点的近似值。
本文将分别介绍这两个插值方法的原理和应用。
一、拉格朗日插值公式拉格朗日插值公式是由法国数学家拉格朗日在18世纪提出的一种插值方法。
它的基本思想是通过一个多项式函数来拟合已知的数据点,从而推断出未知点的值。
具体来说,假设有n+1个数据点(x0, y0),(x1, y1),...,(xn, yn),其中x0,x1,...,xn是互不相同的实数,y0,y1,...,yn是对应的函数值。
拉格朗日插值公式的表达式如下:P(x) = ∑[i=0 to n] yi * Li(x)其中,P(x)表示通过插值得到的多项式函数,Li(x)是拉格朗日基函数,定义为:Li(x) = ∏[j=0 to n, j≠i] (x-xj) / (xi-xj)拉格朗日插值公式的优点是简单易懂,计算方便。
但是随着数据点的增多,计算量也会增大,且插值函数的阶数较高时容易产生龙格现象,导致插值结果不稳定。
二、牛顿插值公式牛顿插值公式是由英国数学家牛顿在17世纪提出的一种插值方法。
它的基本思想是通过差商的形式来表示插值多项式,从而推断出未知点的值。
具体来说,假设有n+1个数据点(x0, y0),(x1, y1),...,(xn, yn),其中x0,x1,...,xn是互不相同的实数,y0,y1,...,yn是对应的函数值。
牛顿插值公式的表达式如下:P(x) = ∑[i=0 to n] fi(x) * wi(x)其中,P(x)表示通过插值得到的多项式函数,fi(x)是牛顿插值基函数,定义为:fi(x) = ∏[j=0 to i-1] (x-xj)wi(x)是差商,定义为:wi(x) = ∏[j=0 to i-1] (x-xj) / (xi-xj)牛顿插值公式的优点是计算效率高,且插值函数的阶数较高时也能保持较好的精度。
拉格朗日插值法和牛顿插值法的区别
拉格朗日插值法和牛顿插值法都是多项式插值。
多项式插值是通
过在已知点求多项式表达来获得未知点的值的一种插值法。
其原理是
将插值点的函数插入已经确定的多项式中,以求得函数的值。
这两种
方法都能够利用已知的数据来预测未知数据,但它们的原理是不同的。
拉格朗日插值法是一种基于有限多项式的插值方法,旨在根据已
知的离散数据拟合出有限多项式函数。
它假设函数中的任何零点都可
以表示为有限多项式函数,从而得到点集中离散点的函数值。
拉格朗
日插值法可以给出比较精确的结果,但是其在插值程度上存在一定的
缺陷,比如畸变度大,计算量也相对较大。
牛顿插值法是基于牛顿插值多项式的插值方法,是一种基于差分
的插值方法,它旨在插入一组已知的点,并拟合出一个牛顿插值多项式。
此方法通过计算差商来逼近给定的数据点,这样每两个点之间的
函数值的变化率就可以给出,从而得出其中的未知函数值。
牛顿插值
法可以生成比较平滑的结果,但是计算量相对较大。
这种方法在处理
多点数据时很有效,而且对运算量要求比较小,同时插值精度也比较高。
总体而言,拉格朗日插值法与牛顿插值法都是多项式插值的一种。
从运算量、精度和拟合度三点来说,牛顿插值法更优于拉格朗日插值法;而拉格朗日插值法更能准确拟合离散点点集。
常见的插值方法及其原理插值是指在已知数据点的情况下,根据其中一种规则或算法,在这些数据点之间进行预测或估计。
常见的插值方法有:拉格朗日插值、牛顿插值、分段线性插值、样条插值和Kriging插值等。
1.拉格朗日插值方法:拉格朗日插值是一种基于多项式的插值方法。
它假设已知数据点的函数曲线可以由一个多项式来表示。
拉格朗日插值的原理是,通过确定多项式的系数,使多项式在已知数据点上满足给定的函数值。
具体地说,对于给定的一组已知数据点和对应的函数值,拉格朗日插值方法通过构造一个多项式,使得该多项式在每个数据点上的函数值等于给定的函数值。
然后,通过该多项式在插值点上的函数值来估计未知数据点的函数值。
2.牛顿插值方法:牛顿插值也是一种基于多项式的插值方法,其原理类似于拉格朗日插值。
它也是通过确定多项式的系数,使多项式在已知数据点上满足给定的函数值。
不同的是,牛顿插值使用了差商的概念,将插值多项式表示为一个累次求和的形式。
具体地说,对于给定的一组已知数据点和对应的函数值,牛顿插值方法通过差商的计算,得到一个多项式表达式。
然后,通过该多项式在插值点上的函数值来估计未知数据点的函数值。
3.分段线性插值方法:分段线性插值是一种简单而常用的插值方法。
它假设在两个相邻已知数据点之间的曲线是一条直线。
分段线性插值的原理是,通过连接相邻数据点之间的线段,构造一个连续的曲线。
具体地说,对于给定的一组已知数据点和对应的函数值,分段线性插值方法将曲线划分为若干小段,每一小段都是一条直线。
然后,在每个数据点之间的区域上,通过线性插值来估计未知数据点的函数值。
4.样条插值方法:样条插值是一种基于插值条件和光滑条件的插值方法。
它假设在两个相邻已知数据点之间的曲线是一个低次数的多项式。
样条插值的原理是,通过确定各个数据点之间的插值多项式系数,使得整个曲线在插值点上的各阶导数连续。
具体地说,对于给定的一组已知数据点和对应的函数值,样条插值方法将曲线划分为若干小段,每一小段都是一个低次数的多项式。
数值分析实验报告一、实验目的数值分析是一门研究用计算机求解数学问题的数值方法及其理论的学科。
本次实验的目的在于通过实际操作和编程实现,深入理解和掌握数值分析中的常见算法,提高运用数值方法解决实际问题的能力,并对算法的精度、稳定性和效率进行分析和比较。
二、实验环境本次实验使用的编程语言为 Python,使用的开发工具为 PyCharm。
实验所依赖的主要库包括 NumPy、Matplotlib 等。
三、实验内容(一)函数逼近与插值1、拉格朗日插值法通过给定的离散数据点,构建拉格朗日插值多项式,对未知点进行函数值的估计。
2、牛顿插值法与拉格朗日插值法类似,但采用了不同的形式和计算方式。
(二)数值积分1、梯形公式将积分区间划分为若干个梯形,通过计算梯形面积之和来近似积分值。
2、辛普森公式基于抛物线拟合的方法,提高积分近似的精度。
(三)线性方程组求解1、高斯消元法通过逐行消元将线性方程组化为上三角形式,然后回代求解。
2、 LU 分解法将系数矩阵分解为下三角矩阵 L 和上三角矩阵 U,然后通过两次前代和回代求解。
(四)非线性方程求解1、二分法通过不断将区间一分为二,逐步缩小根所在的区间,直到满足精度要求。
2、牛顿迭代法利用函数的切线来逼近根,通过迭代逐步收敛到根的近似值。
四、实验步骤(一)函数逼近与插值1、拉格朗日插值法定义计算拉格朗日基函数的函数。
根据给定的数据点和待求点,计算插值多项式的值。
输出插值结果,并与真实值进行比较。
2、牛顿插值法计算差商表。
构建牛顿插值多项式。
进行插值计算和结果分析。
(二)数值积分1、梯形公式定义积分区间和被积函数。
按照梯形公式计算积分近似值。
分析误差。
2、辛普森公式同样定义积分区间和被积函数。
运用辛普森公式计算积分近似值。
比较与梯形公式的精度差异。
(三)线性方程组求解1、高斯消元法输入系数矩阵和右端项向量。
进行消元操作。
回代求解方程。
输出解向量。
2、 LU 分解法对系数矩阵进行 LU 分解。
matlab 拉格朗日插值法和牛顿插值法-回复Matlab 拉格朗日插值法和牛顿插值法引言:在数值分析中,插值法是一种通过已知数据点来估计介于这些数据点之间的未知数值的方法。
拉格朗日插值法和牛顿插值法是两种常用的插值方法,都有各自的优点和适用场景。
本文将详细介绍这两种方法的原理和实现方式,以及在Matlab 中如何使用它们来进行插值计算。
一、拉格朗日插值法1. 原理:拉格朗日插值法是使用一个N次的多项式来逼近未知函数。
给定一组数据点(x0, y0), (x1, y1), …, (xi, yi), …, (xn, yn),通过拉格朗日插值法可以得到一个多项式P(x),使得P(xi) = yi。
该多项式表示了数据点间的曲线关系,从而可以通过插值估算未知点的值。
2. 实现步骤:(1)创建一个N次多项式的拉格朗日插值函数;(2)计算每个插值点的权重系数,即拉格朗日插值函数的系数;(3)根据给定的数据点和权重系数,构建多项式;(4)通过多项式计算未知点的值。
3. Matlab 中的使用:在Matlab 中,可以使用"polyfit" 函数来实现拉格朗日插值法。
该函数可以拟合出一个多项式曲线,将给定的数据点映射到曲线上。
二、牛顿插值法1. 原理:牛顿插值法是通过构造一个差商表来逼近未知函数。
给定一组数据点(x0, y0), (x1, y1), …, (xi, yi), …, (xn, yn),通过牛顿插值法可以得到一个N次多项式P(x),满足P(xi) = yi。
该多项式的系数由差商构成,利用递归的方式逐层求解。
2. 实现步骤:(1)创建一个N次多项式的牛顿插值函数;(2)计算差商表,其中第一列为给定的数据点y值;(3)递归计算差商表中的其他列,直到得到最后的差商值;(4)根据差商表构建多项式;(5)通过多项式计算未知点的值。
3. Matlab 中的使用:在Matlab 中,可以使用"interp1" 函数结合牛顿插值法来进行插值计算。
数学与计算机学院上机实践报告
课程名称:计算方法A年级:上机实践成绩:
指导教师:姓名:
上机实践名称:拉格朗日插值和牛顿插值法学号:上机实践日期:
上机实践编号:1上机实践时间:
一、目的
1.通过本实验加深对拉格朗日插值和牛顿插值法构造过程的理解;
2.能对上述两种插值法提出正确的算法描述编程实现。
二、内容与设计思想
自选插值问题,编制一个程序,分别用拉格朗日插值法和牛顿插值法求解某点的函数近似值。
(从课件或教材习题中选题)
已知y=f(
三、使用环境
操作系统:windows XP
软件环境:Microsoft Visual C++6.0
四、核心代码及调试过程
(一) 拉格朗日插值法:
lude<stdio.h>
double product(double *p,double newx,int k,int n);
main()
{
/*divisor,dividend
double x[10]={0.10,0.15,0.25,0.40,0.50,0.57,0.70,0.85,0.93,1.00};
double newx[3]={0.45,0.6,0.80},divisor,dividend,quotient,result;
double
y[10]={0.904837,0.860708,0.778801,0.670320,0.606531,0.565525,0.496585,0.427415,0.394554;
int i,th;
for(th=0;th<3;th++)
{
result=0;
for(i=0;i<10;i++)
{
dividend=product(x,newx[th],i,9);
divisor=product(x,x[i],i,9);
quotient=dividend/divisor;
result+=quotient*y[i];
}
printf("%lf处的近似值为%lf\n",newx[th],result);
}
}
double product(double *p,double newx,int k,int n)
{
int cycle_times;
double result=1;
for(cycle_times=0;cycle_times<=n;cycle_times++)
if(cycle_times!=k)
result=result*(newx-p[cycle_times]);
return result;
}
(二)牛顿插值法:
#include<stdio.h>
#define total_points 10
void fill_in_the_blank(double *p,int x,int y);
double newton(double (*p)[total_points+1],double newx);
main()
{
double table[total_points][total_points+1], newx;
int x,y;
printf("Please notice (x,y) is from (x1,y1) to (x%d,y%d)!\n",total_points,total_points); for(x=0;x<total_points;x++)
{
printf("input (x%d,y%d):",x+1,x+1);
scanf("%lf%lf",&table[x][0],&table[x][1]);
}
for(y=2;y<=total_points+1;y++)
{
for(x=1;x<=total_points;x++)
if(x+2>y)
fill_in_the_blank(table,x,y);
}
printf("input a number you want to calculate:");
scanf("%lf",&newx);
printf(" the result is:%lf\n",newton(table,newx));
}
void fill_in_the_blank(double (*p)[total_points+1],int x,int y)
{
double diff_up,diff_down;
diff_up=*(*(p+x)+y-1)-*(*(p+x-1)+y-1);
diff_down=*(*(p+x))-*(*(p+x-y+1));
*(*(p+x)+y)=diff_up/diff_down;
}
double newton(double (*p)[total_points+1],double newx)
{
double result=*(*p+1),mid;
int k,i;
for(k=1;k<=total_points;k++)
{
mid=1;
for(i=0;i<=k-1;i++)
mid*=(newx-*(*(p+i)));
mid*=*(*(p+k)+k+1);
result+=mid;
}
return result;
}
五、总结
本次实验利用两种插值方法进行计算,计算结果均正确,通过本次实验加深了对拉格朗日插值和牛顿插值法构造过程的理解,掌握了利用C语言实现两种算法的方法,为深入学习打下坚实基础。
实验结果如下图所示:
图①拉格朗日插值法运算结果
图②牛顿插值法运算结果六、附录。