大专本科分析化学第十一章 紫外-可见分光光度法
- 格式:ppt
- 大小:3.65 MB
- 文档页数:97
第十一章紫外-可见分光光度法第十一章紫外-可见分光光度法第一节概述1.电磁辐射和电磁波谱在仪器分析中,根据物质发射的电磁辐射或物质与辐射的相互作用所建立起来分析方法,统称为光学分析法。
根据物质与辐射能间作用的性质不同,光学分析法又分为光谱法和非光谱法。
当物质与辐射能相互作用时,物质内部发生能级跃迁,根据能级跃迁所产生的辐射能强度随波长变化所得的图谱称为光谱(spectrum)。
利用物质的光谱进行定性、定量和结构分析的方法称为光谱分析法(spectroscopic analysis),简称光谱法。
光谱分析法从不同的角度分为不同的类别。
如按作用物是分子或原子,可分为分子光谱法和原子谱法;物质与辐射能间的转换方向(能级跃迁方向),可分为吸收光谱法和发射光谱法;按辐射源的波长不同,可分为红外光谱法、可见光谱法、紫外光谱法、X-射线光谱法等。
非光谱分析法是物质受辐射线照射时,改变电磁波的传播方向、速度等物理性质所建立起来的分析方法。
这种方法不涉及能量转移和物质内部的能级跃迁,如折光分析法、旋光分析法、X-射线衍射法等。
2.物质对光的选择性吸收当辐射能通过某些吸光物质时,物质的原子或分子吸收与其能级跃迁相应的能量由低能态跃迁至较高的能态,这种由物质对辐射能的选择性吸收而得到的原子或分子光谱称为吸收光谱。
几种常用的吸收光谱是:原子吸收光谱、分子吸收光谱、核磁共振光谱等。
各种色光的波长范围在可见光中,紫色光的波长最短能量最大,红色光的波长最长能量最小。
除此之外,波长小于400nm 的光称为紫外光,波长大于760nm 的光称为红外光。
如果适当选配两种颜色的光按一定的强度比例混合,也可以获得白光,则这两种色光称为互补色光。
如图11-1所示,处于直线相连的两种色光互为补色光,如绿色光与紫色光互补,蓝色光与黄色光互补等等。
第二节 基本原理1.吸收光谱光照射某物质,物质能够吸收光,使原有的基态转为激发态,只有当分子红橙黄绿青青蓝蓝紫白光的能量(hν)与被照射物质粒子的基态和激发态能量之差(∆E)相等时才能被吸收。
紫外-可见分光光度法1 简述紫外-可见分光光度法是在190-800nm波长范围内测定物质的吸光度,用于鉴别、杂质检查和含量测定的方法。
定量分析通常选择物质的最大吸收波长处测出吸光度,然后用对照品或吸收系数求算出被测物质的含量,多用于制剂的含量测定;对已知物质定性可用吸收峰波长或吸光度比值作为鉴别方法;若该物质本身在紫外光区无吸收,而其杂质在紫外光区有相当强度的吸收,或杂质的吸收峰处该物质无吸收,则可用本法作杂质检查。
物质对紫外辐射的吸收是由于分子中原子的外层电子跃迁所产生,因此,紫外吸收主要决定于分子的电子结构,故紫外光谱又称电子光谱。
有机化合物分子结构中如含有共轭体系、芳香环等发色基团,均可在紫外区(200〜400nm)或可见光区(400〜850nm)产生吸收。
通常使用的紫外-可见分光光度计的工作波长范围为190~900nm。
紫外吸收光谱为物质对紫外区辐射的能量吸收图。
朗伯-比尔(Lambert-Beer)定律为光的吸收定律,它是紫外-可见分光光度法定量分析的依据,其数学表达式为:A=log -1=ECL式中A为吸光度;T为透光率;E为吸收系数;C为溶液浓度;L为光路长度。
如溶液的浓度(C)为1%(g/ml),光路长度(L)为lcm,相应的吸光度即为吸收系数以E1%表示。
如溶液的浓度(C)为摩尔浓度(mol/L),光路长度为lcm 1cm时,则相应有吸收系数为摩尔吸收系数,以表示。
2仪器紫外-可见分光光度计主要由光源、单色器、样品室、检测器、记录仪、显示系统和数据处理系统等部分组成。
为了满足紫外-可见光区全波长范围的测定,仪器备有二种光源,即氘灯和碘钨灯,前者用于紫外区,后者用于可见光区。
单色器通常由进光狭缝、出光狭缝、平行光装置、色散元件,聚焦透镜或反射镜等组成。
色散元件有棱镜和光栅二种,棱镜多用天然石英或熔融硅石制成,对200〜400nm波长光的色散能力很强,对600nm以上波长的光色散能力较差,棱镜色散所得的光谱为非匀排光谱。