高一数学函数的应用测试题及答案17
- 格式:doc
- 大小:88.00 KB
- 文档页数:8
高一数学函数试题答案及解析1.若自然数使得作竖式加法时均不产生进位现象,便称为“好数”.如因为12+13+14不产生进位现象,所以12是“好数”;但13+14+15产生进位现象,所以13不是“好数”,则不超过100的“好数”共有()A.9个B.11个C.12个D.15个【答案】C.【解析】根据题意分别求出个位数和十位数需要满足的条件,即个位数需要满足要求:,所以,所以个位数可取0,1,2三个数;又因为十位数需要满足:,所以,所以十位可以取0,1,2,3四个数,故四个数的“好数”共有个,故应选C.【考点】数的十进制;新定义.2.设,的整数部分用表示,则的值是 .【答案】1546【解析】,,,,所以.【考点】信息给予题,要善于捕捉信息,灵活运用3.关于函数,有以下命题:①函数的图像关于轴对称;②当时是增函数,当时,是减函数;③函数的最小值为;④当或时,是增函数;⑤无最大值,也无最小值。
其中正确的命题是:__________.【答案】①③④【解析】函数的定义域为,且,∴该函数为偶函数,故①正确;当时,,在上单调递减,在单调递增,故函数在单调递减,在单调递增,故②错误;因为在单调递减,在单调递增,∴在时,函数取最小值,故③正确;∵在单调递减,故在内单调递增,故④正确;有最小值,故⑤错误.【考点】1.命题的真假判断;2.函数的性质.4.已知函数,满足.(1)求常数c的值;(2)解关于的不等式.【答案】(1) ;(2) .【解析】(1)代入解析式,列出关于c的方程,解出c,注意范围;(2)根据分段函数通过分类讨论列出不等式,解出的范围,解不等式时不要忘记分类条件.试题解析:(1)∵,即,解得. 5分(2)由(1)得,由,得当时,,解得; 9分当时,,解得. 12分∴不等式的解集为. 13分【考点】1.函数求值;2.利用指数函数性质解简单指数不等式;3.分类整合思想.5.若函数对于上的任意都有,则实数的取值范围是.【答案】【解析】由函数对于上的任意都有,可知在上单调递增,因此有,解得.【考点】函数的单调性.6.函数.满足,则的值为()A.B.C.D.【答案】B【解析】因为,函数.满足,所以,解得,,故选B。
高一数学函数试题答案及解析1.若自然数使得作竖式加法时均不产生进位现象,便称为“好数”.如因为12+13+14不产生进位现象,所以12是“好数”;但13+14+15产生进位现象,所以13不是“好数”,则不超过100的“好数”共有()A.9个B.11个C.12个D.15个【答案】C.【解析】根据题意分别求出个位数和十位数需要满足的条件,即个位数需要满足要求:,所以,所以个位数可取0,1,2三个数;又因为十位数需要满足:,所以,所以十位可以取0,1,2,3四个数,故四个数的“好数”共有个,故应选C.【考点】数的十进制;新定义.2.一次函数的图像过点和,则下列各点在函数的图像上的是( ) A.B.C.D.【答案】C【解析】法一:设,由该函数的图像过点及,可得,求解得,所以,依次将A、B、C、D中的横坐标代入计算可知,只有点符合要求,故选C;法二:一次函数的图像是一条直线,由该函数的图像过点及可知,,所以直线的方程为:即,依次将各点的纵坐标减去横坐标,看是否为1,是1的点就在直线上,即该点在函数的图像上,最后确定只有C答案满足要求.【考点】1.一次函数的解析式;2.直线的方程.3.函数的一个零点是,则另一个零点是_________.【答案】【解析】本题要注意零点的概念,零点是指函数的解,并非点的坐标.依题意可知,所以,令或,所以另一个零点是1.【考点】函数的零点.4.已知是定义在上的奇函数,当时,.(1)求;(2)求的解析式;(3)若,求区间.【答案】(1)6;(2);(3).【解析】(1)利用奇函数的性质进行转化计算即可;(2)因为当时,,利用奇函数的性质先求出时的解析式,最后写出函数的解析式即可;(3)根据函数的单调性,求解不等式即分别求解不等式组与,最后取并集即可.试题解析:(1)∵是奇函数∴ 3分(2)设,则,∴∵为奇函数,∴ 5分∴ 6分(3)根据函数图像可得在上单调递增 7分当时,解得 9分当时,解得 11分∴区间为 12分.【考点】1.函数的奇偶性;2.函数的解析式;3.指数函数的性质.5.下列函数在上单调递增的是()A.B.C.D.【答案】D【解析】:对于A选项,函数在递减,故A不正确;对于B选项,函数在递减,在递增,故B不正确;对于C选项,函数在递减,故C不正确;对于D选项,函数在上单调递增,合题意综上知,D选项是正确选项【考点】本题考查指数函数、对数函数、幂函数、反比例函数等常见函数的单调性.6.若函数对于上的任意都有,则实数的取值范围是.【答案】【解析】由函数对于上的任意都有,可知在上单调递增,因此有,解得.【考点】函数的单调性.7.已知定义在R上的奇函数满足=(x≥0),若,则实数的取值范围是________.【答案】(-3,1)【解析】∵函数f(x)=x2+2x(x≥0),是增函数,且f(0)=0,f(x)是奇函数,f(x)是R上的增函数.由f(3-a2)>f(2a),,于是3-a2>2a,因此,解得-3<a<1.【考点】奇函数;函数单调性的性质.点评:本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力.8.关于函数,有下面四个结论:(1)是奇函数;(2)恒成立;(3)的最大值是; (4) 的最小值是.其中正确结论的是_______________________________________.【答案】(2)(4)【解析】根据题意,由于函数,,那么利用奇偶性定义可知,函数为偶函数因此(1)错误。
高一数学函数试题答案及解析1.·等于A.-B.-C.D.【答案】A【解析】主要考查根式的运算、根式与分数指数幂的关系。
解:·=a·(-a)=-(-a)=-(-a).2.已知函数,(1)讨论的奇偶性与单调性;(2)若不等式的解集为的值;(3)求的反函数;(4)若,解关于的不等式R).【答案】(1)①当时,在定义域内为增函数;②当时,在定义域内为减函数;(2)或;(3);(4)①当时,不等式解集为R;②当时,得,不等式的解集为;③当【解析】主要考查函数的奇偶性、单调性、指数函数与对数函数互为反函数关系、对数函数的图象和性质。
解:(1)定义域为为奇函数;,求导得,①当时,在定义域内为增函数;②当时,在定义域内为减函数;(2)①当时,∵在定义域内为增函数且为奇函数,;②当在定义域内为减函数且为奇函数,;(3)R);(4),;①当时,不等式解集为R;②当时,得,不等式的解集为;③当3.定义在R上的单调函数f(x)满足f(3)=log3且对任意x,y∈R都有f(x+y)=f(x)+f(y).(1)求证f(x)为奇函数;(2)若f(k·3)+f(3-9-2)<0对任意x∈R恒成立,求实数k的取值范围.【答案】(1)见解析;(2)【解析】主要考查函数奇偶性、单调性、指数函数与对数函数的图象和性质。
解:(1)证明:f(x+y)=f(x)+f(y)(x,y∈R),①令x=y=0,代入①式,得f(0+0)=f(0)+f(0),即 f(0)=0.令y=-x,代入①式,得 f(x-x)=f(x)+f(-x),又f(0)=0,则有0=f(x)+f(-x).即f(-x)=-f(x)对任意x∈R成立,所以f(x)是奇函数.(2)解:f(3)=log3>0,即f(3)>f(0),又f(x)在R上是单调函数,所以f(x)在R上是增函数,又由(1)f(x)是奇函数.f(k·3)<-f(3-9-2)=f(-3+9+2), k·3<-3+9+2,3-(1+k)·3+2>0对任意x∈R成立.令t=3>0,问题等价于t-(1+k)t+2>0对任意t>0恒成立.R恒成立.4.函数的图象与直线的公共点数目是()A.B.C.或D.或【答案】C【解析】有可能是没有交点的,如果有交点,那么对于仅有一个函数值;5.求函数的定义域【答案】【解析】解:∵,∴定义域为6.求函数的值域【答案】【解析】解:∵∴,∴值域为7.·等于A.-B.-C.D.【答案】A【解析】主要考查根式的运算、根式与分数指数幂的关系。
高一数学函数的应用测试题(含答案)高一数学函数的应用测试题(含答案)数学是研究现实世界空间形式和数量关系的一门科学。
小编准备了高一数学函数的应用测试题,具体请看以下内容。
一、选择题:本大题共12小题,每小题5分,共60分.1.函数的定义域是( )A.[1,+)B.45,+C.45,1D.45,1解析:要使函数有意义,只要得01,即45答案:D2.设a=20.3,b=0.32,c=logx(x2+0.3)(x1),则a,b,c的大小关系是()A.aC.c解析:∵a=20.321=2,且a=20.320=1,1∵x1,c=logx(x2+0.3)logxx2=2. cb.答案:B3.已知函数f(x)=ln(x+x2+1),若实数a,b满足f(a)+f(b-1)=0,则a+b等于()A.-1B.0C.1D.不确定解析:观察得f(x)在定义域内是增函数,而f(-x)=ln(-x+x2+1)=ln1x+x2+1=-f(x),f(x)是奇函数,则f(a)=-f(b-1)=f(1-b).a=1-b,即a+b=1.答案:C4.已知函数f(x)=-log2x (x0),1-x2 (x0),则不等式f(x)0的解集为()A.{x|0C.{x|-1-1}解析:当x0时,由-log2x0,得log2x0,即0当x0时,由1-x20,得-1答案:C5.同时满足两个条件:①定义域内是减函数;②定义域内是奇函数的函数是()A.f(x)=-x|x|B.f(x)=x3C.f(x)=sinxD.f(x)=lnxx解析:为奇函数的是A、B、C,排除D. A、B、C中在定义域内为减函数的只有A.答案:A6.函数f(x)=12x与函数g(x)= 在区间(-,0)上的单调性为()A.都是增函数B.都是减函数C.f(x)是增函数,g(x)是减函数D.f(x)是减函数,g(x)是增函数解析:f(x)=12x在x(-,0)上为减函数,g(x)= 在(-,0)上为增函数.答案:D7.若x(e-1,1),a=lnx,b=2lnx,c=ln3x,则()A.aC.b解析:a=lnx,b=2lnx=lnx2,c=ln3x.∵x(e-1,1),xx2.故ab,排除A、B.∵e-1lnx答案:C8.已知f(x)是定义在(-,+)上的偶函数,且在(-,0]上是增函数,若a=f(log47),,c=f(0.2-0.6) ,则a、b、c的大小关系是()A.cC.c解析:函数f(x)为偶函数,b=f(log123)=f(log23),c=f(0.2-0.6)=f(50.6).∵50.6log23=log49log47,f(x)在(0,+)上为减函数,f(50.6)答案:A9.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆),若该公司在这两地共销售15辆车,则能获得的最大利润为()A.45.606万元B.45.6万元C.46.8万元D.46.806万元解析:设在甲地销售x辆,则在乙地销售(15-x)辆,总利润L=L1+L2=5.06x-0.15x2+2(15-x)=-0.15x2+3.06x+30,当x=3.0620.15=10.2时,L最大.但由于x取整数,当x=10时,能获得最大利润,最大利润L=-0.15102+3.0610+30=45.6(万元).答案:B10.若f(x)是定义在R上的偶函数,且满足f(x+3)=f(x),f(2)=0,则方程f(x)=0在区间(0,6)内解的个数的最小值是()A.5B.4C.3D.2解析:f(5)=f(2+3)=f(2)=0,又∵f(-2)=f(2)=0,f(4)=f(1)=f(-2)=0,在(0,6)内x=1,2,4,5是方程f(x)=0的根.答案:B11.函数f(x)=x+log2x的零点所在区间为()A.[0,18]B.[18,14]C.[14,12]D.[12,1]解析:因为f(x)在定义域内为单调递增函数,而在四个选项中,只有f14f120,所以零点所在区间为14,12.答案:C12.定义在R上的函数f(x)满足f(x+2)=3f(x),当x[0,2]时,f(x)=x2-2x,则当x[-4,-2]时,f(x)的最小值是()A.-19B.-13C.19D.-1解析:f(x+2)=3f(x),当x[0,2]时,f(x)=x2-2x,当x=1时,f(x)取得最小值.所以当x[-4,-2]时,x+4[0,2],所以当x+4=1时,f(x)有最小值,即f(-3)=13f(-3+2)=13f(-1)=19f(1)=-19.答案:A第Ⅱ卷(非选择共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.若函数f(x)=ax2+x+1的值域为R,则函数g(x)=x2+ax+1的值域为__________.解析:要使f(x)的值域为R,必有a=0.于是g(x)=x2+1,值域为[1,+).答案:[1,+)14.若f(x)是幂函数,且满足f(4)f(2)=3,则f12=__________. 解析:设f(x)=x,则有42=3,解得2=3,=log23,答案:1315.若方程x2+(k-2)x+2 k-1=0的两根中,一根在0和1之间,另一根在1和2之间,则实数k的取值范围是__________. 解析:设函数f(x)=x2+(k-2)x+2k-1,结合图像可知,f(0)0,f(1)0,f(2)0.即2k-10,1+(k-2)+2k-10,4+2(k-2)+2k-10,解得k12,k23,即1214,我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
高一数学函数的应用练习题(含解析)函数表示每个输入值对应唯独输出值的一种对应关系。
小编预备了高一数学函数的应用练习题,具体请看以下内容。
一、选择题1.y=x-2的图象与x轴的交点坐标及其零点分别是( )A.2;2B.(2,0);2C.-2;-2D.(-2,0);-22.函数f(x)=x2+4x+a没有零点,则实数a的取值范畴是( )A.a4B.a4C.a4D.a43.函数f(x)=x2+x+3的零点的个数是( )A.0B.1C.2D.34.函数f(x)=ax2+2ax+c(a0)的一个零点是-3,则它的另一个零点是( )A.-1B.1C.-2D.25.下列函数中在区间[1,2]上有零点的是( )A.f(x)=3x2-4x+5C.f(x)=lnx-3x+6 B.f(x)=x3-5x-5D.f(x)=ex+3x-66.若函数f(x)=ax+b的零点是2,则函数g(x)=bx2-ax的零点是( )A.0,21B.021D.2,- 21C.0,- 22??x+2x-3,x0,7.函数f(x)=?的零点个数为( ) ?-2+lnx,x0?A.0B.1C.2D.31?x8.函数y=x3与y=??2?的图象的交点为(x0,y0),则x0所在区间为( )A.(-2,-1)C.(0,1) B.(-1,0)D.(1,2)9.若函数f(x)=x2-ax+b的两个零点是2和3,则函数g(x)=bx2-ax-1的零点是( )1A.-1 611C. 23 1 B.1和- 6 11D.-2310.某工厂生产甲、乙两种成本不同的产品,原先按成本价出售,由于市场销售发生变化,甲产品连续两次提价,每次提价差不多上20%;同时乙产品连续两次降价,每次降价差不多上20%,结果都以92.16元出售,现在厂家同时出售甲、乙产品各一件,盈亏的情形是( )A.不亏不盈B.赚23.68元C.赚47.32元二、填空题 D.亏23.68元1.函数f(x)=x2-4x-5的零点是________.2. 已知关于任意实数x,函数f(x)满足f(-x)=f(x).若f(x)有2 009个零点,则这2 009个零点之和为________.6.方程2x+x2=3的实数解的个数为_______. -7.英语老师预备存款5000元.银行的定期存款中存期为1年的年利率1. 98%.试运算五年后本金和利息共有________元.(列算式即可)三、解答题1.已知函数f(x)=2x-x2,问方程f(x)=0在区间[-1,0]内是否有解,什么缘故?2.函数f(x)=x2-ax-b的两个零点是2和3,求函数g(x)=bx2-ax-1的零点.3.二次函数f(x)=ax2+bx+c的零点是-2和3,当x(-2,3)时,f(x)0,且f(-6)=36,求二次函数的解析式.14.定义在R上的偶函数y=f(x)在(-,0]上递增,函数f(x)的一个零点为-2足f(log1)0的x的取值集合.4函数的应用练习题答案一. 选择题BBABD CCCBD二.填空题1. -1或5 2. 0 3. 2 4. 5000(1+1.98%)5=5514.99(元).三.解答题1-1. [解析] 因为f(-1)=21-(-1)2,f(0)=20-02=10,2而函数f(x)=2x-x2的图象是连续曲线,因此f(x)在区间[-1,0]内有零点,即方程f(x)=0在区间[-1,0]内有解.2. 【解析】由题意知方程x2-ax-b=0的两根分别为2和3,a=5,b=-6,g(x)=-6x2-5x-1.11由-6x2-5x-1=0得x1=-,x2=-2311函数g(x)的零点是-. 233. [解析] 由条件知f(x)=a(x+2)(x-3)且a0∵f(-6)=36,a=1 f(x)=(x+2)(x-3)满足条件-2f(x)=x2-x-6.11-=0,4. [解析] ∵-f??221∵f(x)为偶函数,f()=0,21-,∵f(x)在(-,0]上递增,f(log1x)f??2410log1x-12,24∵f(x)为偶函数,f(x)在[0,+)上单调减,1又f(log1x)f(,241110log1xx1,x2. 2224单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。
高一数学函数试题答案及解析1.已知,函数.若,则()A.B.C.D.【答案】A.【解析】首先由可得,,即①;然后根据可得,,即②.最后将①代入②可得,,即,故应选A.【考点】二次函数的求值.2.已知点是直线上的任意一点,则的最小值为()A.B.C.D.【答案】A【解析】点是直线上的任意一点,则有,即,所以有,显然当时,有最小值.【考点】消元法,二次函数中配方法求最值.3.函数的一个零点是,则另一个零点是_________.【答案】【解析】本题要注意零点的概念,零点是指函数的解,并非点的坐标.依题意可知,所以,令或,所以另一个零点是1.【考点】函数的零点.4.已知函数().(1)证明:当时,在上是减函数,在上是增函数,并写出当时的单调区间;(2)已知函数,函数,若对任意,总存在,使得成立,求实数的取值范围.【答案】(1)证明详见解析,在是减函数,在是增函数;(2).【解析】(1)根据函数单调性的定义进行证明即①设;②作差:;③因式分解到最简;④根据条件判定符号;⑤作出结论,经过这五步即可证明在单调递减,同理可证在是增函数,最后由奇函数的性质得出;在是减函数,在是增函数;(2)先将“对任意,总存在,使得成立”转化为“函数在区间的值域包含了在区间的值域”,分别根据函数的单调性求出这两个函数的值域,最后由集合的包含关系即可得到的取值范围.试题解析:(1)证明:当时①设是区间上的任意两个实数,且,则∵,∴,∴,即∴在是减函数 4分②同理可证在是增函数 5分综上所述得:当时,在是减函数,在是增函数 6分∵函数是奇函数,根据奇函数图像的性质可得当时,在是减函数,在是增函数 8分(2)∵() 8分由(1)知:在单调递减,单调递增∴, 10分又∵在单调递减∴由题意知:于是有:,解得 12分.【考点】1.函数的单调性与最值;2.函数的奇偶性;3.函数的值域.5.如图,点从点出发,分别按逆时针方向沿周长均为的正三角形、正方形运动一周,两点连线的距离与点走过的路程的函数关系分别记为,定义函数对于函数,下列结论正确的个数是()①;②函数的图像关于直线对称;③函数值域为;④函数在区间上单调递增.A.1B.2C.3D.4【答案】D【解析】由题意可得由函数与的图像可得函数由图像可知,①②③④都正确.【考点】1.函数的图像;2.分段函数;3.函数的单调性;4.函数的值域.6.关于的方程恰有个不同的实根,则的取值范围是________.【答案】【解析】设,,若有解,则须,即,当时,只有两解,当时,只有3个解,当时,都有四个不同的实数解,先将方程转化为,则要使关于的方程恰有8个根,则关于的二次方程在内有两个不等的正实根,记,则须有即,解之得.【考点】1.函数与方程;2.二次方程根的分布问题.7.定义在区间上的奇函数为增函数,偶函数在上图象与的图象重合.设,给出下列不等式,其中成立的是( )①②③④A.①④B.②③C.①③D.②④【答案】C【解析】因为,定义在区间上的奇函数为增函数,偶函数在上图象与的图象重合.即偶函数在上是增函数,在是减函数。
高一数学函数试题答案及解析1.已知函数,的部分图象如图所示,则( )A.B.C.D.【答案】B【解析】根据题意,由于函数,的部分图象可知函数的周期为,故可知将代入可知,函数值为零,则可知得到,故可知由于过点(0,1)可知A=1,故可知解析式为,故,故答案为B.【考点】函数的性质点评:主要考查了三角函数图象与性质的运用,属于基础题。
2.已知函数,则满足不等式的实数的取值范围是__________________.【答案】【解析】因为,函数是单调增函数,且为奇函数,所以,即,所以,,解得,实数的取值范围是。
【考点】函数的单调性,抽象不等式解法,一元一次不等式组的解法。
点评:小综合题,利用函数的单调性,将抽象不等式转化成具体不等式,是此类问题的一般解法。
3.关于函数,有下面四个结论:(1)是奇函数;(2)恒成立;(3)的最大值是; (4) 的最小值是.其中正确结论的是_______________________________________.【答案】(2)(4)【解析】根据题意,由于函数,,那么利用奇偶性定义可知,函数为偶函数因此(1)错误。
对于(2)因为,故可知恒成立;正确,对于的最大值是,实际上取不到,因此错误,对于(4) 的最小值是,当x=0时,函数取得最小值为,因此成立,故答案为(2)(4)【考点】函数的性质点评:主要是考查了函数的奇偶性和单调性的运用,属于中档题。
4.设定义在上的奇函数f(x)在上是减函数,若f(1-m)< f(m)求的取值范围.【答案】【解析】解:∵f(x)是定义在上的奇函数,且f(x)在上是减函数∴f(x)在[-2,0] 也是减函数,∴f(x)在上单调递减故满足条件的m的值为【考点】函数的奇偶性;函数的单调性点评:解不是具体的不等式,像本题的f(1-m)< f(m),常结合函数的单调性求解。
5.若f(x)是偶函数,g(x)是奇函数,且,求f(x)和g(x)的解析式。
高一数学(必修1)第三章 函数的应用(含幂函数)[基础训练]一、选择题1.若)1(,,)1(,1,4,)21(,2522>==-=+====a a y x y x y x y x y y x y xx 上述函数是幂函数的个数是( ) A .0个 B .1个 C .2个 D .3个2.已知)(x f 唯一的零点在区间(1,3)、(1,4)、(1,5)内,那么下面命题错误的( ) A .函数)(x f 在(1,2)或[)2,3内有零点 B .函数)(x f 在(3,5)内无零点 C .函数)(x f 在(2,5)内有零点 D .函数)(x f 在(2,4)内不一定有零点3.若0,0,1a b ab >>>,12log ln 2a =,则log a b 与a 21log 的关系是( )A .12log log a b a < B .12log log a b a =C .12log log a b a > D .12log log a b a ≤4. 求函数132)(3+-=x x x f 零点的个数为 ( ) A .1 B .2 C .3 D .45.已知函数)(x f y =有反函数,则方程0)(=x f ( ) A .有且仅有一个根 B .至多有一个根 C .至少有一个根 D .以上结论都不对6.如果二次函数)3(2+++=m mx x y 有两个不同的零点,则m 的取值范围是( ) A .()6,2- B .[]6,2- C .{}6,2- D .()(),26,-∞-+∞7.某林场计划第一年造林10000亩,以后每年比前一年多造林20%,则第四年造林( ) A .14400亩 B .172800亩 C .17280亩 D .20736亩二、填空题1.若函数()x f 既是幂函数又是反比例函数,则这个函数是()x f = 。
2.幂函数()f x 的图象过点(,则()f x 的解析式是_____________。
高一上学期数学(必修一)《第三章函数的应用》同步练习题及答案(人教版)一、单选题1.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,第一季度共获利42万元,已知二月份和三月份利润的月增长率相同.设二、三月份利润的月增长率为x ,则x 满足的方程为( )A .210(1)42x +=B .21010(1)42x ++=C .1010(1)10(12)42x x ++++=D .21010(1)10(1)42x x ++++=2.某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,如图所示,由图中给出的信息可知,营销人员没有销售量时的收入是( )A .310元B .300元C .390元D .280元3.某公司在甲、乙两地同时销售一种品牌车,销售x 辆该品牌车的利润(单位:万元)分别为2121L x x=-+和22L x =.若该公司在两地共销售15辆,则能获得的最大利润为( )A .90万元B .60万元C .120万元D .120.25万元4.把长为12cm 的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是( )A .233cm 2B .24cmC .232cmD .223cm5.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为( )m .A .400B .12C .20D .306.单位时间内通过道路上指定断面的车辆数被称为“道路容量”,与道路设施、交通服务、环境、气候等诸多条件相关.假设某条道路一小时通过的车辆数N 满足关系2010000.70.3v N v v d =++,其中0d 为安全距离,v为车速()m /s .当安全距离0d 取30m 时,该道路一小时“道路容量”的最大值约为( )A .135B .149C .165D .1957.某中学体育课对女生立定跳远项目的考核标准为:立定跳远距离1.33米得5分,每增加0.03米,分值增加5分,直到1.84米得90分后,每增加0.1米,分值增加5分,满分为120分.若某女生训练前的成绩为70分,经过一段时间的训练后,成绩为105分,则该女生训练后,立定跳远距离增加了( )A .0.33米B .0.42米C .0.39米D .0.43米8.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A 地出发前往B 地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的85继续骑行,经过一段时间,甲先到达B 地,乙一直保持原速前往B 地.在此过程中,甲、乙两人相距的路程y (单位:米)与乙骑行的时间x (单位:分钟)之间的关系如图所示,则下列说法错误的是( )A .乙的速度为300米/分钟B .25分钟后甲的速度为400米/分钟C .乙比甲晚14分钟到达B 地D .A 、B 两地之间的路程为29400米二 、多选题 9.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f(x)=√x x <A,√A x ⩾A(A,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,下列结果正确的是( )A. A =16B. c =60C. A =4D. c =3010.对任意两个实数a ,b ,定义max{ a,b}={a,a >b,若f(x)=2−x 2,g(x)=x 2下列关于函数F(x)=max{ f(x),g(x)}的说法正确的有( )A. 函数F(x)是偶函数B. 函数F(x)有四个单调区间C. 方程F(x)=2有四个不同的根D. 函数F(x)的最大值为1,无最小值11.函数y =[x]的函数值表示不超过x 的最大整数.例如[1.1]=1,[2.3]=2设函数f(x)={1−x 2,x <0,x −[x],x ⩾0,则下列说法正确的是( )A. 函数f(x)的值域为(−∞,0]B. 若x ⩾0,则[f(x)]=0C. 方程f(x)=1有无数个实数根D. 若方程f(x)=−x +a 有两个不等的实数根,则实数a 的取值范围是[0,+∞)12.已知函数f(x)={x 2,x ⩽0,−x 2,x >0,则下列结论中正确的是( ) A. f(√2)=2B. 若f(m)=9,则m ≠±3C. f(x)是奇函数D. 在f(x)上R 单调递减三、填空题13.某建材商场国庆期间搞促销活动,规定:如果顾客选购物品的总金额不超过600元,则不享受任何折扣优惠;如果顾客选购物品的总金额超过600元,则超过600元部分享受一定的折扣优惠,折扣优惠按下表累计计算. 可以享受折扣优惠金额折扣优惠率 不超过500元的部分5% 超过500元的部分 10% 某人在此商场购物获得的折扣优惠金额为30元,则他实际所付金额为__________元.14.函数()()222323y x x x x =---+零点的个数为_____________.15.如图,在半径为4(单位:cm )的半圆形(O 为圆心)铁皮上截取一块矩形材料ABCD ,其顶点,A B 在直径上,顶点,C D 在圆周上,则矩形ABCD 面积的最大值为____(单位:2cm ).四、解答题16..如图,某灌溉渠的横断面是等腰梯形,底宽2m ,渠深为1.8m ,斜坡的倾斜角是45°(无水状态不考虑).(1)试将横断面中水的面积()A h (2m )表示成水深h (m )的函数;(2)当水深为1.2m 时,求横断面中水的面积.17.“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,把每尾鱼的平均生长速度v (单位:千克/年)表示为养殖密度x (单位:尾/立方米)的函数.当04x <≤时,v 的值为2;当420x <≤时,v 是关于x 的一次函数.当x =20时,因缺氧等原因,v 的值为0.(1)当020x <≤时,求函数()v x 的表达式;(2)当x 为多大时,鱼的年生长量(单位:千克/立方米)()()f x x v x =⋅可以达到最大?并求出最大值.18.首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下进行技术攻关,采取了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似的表示为21200800002y x x =-+ ,且处理每吨二氧化碳得到可利用的化工产品价值为100元. (1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使单位不亏损?19.吉祥物“冰墩墩”在北京2022年冬奥会强势出圈,并衍生出很多不同品类的吉祥物手办.某企业承接了“冰墩墩”玩具手办的生产,已知生产此玩具手办的固定成本为200万元.每生产x 万盒,需投入成本()h x 万元,当产量小于或等于50万盒时()180100h x x =+;当产量大于50万盒时()2603500h x x x =++,若每盒玩具手办售价200元,通过市场分析,该企业生产的玩具手办可以全部销售完(利润=售价-成本,成本=固定成本+生产中投入成本)(1)求“冰墩墩”玩具手办销售利润y (万元)关于产量x (万盒)的函数关系式;(2)当产量为多少万盒时,该企业在生产中所获利润最大?20.随着城市居民汽车使用率的增加,交通拥堵问题日益严重,而建设高架道路、地下隧道以及城市轨道公共运输系统等是解决交通拥堵问题的有效措施.某市城市规划部门为提高早晚高峰期间某条地下隧道的车辆通行能力,研究了该隧道内的车流速度v (单位:千米/小时)和车流密度x (单位:辆/千米)所满足的关系式:()60,030R 80,30120150x v k k x x <≤⎧⎪=∈⎨-<≤⎪-⎩.研究表明:当隧道内的车流密度达到120辆/千米时造成堵塞,此时车流速度是0千米/小时.(1)若车流速度v 不小于40千米/小时,求车流密度x 的取值范围;(2)隧道内的车流量y (单位时间内通过隧道的车辆数,单位:辆/小时)满足y x v =⋅,求隧道内车流量的最大值(精确到1辆/小时),并指出当车流量最大时的车流密度(精确到1辆/千米).(参考数据:5 2.236) 参考答案1.D 2.B3.C4.D5.C6.B7.B8.C9.AB;10.AB;11.BD;12.CD;13.112014.215.1616.(1)依题意,横断面中的水面是下底为2m ,上底为()22h +m ,高为h m 的等腰梯形,所以()()()222220 1.82h A h h h h h ++=⋅=+<≤. (2)由(1)知()()220 1.8A h h h h =+<≤ ()21.2 1.22 1.2 3.84h =+⨯=所以当水深为1.2m 时,横断面水中的面积为3.842m .17.(1)依题意,当04x <≤时()2v x =;当420x <≤时,()v x 是关于x 的一次函数,假设()(0)v x ax b a =+≠则42200a b a b +=⎧⎨+=⎩,解得0.1252.5a b =-⎧⎨=⎩所以()2,040.125 2.5,420x v x x x <≤⎧=⎨-+<≤⎩. (2)当04x <≤时()()()2028v x f x x v x x =⇒<=⋅=≤;当420x <≤时()()20.125 2.50.125 2.5v x x f x x x =-+⇒=-+当()2.51020.125x =-=⨯-时,()f x 取得最大值()1012.5f =. 因为12.58>,所以当x =10时,鱼的年生长量()f x 可以达到最大,最大值为12.53/千克米.18.(1)由题意知,平均每吨二氧化碳的处理成本为180000180000200220020022y x x x x x=+-≥⋅-=; 当且仅当1800002x x = ,即400x = 时等号成立 故该当每月处理量为400吨时,才能使每吨的平均处理成本最低为200元.(2)不获利,设该单位每个月获利为S 元,则2211100100200800003008000022S x y x x x x x ⎛⎫=-=--+=-+- ⎪⎝⎭()21300350002x =--- 因为[]400,600x ∈,则[]80000,40000S ∈--故该当单位每月不获利,需要国家每个月至少补贴40000元才能不亏损.19.(1)当产量小于或等于50万盒时20020018010020300y x x x =---=-当产量大于50万盒时222002006035001403700y x x x x x =----=-+-故销售利润y (万元)关于产量x (万盒)的函数关系式为220300,050,N 1403700,50x x y x x x x -≤≤⎧=∈⎨-+->⎩(2)当050x ≤≤时2050300700y ≤⨯-=;当50x >时21403700y x x =-+-当140702x ==时,21403700y x x =-+-取到最大值,为1200. 因为7001200<,所以当产量为70万盒时,该企业所获利润最大.20.(1)解:由题意知当120x =(辆/千米)时,0v =(千米/小时)代入80150k v x=--,解得2400k = 所以60,030240080,30120150x v x x <≤⎧⎪=⎨-<≤⎪-⎩. 当030x <≤时,6040v =≥,符合题意;当30120x <≤时,令24008040150x-≥-,解得90x ≤,所以3090x <≤. 所以,若车流速度v 不小于40千米/小时,则车流密度x 的取值范围是(]0,90.(2)解:由题意得60,030240080,30120150x x y x x x x <≤⎧⎪=⎨-<≤⎪-⎩当030x <≤时,60y x =为增函数,所以1800y ≤,当30x =时等号成立;当30120x <≤时 ()()2150180150450024004500808080180150150150150x x x y x x x x x --+--⎡⎤⎛⎫=-==--+ ⎪⎢⎥---⎝⎭⎣⎦ 4800(35)3667≤-≈. 当且仅当4500150150x x-=-,即30(55)83x =-≈时等号成立. 所以,隧道内车流量的最大值约为3667辆/小时,此时车流密度约为83辆/千米.。
高一数学函数及其表示试题答案及解析1.函数的图象与直线的公共点数目是()A.0B.1C.0或1D.1或2【答案】B【解析】若函数在处有意义,在函数的图象与直线的公共点数目是1;若函数在处无意义,则两者没有交点,∴有可能没有交点,如果有交点,那么仅有一个,故选B.【考点】函数定义与图象2.如图所示,当时,函数的图象是 ( )【答案】D【解析】对于D,当a<0时,b<0,所以抛物线的开口向下,并且直线的斜率为负值,在y轴上的截距为负值.因而选D.3.若函数的定义域为,值域为,则的取值范围是()A.B.C.D.【答案】B【解析】因为,又因为x=2时,y=-6;当x=0或x=4时,y=-2.所以,故应选B.4.某工厂8年来某产品总产量y与时间t年的函数关系如下图,则:①前3年中总产量增长速度越来越慢;②前3年总产量增长速度增长速度越来越快;③第3年后,这种产品年产量保持不变.④第3年后,这种产品停止生产;以上说法中正确的是_______.【答案】②④【解析】由函数图象可知在区间[0,3]上,图象图象凹陷上升的,表明年产量增长速度越来越快;在区间(3,8]上,如果图象是水平直线,表明总产量保持不变,即年产量为0.∴②④正确.5.下列哪组中的两个函数是同一函数()A.与B.与C.与D.与【答案】B【解析】根据同一函数的定义可知,定义域和对应法则相同时。
那么选项A中,定义域不同,选项B中,定义域和对应法则相同;选项C中,定义域不同,选项D中,定义域不同,故选B.6.若函数,则=_____ __ _____【解析】因为函数,,令x=1,则可知f(2)=1-1=0.7.对于函数,定义域为,以下命题正确的是(只要求写出命题的序号)①若,则是上的偶函数;②若对于,都有,则是上的奇函数;③若函数在上具有单调性且则是上的递减函数;④若,则是上的递增函数。
【答案】②③【解析】因为根据偶函数的定义可知,要满足定义域内任何一个变量满足f(x)=f(-x),故命题1错误。
高一数学(必修一)《第四章 函数的应用》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.若函数f (x )=ax +b 有一个零点是2,那么函数g (x )=bx 2-ax 的零点为( ) A .0或12-B .0C .12-D .0或122.设()f x 在区间[],a b 上是连续变化的单调函数,且()()0f a f b ⋅<,则方程()0f x =在[],a b 内( ) A .至少有一实根 B .至多有一实根 C .没有实根D .必有唯一实根3.已知函数()22log 6f x x x =--,用二分法求()f x 的零点时,则其中一个零点的初始区间可以为( )A .()1,2B .()2,2.5C .()2.5,3D .()3,3.54.设函数()26x f x e x =+-, 在用二分法求方程()0f x =在()12x ∈,内的近似解过程中得(0)0(1)0(1.25)0(1.5)0(2)0f f f f f <<<>>,,,,,则方程的解所在的区间是( )A .()01,B .()11.25,C .()1.251.5,D .()1.52,5.函数()2ln 1f x x x =--的零点所在的区间是( ) A .()1,2B .()2,3C .()3,4D .()4,56.若23691log 3log log 62m ⨯⨯=,则实数m 的值为( ) A .4B .6C .9D .127.若函数f (x )唯一零点同时在(0,4),(0,2),(1,2),3(1,)2内,则与f (0)符号相同的是( )A .f (4)B .f (2)C .f (1)D .f 3()28.通过下列函数的图象,判断能用“二分法”求其零点的是( )A .B .C. D .二、多选题9.某同学求函数()ln 26f x x x =+-的零点时,用计算器算得部分函数值如表所示:则方程ln 260x x +-=的近似解(精确度0.1)可取为A .2.52B .2.56C .2.66D .2.75三、填空题10.若函数()0y kx b k =+≠有一个零点是2,则函数2y bx kx =+的零点是______.11.定义方程()()f x f x '=的实根0x 叫做函数()f x 的“新驻点”,若函数()2e 1xg x =+,()ln h x x =和()31x x ϕ=-的“新驻点”分别为a ,b ,c ,则a ,b ,c 的大小关系为_______.12.已知函数()226xf x x =+-的零点为0x ,不等式04x x ->的最小整数解为k ,则k =______.13.定义在R 上的奇函数()f x 满足(1)()f x f x +=-,且当10,2x ⎡⎤∈⎢⎥⎣⎦时()4f x x =,则方程1()=01f x x +-在[]2,4-上的所有根之和为____.四、解答题14.已知A 地到B 地的电话线路发生故障(假设线路只有一处发生故障),这是一条10km 长的线路,每隔50m 有一根电线杆,如何迅速查出故障所在(精确到50m )?15.已知函数()2283f x x x m =-++为R 上的连续函数.(1)若函数()f x 在区间[]1,1-上存在零点,求实数m 的取值范围.(2)若4m =-,判断()f x 在()1,1-上是否存在零点?若存在,请在误差不超过0.1的条件下,用二分法求出这个零点所在的区间;若不存在,请说明理由. 16.设函数32()613123g x x x x =----.(1)证明:()g x 在区间(-1,0)内有一个零点;(2)借助计算器,求出()g x 在区间(-1,0)内零点的近似解.(精确到0.1) 17.已知函数()e 23x f x mx =-+的图象为曲线C ,若曲线C 存在与直线13y x =垂直的切线,求实数m 的取值范围.参考答案与解析1.A【分析】根据函数f (x )=ax +b 有一个零点是2,得到b =-2a ,再令g (x )=0求解. 【详解】因为函数f (x )=ax +b 有一个零点是2 所以b =-2a所以g (x )=-2ax 2-ax =-a (2x 2+x ). 令g (x )=0,得x 1=0,x 2=-12. 故选:A 2.D【分析】根据零点存在性定理及函数的单调性判断即可.【详解】解:因为()f x 在区间[],a b 上连续的单调函数,且()()0f a f b ⋅<所以函数()f x 的图象在[],a b 内与x 轴只有一个交点,即方程()0f x =在[],a b 内只有一个实根. 故选:D 3.C【分析】根据函数解析式,结合二次函数与对数函数单调性,分别判断ABD 都不正确,再结合零点存在性定理,即可得出结果.【详解】因为函数()22log 6f x x x =--在()0,∞+上显然是连续函数2yx 和2log 6y x =+在()0,∞+上都是增函数当()1,2x ∈时,则2222246log 16log 6x x <=<=+<+,所以()22log 60f x x x =--<在()1,2x ∈上恒成立; 当()2,2.5x ∈时,则22222.5 6.257log 26log 6x x <=<=+<+,所以()22log 60f x x x =--<在()2,2.5x ∈上也恒成立;当()3,3.5x ∈时,则222239log 3.56log 6x x >=>+>+,所以()22log 60f x x x =-->在()3,3.5x ∈上恒成立又22(2.5) 2.5log 2.560f =--< 2(3)9log 360f =-->根据函数零点存在性定理,可得()f x 的其中一个零点的初始区间可为()2.5,3. 故选:C.【点睛】方法点睛:判断零点所在区间的一般方法:先根据题中条件,判断函数在所给区间是连续函数,再由零点存在性定理,即可得出结果. 4.C【分析】先判断函数()f x 的单调性,再根据已知条件确定方程的解所在的区间即可. 【详解】函数()26x f x e x =+-在R 上为增函数又(0)0(1)0(1.25)0(1.5)0(2)0f f f f f <<<>>,,,, 则方程的解所在的区间为()1.251.5,. 故选:C.【点睛】本题主要考查了利用二分法求方程的解所在的区间问题.属于较易题. 5.B【分析】利用零点存在性定理求解即可 【详解】函数()2ln 1f x x x =--在()1,+∞ 上单调递增,且在()1,+∞上连续. 因为()22ln 2ln 22021f =-=-<- ()23ln 3ln 31031f =-=->- 所以()()230f f <所以函数的零点所在的区间是()2,3. 故选:B 6.A【分析】由换底公式对原式变型即可求解.【详解】∵2369lg3lg lg 6log 3log log 6lg 2lg36lg9m m ⨯⨯=⨯⨯ 2lg3lg lg 6lg 11log lg 22lg 62lg34lg 242m m m =⨯⨯=== ∴2log 2m =,∴4m =. 故选:A . 7.C【分析】根据零点存在定理判断,注意零点的唯一性.【详解】由题意()f x 的唯一零点在3(1,)2上,因此(1)f 与(0)f 符号相同,3()2f ,(2)f 和(4)f 符号相同且与(0)f 符号相反故选:C . 8.C【解析】利用二分法的定义依次判断选项即可得到答案. 【详解】在A 中,函数无零点,故排除A在B 和D 中,函数有零点,但它们在零点左右的函数值符号相同 因此它们都不能用二分法来求零点.而在C 中,函数图象是连续不断的,且图象与x 轴有交点并且在交点两侧的函数值符号相反,所以C 中的函数能用二分法求其零点. 故选:C【点睛】本题主要考查二分法的定义,同时考查学生分析问题的能力,属于简单题. 9.AB【分析】根据表格中函数值在0的左右两侧,最接近的值,即()2.50.084f ≈-,()2.56250.066f ≈可知近似根在()2.5,2.5625之内,再在四个选项中进行选择,得到答案.【详解】由表格函数值在0的左右两侧,最接近的值,即()2.50.084f ≈- ()2.56250.066f ≈ 可知方程ln 260x x +-=的近似根在()2.5,2.5625内 因此选项A 中2.52符合,选项B 中2.56也符合 故选AB .【点睛】本题考查利用二分法求函数零点所在的区间,求函数零点的近似解,属于简单题.10.0或12【分析】先求得,k b 的关系式,然后求得函数2y bx kx =+的零点. 【详解】由于函数()0y kx b k =+≠有一个零点是2 所以20k b += 2b k =-所以()22221y bx kx kx kx kx x =+=-+=--由于0k ≠,所以()2100kx x x --=⇒=或12x =. 故答案为:0或12 11.c b a >>【分析】先根据函数的新定义分别求出a ,b ,c ,然后再比较大小【详解】由()2e 1x g x =+,得()22e xg x '=所以由题意得22e 12e a a +=,解得0a = 由()ln h x x =,得()1h x x'= 所以由题意得1ln b b=令1()ln t x x x=-,(0x >),则211()0t x x x '=+>所以()t x 在(0,)+∞上递增因为(1)10t =-< ()1212ln 2ln 202t lne =-=->所以存在0(1,2)x ∈,使0()0t x =,所以(1,2)b ∈由()31x x ϕ=-,得()23x x ϕ'=所以由题意得3213c c -=令32()31m x x x =--,则2()36m x x x '=- 令()0m x '=,则0x =或2x =当0x <或2x >时()0m x '>,当02x << ()0m x '< 所以()m x 在(,0)-∞和()2,+∞上递增,在()0,2上递减所以()m x 的极大值为(0)1m =-,极小值为()283415m =-⨯-=-因为(3)2727110m =--=-< (4)64121510m =--=> 所以()m x 存在唯一零点0(3,4)x ∈,所以(3,4)c ∈ 所以c b a >> 故答案为:c b a >> 12.6【分析】利用()f x 单调性和零点存在定理可知012x <<,由此确定04x +的范围,进而得到k .【详解】函数()226xf x x =+-为R 上的增函数,()120f =-< ()220f =>∴函数()226x f x x =+-的零点0x 满足012x << 0546x ∴<+<04x x ∴->的最小整数解6k =. 故答案为:6. 13.6【分析】由奇函数()f x 满足(1)()f x f x +=-,可知函数的周期性与对称性,作出函数图象,判断函数()f x 与函数11y x =--的交点情况. 【详解】因为函数()f x 满足(1)()f x f x +=-,所以函数()f x 的对称轴为直线12x = 又因为函数()f x 为奇函数,所以()()f x f x =--又(1)()f x f x +=-,所以(1)()f x f x +=-,所以函数()f x 的周期为2又因为当10,2x ⎡⎤∈⎢⎥⎣⎦时,()4f x x =,作出函数()f x 和()11y g x x ==--的简图如图所示由411y x y x =⎧⎪⎨=-⎪-⎩可得122x y ⎧=⎪⎨⎪=⎩故当102x ≤≤时,线段4y x =与曲线11y x =--仅有一个交点 故由图可知,有6个交点,这6个交点是关于点()1,0对称的,且关于点()1,0对称的两个点的横坐标之和为2则所有根之和为326⨯=. 故答案为:6. 14.见解析【解析】利用二分法取线段的中点即可迅速查出故障所在. 【详解】如图:可首先从中点C 开始检查,若AC 段正常,则故障在BC 段; 再到BC 段中点D 检查,若CD 段正常,则故障在BD 段;再到BD 段中点E 检查……每检查一次就可以将待查的线路长度缩短一半 经过8次查找,可将故障范围缩小到50m 之内,即可迅速找到故障所在. 【点睛】本题考查了二分法在生活中的应用,理解二分法的定义,属于基础题. 15.(1)[]13,3-; (2)存在,区间为1,08⎛⎫- ⎪⎝⎭.【分析】(1)根据()2283f x x x m =-++,结合二次函数的图象与性质,可知()f x 在区间[]1,1-上单调递减,结合条件()f x 在区间[]1,1-上存在零点,则有()()1010f f ⎧-≥⎪⎨≤⎪⎩,解不等式组即可求出实数m 的取值范围;(2)当4m =-时,得()2281f x x x =--,可知()f x 在区间()1,1-上单调递减,并求得()()110f f -⋅<,根据零点存在性定理可知()f x 在()1,1-上存在唯一零点0x ,最后利用二分法和零点存在性定理,求出在误差不超过0.1的条件下的零点所在的区间. (1) 解:()2283f x x x m =-++为二次函数,开口向上,对称轴为2x =可知函数()f x 在区间[]1,1-上单调递减∵()f x 在区间[]1,1-上存在零点,∴()()1010f f ⎧-≥⎪⎨≤⎪⎩即28302830m m +++≥⎧⎨-++≤⎩,解得:133m -≤≤∴实数m 的取值范围是[]13,3-. (2)解:当4m =-时,()2281f x x x =--为二次函数,开口向上,对称轴为2x =所以()f x 在区间()1,1-上单调递减()19f ∴-=,()17f =-则()()110f f -⋅<∴函数()f x 在()1,1-上存在唯一零点0x 又()f x 为R 上的连续函数∵()010f =-<,∴()()100f f -⋅<,∴()01,0x ∈- ∵17022f ⎛⎫-=> ⎪⎝⎭,∴()1002f f ⎛⎫-⋅< ⎪⎝⎭,∴01,02x ⎛⎫∈- ⎪⎝⎭ ∵19048f ⎛⎫-=> ⎪⎝⎭,∴()1004f f ⎛⎫-⋅< ⎪⎝⎭,∴01,04x ⎛⎫∈- ⎪⎝⎭∵110832f ⎛⎫-=> ⎪⎝⎭,∴()1008f f ⎛⎫-⋅< ⎪⎝⎭,∴01,08x ⎛⎫∈- ⎪⎝⎭此时误差为10.1610218-=<-,即满足误差不超过0.1 ∴零点所在的区间为1,08⎛⎫- ⎪⎝⎭.16.(1)证明见解析;(2)0.4-.【分析】(1)令32()6131230g x x x x =----=,转化为函数()()326,13123h x x r x x x =-=++的交点问题,利用数形结合法证明;(2)利用函数零点存在定理,根据(1)的建立求解. 【详解】(1)令32()6131230g x x x x =----= 则32613123x x x -=++令()()326,13123h x x r x x x =-=++在同一坐标系中作出函数()(),h x r x 的图象,如图所示:因为()()()()11,00h r h r ><,即(1)0,(0)0g g ->< 所以()g x 在区间(-1,0)内有零点再由图象知()g x 在区间(-1,0)内有一个零点.(2)由()0(0.5)00.5,0(0)30g x g ->⎧⇒∈-⎨=-<⎩; 由()0(0.25)00.5,0.25(0.5)0g x g -<⎧⇒∈--⎨->⎩; 由()0(0.375)00.5,0.375(0.5)0g x g -<⎧⇒∈--⎨->⎩; 由()0(0.4375)00.4375,0.375(0.375)0g x g ->⎧⇒∈--⎨-<⎩ 所以00.4x ≈-. 17.3,2⎛⎫+∞ ⎪⎝⎭【分析】求出导函数()e 2xf x m '=-,由题意,原问题等价于2e 3x m =+有解,从而即可求解.【详解】解:函数()f x 的导数()e 2xf x m '=-由题意,若曲线C 存在与直线13y x =垂直的切线,则()1e 213x m -=-,即2e 3x m =+有解第 11 页 共 11 页 又因为e 33x +>,所以23m >,即32m >所以实数m 的取值范围是3,2⎛⎫+∞ ⎪⎝⎭.。
專題3.4 函數的應用(一)姓名:__________________ 班級:______________ 得分:_________________注意事項:本試卷滿分100分,考試時間45分鐘,試題共16題.答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級等資訊填寫在試卷規定的位置.一、選擇題(本大題共8小題,每小題5分,共40分)在每小題所給出的四個選項中,只有一項是符合題目要求的.1.一定範圍內,某種產品的購買量y與單價x之間滿足一次函數關係.如果購買1 000噸,則每噸800元,購買2 000噸,則每噸700元,那麼一客戶購買400噸,其價格為每噸()A.820元B.840元C.860元D.880元【答案】C【解析】設y=kx+b(k≠0),則1 000=800k+b,且2 000=700k+b,解得k=-10,b=9 000,則y=-10x+9 000.解400=-10x+9 000,得x=860(元).2.(2020·吉林東北師大附中高一月考)把長為6釐米的細鐵絲截成兩段,各自圍成一個正三角形,那麼這兩個正三角形面積之和的最小值是( ) A2 B .24cm C.2 D2 【答案】D【解析】設其中一個正三角形的邊長為x ,面積之和為y ,則另一個正三角形的邊長為2,02x x -<<,222)](21)422y x x x x =-+=-++21)x =-+1x =時,y故選:D. 3.某汽車銷售公司在A ,B 兩地銷售同一品牌的汽車,在A 地的銷售利潤(單位:萬元)y 1=4.1x -0.1x 2,在B 地的銷售利潤(單位:萬元)y 2=2x ,其中x 為銷售量(單位:輛),若該公司在兩地共銷售16輛該品牌的汽車,則能獲得的最大利潤是( )A .10.5萬元B .11萬元C .43萬元D .43.025萬元【答案】C【解析】設該公司在A 地銷售該品牌的汽車x 輛,則在B 地銷售該品牌的汽車(16-x )輛,所以可得利潤y =4.1x -0.1x 2+2(16-x )=-0.1x 2+2.1x +32=-0.144411.0)221(2⨯+-x +32.因為x ∈ [0,16]且x ∈N ,所以當x =10或11時,利潤最大,最大利潤為43萬元.4.某公司招聘員工,面試人數按擬錄用人數分段計算,計算公式為***4,110,210,10100,1.5,100,x x x y x x x x x x ⎧≤<∈⎪=+≤<∈⎨⎪≥∈⎩N N N ,其中x 代表擬錄用人數,y 代表面試人數,若面試人數為60,則該公司擬錄用人數為( )A .15B .40C .25D .13 【答案】C【解析】令60y =,若460x =,則1510x =>,不合題意;若21060x +=,則25x =,滿足題意;若1.560x =,則40100x =<,不合題意. 故擬錄用人數為25.故選:C .5.某社區物業管理中心制訂了一項節約用水措施,作出如下規定:如果某戶月用水量不超過10立方米,按每立方米m 元收費;月用水量超過10立方米,則超出部分按每立方米2m 元收費.已知某戶某月繳水費16m 元,則該戶這個月的實際用水量為( )A .13立方米B .14立方米C .18立方米D .26立方米【答案】A【解析】由已知得,該戶每月繳費y 元與實際用水量x 立方米滿足的關係式為y =⎩⎨⎧>-≤≤10,102,100,x m mx x mx 由y =16m ,得x >10,所以2mx -10m =16m ,解得x =13.故選A.6.某公園要建造一個直徑為20 m 的圓形噴水池,計畫在噴水池的周邊靠近水面的位置安裝一圈噴水頭,使噴出的水柱在離池中心2 m 處達到最高,最高的高度為8 m .另外還要在噴水池的中心設計一個裝飾物,使各方向噴來的水柱在此處匯合,則這個裝飾物的高度應該為( )A .5 mB .3.5 mC .5.5 mD .7.5 m 【答案】D【解析】 根據題意易知,水柱上任意一個點距水池中心的水準距離為x ,與此點的高度y 之間的函數關係式是:y =a 1(x +2)2+8(-10≤x ≤0)或y =a 2(x -2)2+8(0≤x ≤10),由x =-10,y =0,可得a 1=-81;由x =10,y =0,可得a 2=-81,於是所求函數解析式是y =-81(x +2)2+8(-10≤x <0) 或y =-81(x -2)2+8(0≤x ≤10).當x =0時,y =7.5,∴裝飾物的高度為7.5 m .故選D.7.某工廠八年來某種產品總產量y (即前x 年年產量之和)與時間x (年)的函數關係如圖,下列五種說法中正確的是( )A .前三年中,總產量的增長速度越來越慢B .前三年中,年產量的增長速度越來越慢C .第三年後,這種產品停止生產D .第三年後,年產量保持不變【答案】AC【解析】由題中函數圖像可知,在區間[0,3]上,圖像是凸起上升的,表明總產量的增長速度越來越慢,A 正確;由總產量增長越來越慢知,年產量逐年減小,因此B 錯誤;在[3,8]上,圖像是水準直線,表明總產量保持不變,即年產量8.(多選)如圖①是反映某條公交線路收支差額(即營運所得票價收入與付出成本的差)y與乘客量x之間關係的圖像.由於目前該條公交線路虧損,公司有關人員提出了兩種調整的建議,如圖②③所示.則下列說法中,正確的有()A.圖②的建議:提高成本,並提高票價B.圖②的建議:降低成本,並保持票價不變C.圖③的建議:提高票價,並保持成本不變D.圖③的建議:提高票價,並降低成本【答案】BC【解析】根據題意和圖②知,兩直線平行即票價不變,直線向上平移說明當乘客量為0時,收入是0但是支出變少了,即說明此建議是降低成本而保持票價不變,故B正確;由圖③可以看出,當乘客量為0時,支出不變,但是直線的傾斜角變大,即相同的乘客量時收入變大,即票價提高了,即說明此建議是提高票價而保持成本不變,故C正確.二、填空題(本大題共4小題,每小題5分,共20分.不需寫出解答過程,請把答案直接填寫在橫線上)9.端午節期間,某商場為吸引顧客,實行買100送20活動,即顧客購物每滿100元,就可以獲贈商場購物券20元,可以當作現金繼續購物.如果你有1 460元現金,在活動期間到該商場購物,最多可以獲贈購物券累計________元.【答案】360【解析】由題意可知,1 460=1 400+20+40,1 400元現金可送280元購物券,把280元購物券當作現金加上20元現金可送60元購物券,再把60元購物券當作現金加上40元現金可獲送20元購物券,所以最多可獲贈購物券280+60+20=360(元).10.某商場以每件30元的價格購進一種商品,試銷中發現,這種商品每天的銷量m(件)與售價x(元/件)之間的關係滿足一次函數:m=162-3x.若要使每天獲得最大的銷售利潤,則該商品的售價應定為________元/件.【答案】42【解析】設每天獲得的銷售利潤為y元,則y=(x-30)·(162-3x)=-3(x-42)2+432,所以當x=42時,獲得的銷售利潤最大,故該商品的售價應定為42元/件.11.統計某種水果在一年中四個季度的市場價格及銷售情況如下表.某公司計畫按這一年各季度“最佳近似值m ”收購這種水果,其中的最佳近似值m 這樣確定,即m 與上表中各售價差的平方和最小時的近似值,那麼m 的值為________.【答案】20【解析】設y =(m -19.55)2+(m -20.05)2+(m -20.45)2+(m -19.95)2=4m 2-2×(19.55+20.05+20.45+19.95)m +19.552+20.052+20.452+19.952,則當m =495.1945.2005.2055.19+++=20時,y 取最小值. 12.某在校大學生提前創業,想開一家服裝專賣店,經過預算,店面裝修費為10000元,每天需要房租水電等費用100元,受行銷方法、經營信譽度等因素的影響,專賣店銷售總收入P 與店面經營天數x 的關係是P(x)=21300,0300245000,300x x x x ⎧-≤<⎪⎨⎪≥⎩則總利潤最大時店面經營天數是___.【答案】200【解析】設總利潤為L(x),則L(x)=2120010000,0300210035000,300x x x x x ⎧-+-≤<⎪⎨⎪-+≥⎩則L(x)=21(200)10000,0300210035000,300x x x x ⎧--+≤<⎪⎨⎪-+≥⎩當0≤x<300時,L(x)max =10000,當x ≥300時,L(x)max =5000,所以總利潤最大時店面經營天數是200.三、解答題(本大題共4小題,共40分.請在答題卡指定區域內作答,解答時應寫出文字說明、證明過程或演算步驟)13.為了發展電信事業,方便用戶,電信公司對行動電話採用不同的收費方式,其中所使用的“如意卡”與“便民卡”在某市範圍內每月(30天)的通話時間x (單位:分)與通話費用y (單位:元)的關係如圖所示.(1)分別求出通話費用y 1,y 2與通話時間x 之間的函數解析式;(2)請幫助用戶計算在一個月內使用哪種卡便宜.【解析】(1)由圖像可設y 1=k 1x +29,y 2=k 2x ,把點B (30,35),C(30,15)分別代入y 1=k 1x +29,y 2=k 2x ,得k 1=51,k 2=21.∴y 1=51x +29(x ≥0),y 2=21x (x ≥0).(2)令y 1=y 2,即51x +29=21x ,則x =9632.當x =9632時,y 1=y 2,兩種卡收費一致;當x <9632時,y 1>y 2,使用“便民卡”便宜;當x >9632時,y 1<y 2,使用“如意卡”便宜.14.通過研究學生的學習行為,專家發現,學生的注意力隨著老師講課時間的變化而變化,講課開始時,學生的興趣激增,中間一段時間,學生保持較理想的狀態,隨後學生的注意力開始分散,設f (t )表示學生注意力隨時間t (min)的變化規律(f (t )越大,表明學生注意力越集中),經實驗分析得知:f (t )=⎪⎩⎪⎨⎧≤<+-≤<≤<++-4020,38072010,240100,100242t t t t t t (1)講課開始多少分鐘,學生的注意力最集中?能持續多少分鐘?(2)講課開始後5 min 與講課開始後25 min 比較,何時學生的注意力更集中?(3)一道數學難題,需要講解24 min,並且要求學生的注意力至少達到180,那麼經過適當安排,老師能否在學生達到所需要的狀態下講完這道題目?【解析】(1)當0<t≤10時,f(t)=-t2+24t+100是增函數,當20<t≤40時,f(t)=-7t+380是減函數,且f(10)=f(20)=240,所以講課開始10 min,學生的注意力最集中,能持續10 min.(2)因為f(5)=195,f(25)=205,所以講課開始後25 min比講課開始後5 min學生的注意力更集中.(3)當0<t≤10時,令f(t)=-t2+24t+100=180,得t=4,當20<t≤40時,令f(t)=-7t+380=180,得t≈28.57,又28.57-4=24.57>24,所以經過適當的安排,老師可以在學生達到所需要的狀態下講完這道題目. 15.某公司推出了一種高效環保型洗滌用品,年初上市後,公司經歷了從虧損到盈利的過程,二次函數圖像(部分)刻畫了該公司年初以來累積利潤S(萬元)與銷售時間t(月)之間的關係(即前t個月的利潤總和S與t之間的關係).根據圖像提供的資訊解答下列問題:(1)由已知圖像上的三點座標,求累積利潤S(萬元)與時間t(月)之間的函數關係式;(2)求截止到第幾個月末公司累積利潤可達到30萬元;(3)求第八個月公司所獲得的利潤.【解析】(1)設S 與t 的函數關係式為S =at 2+bt +c (a ≠0).由題中函數圖像過點D (1,-1.5),C (2,-2),A (5,2.5),得⎪⎩⎪⎨⎧=++-=++-=++5.252522415c b a c b a c b a ,解得⎪⎩⎪⎨⎧=-==025.0c b a ∴所求函數關係式為S =0.5t 2-2t (t ≥0).(2)把S =30代入,得30=0.5t 2-2t ,解得t 1=10,t 2=-6(舍去), ∴截止到第十個月末公司累積利潤可達到30萬元.(3)第八個月公司所獲得的利潤為0.5×82-2×8-0.5×72+2×7=5.5(萬元),∴第八個月公司所獲得的利潤為5.5萬元.16.(2019·安徽六安一中高一月考)食品安全問題越來越引起人們的重視,農藥、化肥的濫用給人民群眾的健康帶來了一定的危害.為了給消費者帶來放心的蔬菜,某農村合作社每年投入資金200萬元,搭建甲、乙兩個無公害蔬菜大棚,每個大棚至少要投入資金20萬元,其中甲大棚種番茄,乙大棚種黃瓜.根據以往的種菜經驗,發現種番茄的年收入P 、種黃瓜的年收入Q 與各自的資金投入12,a a(單位:萬元)滿足80P =+211204Q a =+.設甲大棚的資金投入為x (單位:萬元),每年兩個大棚的總收入為()f x (單位:萬元).(1)求()50f 的值;(2)試問如何安排甲、乙兩個大棚的資金投入,才能使總收入()f x 最大.【解析】(1)當甲大棚的資金投入為50萬元時,乙大棚資金投入為150萬元,則由足80P =+211204Q a =+.可得總收益為()15080150120277.54f =+⨯+=萬元;(2)根據題意,可知總收益為()()1802001204x f x =+⨯-+12504x =-+滿足2020020x x ≥⎧⎨-≥⎩,解得20180x ≤≤,令t t ⎡=∈⎣,所以()212504f t t =-++(212824t =--+,t ⎡∈⎣因為⎡⎣,所以當t =128x =時總收益最大,最大收益為282萬元, 所以當甲大棚投入資金為128萬元,乙大棚投入資金為72萬元時,總收益最大,最大收益為282萬元.。
高一数学函数试题答案及解析1.已知【答案】512【解析】主要考查对数运算。
2.甲、乙两人解关于的方程:甲写错了常数b,得到根为,乙写错了常数c,得到根为.求方程的真正根。
【答案】4或8【解析】主要考查对数方程解法。
解:原方程可变形为:3.函数的图象与直线的公共点数目是()A.B.C.或D.或【答案】C【解析】有可能是没有交点的,如果有交点,那么对于仅有一个函数值;4.求函数的定义域【答案】【解析】解:∵,∴定义域为5.已知函数,(1)讨论的奇偶性与单调性;(2)若不等式的解集为的值;(3)求的反函数;(4)若,解关于的不等式R).【答案】(1)①当时,在定义域内为增函数;②当时,在定义域内为减函数;(2)或;(3);(4)①当时,不等式解集为R;②当时,得,不等式的解集为;③当【解析】主要考查函数的奇偶性、单调性、指数函数与对数函数互为反函数关系、对数函数的图象和性质。
解:(1)定义域为为奇函数;,求导得,①当时,在定义域内为增函数;②当时,在定义域内为减函数;(2)①当时,∵在定义域内为增函数且为奇函数,;②当在定义域内为减函数且为奇函数,;(3)R);(4),;①当时,不等式解集为R;②当时,得,不等式的解集为;③当6.函数在区间上是[ ]A.增函数B.既不是增函数又不是减函数C.减函数D.既是增函数又是减函数【答案】B【解析】主要考查函数单调性的概念及函数单调性判定方法。
解:此函数在随增大,逐渐减小,减小,反而增大,所以函数是增函数;而在,随增大,逐渐增大,增大,反而减小,所以函数是减函数;所以函数在区间上,既不是增函数又不是减函数。
故选B。
7.函数在上的单调性为()A.减函数B.增函数.C.先增后减.D.先减后增【答案】B【解析】主要考查函数单调性的概念及函数单调性判定方法。
由定义法或利用结论x的系数为正,一次函数是增函数,故选B。
8.函数的单调增区间为()A.B.C.D.【答案】A【解析】主要考查函数单调性的概念及二次函数单调性判定方法。
必修一数学(第三章函数的应用)单元检测(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2020·洛阳高一检测)函数f(x)的图象如图所示,函数f(x)零点的个数为( )A.1个B.2个C.3个D.4个2.(2020·宜昌高一检测)若函数y=f(x)在区间[a,b]上的图象为连续不断的一条曲线,则下列说法正确的是( )A.若f(a)f(b)>0,不存在实数c∈(a,b)使得f(c)=0B.若f(a)f(b)<0,存在且只存在一个实数c∈(a,b)使得f(c)=0C.若f(a)f(b)>0,有可能存在实数c∈(a,b)使得f(c)=0D.若f(a)f(b)<0,有可能不存在实数c∈(a,b)使得f(c)=03.已知方程x=3-lgx,下列说法正确的是( )A.方程x=3-lgx的解在区间(0,1)内B.方程x=3-lgx的解在区间(1,2)内C.方程x=3-lgx的解在区间(2,3)内D.方程x=3-lgx的解在区间(3,4)内4.(2020·长沙高一检测)已知f(x)唯一的零点在区间(1,3),(1,4),(1,5)内,那么下面命题错误的是( )A.函数f(x)在(1,2)或[2,3]内有零点B.函数f(x)在(3,5)内无零点C.函数f(x)在(2,5)内有零点D.函数f(x)在(2,4)内不一定有零点5.(2020·临川高一检测)设x0是方程lnx+x=4的解,则x0在下列哪个区间内( )A.(3,4)B.(0,1)C.(1,2)D.(2,3)6.(2020·新余高一检测)下列方程在区间(0,1)存在实数解的是( )A.x2+x-3=0B.x+1=0C.x+lnx=0D.x2-lgx=07.(2020·郑州高一检测)函数f(x)=3x-log2(-x)的零点所在区间是( )A. B.(-2,-1)C.(1,2)D.8.某种型号的手机自投放市场以来,经过两次降价,单价由原来的2000元降到1280元,则这种手机的价格平均每次降低的百分率是( )A.10%B.15%C.18%D.20%9.向高为H的圆锥形漏斗注入化学溶液(漏斗下方口暂时关闭),注入溶液量V与溶液深度h的函数图象是( )10.若方程a x-x-a=0有两个解,则a的取值范围是( )A.(1,+∞)B.(0,1)C.(0,+∞)D.∅11.(2020·福州高一检测)若函数f的零点与g=4x+2x-2的零点之差的绝对值不超过0.25,则f可以是( )A.f=4x-1B.f=(x-1)2C.f=e x-1D.f=ln12.如图表示一位骑自行车者和一位骑摩托车者在相距80km的两城镇间旅行的函数图象,由图可知:骑自行车者用了6小时,沿途休息了1小时,骑摩托车者用了2小时,根据这个函数图象,推出关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发了1.5小时后,追上了骑自行车者.其中正确信息的序号是( )A.①②③B.①③C.②③D.①②二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.(2020·南昌高一检测)用“二分法”求方程x3-2x-5=0在区间[2,3]内的实根,取区间中点为x0=2.5,那么下一个有根的区间是.14.已知函数f(x)=若关于x的方程f(x)-k=0有唯一一个实数根,则实数k的取值范围是.15.若函数f(x)=lgx+x-3的近似零点在区间(k,k+1)(k∈Z)内,则k= .16.定义在R上的偶函数y=f(x),当x≥0时,y=f(x)是单调递减的,f(1)·f(2)<0,则y=f(x)的图象与x轴的交点个数是.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)(2020·杭州高一检测)已知函数f(x)的图象是连续的,有如下表格,判断函数在哪几个区间上有零点.x -2 -1.5 -1 -0.5 0 0.5 1 1.5 2f(x) -3.51 1.02 2.37 1.56 -0.38 1.23 2.77 3.45 4.89 18.(12分)设f(x)=ax2+(b-8)x-a-ab的两个零点分别是-3,2.(1)求f(x).(2)当函数f(x)的定义域为[0,1]时,求其值域.19.(12分)用二分法求方程2x+x-8=0在区间(2,3)内的近似解.(精确度为0.1,参考数据:22.5≈5.657,22.25≈4.757,22.375≈5.187,22.4375≈5.417,22.75≈6.727) 20.(12分)(2020·潍坊高一检测)已知二次函数f(x)的图象过点(0,3),它的图象的对称轴为x=2,且f(x)的两个零点的平方和为10,求f(x)的解析式.21.(12分)(2020·徐州高一检测)在经济学中,函数f(x)的边际函数为Mf(x),定义为Mf(x)=f(x+1)-f(x),某公司每月最多生产100台报警系统装置,生产x台的收入函数为R(x)=3000x-20x2(单位:元),其成本函数为C(x)=500x+4000(单位:元),利润的函数等于收入与成本之差.求出利润函数p(x)及其边际利润函数Mp(x);判断它们是否具有相同的最大值;并写出本题中边际利润函数Mp(x)最大值的实际意义.22.(12分)A地某校准备组织学生及学生家长到B地进行社会实践,为便于管理,所有人员必须乘坐在同一列火车上;根据报名人数,若都买一等座单程火车票需17010元,若都买二等座单程火车票且花钱最少,则需11220元;已知学生家长与教师的人数之比为2∶1,从A到B的火车票价格(部分)如下表所示:(1)参加社会实践的老师、家长与学生各有多少人?(2)由于各种原因,二等座火车票单程只能买x张(x小于参加社会实践的人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)y与x之间的函数关系式.(3)请你做一个预算,按第(2)小题中的购票方案,购买单程火车票至少要花多少钱?最多要花多少钱?参考答案与解析1【解析】选D.由图象知与x轴有4个交点,则函数f(x)共有4个零点.2【解析】选C.f(a)f(b)<0时,存在实数c∈(a,b)使得f(c)=0,f(a)f(b)>0时,可能存在实数c∈(a,b)使得f(c)=0.3【解析】选C.2<3-lg2,3>3-lg3,又f(x)=x+lgx-3在(0,+∞)上是单调递增的,所以方程x=3-lgx的解在区间(2,3)内.4【解析】选C.f(x)唯一的零点在区间(1,3),(1,4),(1,5)内,则区间(1,3)内必有零点,(2,5)内不一定有零点,(3,5)内无零点,所以选C.5【解析】选D.令f(x)=lnx+x-4,由于f(2)=ln2+2-4<0,f(3)=ln3+3-4>0,f(2)·f(3)<0,又因为函数f(x)在(2,3)内连续,故函数f(x)在(2,3)内有零点,即方程lnx+x=4在(2,3)内有解.6【解题指南】先从好判断的一次方程、二次方程入手,不好求解的利用函数图象的交点进行判断.【解析】选 C.x2+x-3=0的实数解为x=和x=,不属于区间(0,1);x+1=0的实数解为x=-2,不属于区间(0,1);x2-lgx=0在区间(0,1)内无解,所以选C,图示如下:7【解析】选 B.f(x)=3x-log2(-x)的定义域为(-∞,0),所以C,D不能选;又f(-2)·f(-1)<0,且f(x)在定义域内是单调递增函数,故零点在(-2,-1)内.8【解析】选D.设平均每次降低的百分率为x,则2000(1-x)2=1280,解得x=0.2,故平均每次降低的百分率为20%.9【解析】选A.注入溶液量V随溶液深度h的增加增长越来越快,故选A.10【解析】选A.画出y1=a x,y2=x+a的图象知a>1时成立.11【解析】选A.f=4x-1的零点为x=,f=(x-1)2的零点为x=1,f=e x-1的零点为x=0,f=ln的零点为x=.现在我们来估算g=4x+2x-2的零点,因为g(0)= -1,g=1,g<0,且g(x)在定义域上是单调递增函数,所以g(x)的零点x∈,又函数f的零点与g=4x+2x-2的零点之差的绝对值不超过0.25,只有f=4x-1的零点适合.12【解析】选A.由图象可得:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时,正确;②骑自行车者是变速运动,骑摩托车者是匀速运动,正确;③骑摩托车者在出发了1.5小时后,追上了骑自行车者,正确.13【解析】令f(x)=x3-2x-5,f(2.5)·f(2)<0所以下一个有根的区间是(2,2.5). 答案:(2,2.5)14【解析】关于x的方程f(x)-k=0有唯一一个实数根,等价于函数y=f(x)与y=k 的图象有唯一一个交点,在同一个平面直角坐标系中作出它们的图象.由图象可知实数k的取值范围是[0,1)∪(2,+∞).答案:[0,1)∪(2,+∞)15【解析】由lgx+x-3=0,可得lgx=-x+3,令y1=lgx,y2=-x+3,结合两函数的图象,可大体判断零点在(1,3)内,又因为f(2)=lg2-1<0,f(3)=lg3>0,f(x)=lgx+x-3是单调递增函数,所以k=2.答案:216【解析】f(1)·f(2)<0,y=f(x)在区间(1,2)内有一个零点,由偶函数的对称性知,在区间(-2,-1)内也有一个零点,所以共有2个零点.答案:217【解析】因为函数的图象是连续不断的,并且由对应值表可知f·f<0,f·f(0)<0,f·f<0,所以函数f在区间(-2,-1.5),(-0.5,0)以及(0,0.5)内有零点.18【解析】(1)因为f(x)的两个零点分别是-3,2,所以即解得a=-3,b=5,f(x)=-3x2-3x+18.(2)由(1)知f(x)=-3x2-3x+18的对称轴x=-,函数开口向下,所以f(x)在[0,1]上为减函数,f(x)的最大值f(0)=18,最小值f(1)=12,所以值域为[12,18].19【解析】设函数f(x)=2x+x-8,则f(2)=22+2-8=-2<0,f(3)=23+3-8=3>0,所以f(2)·f(3)<0,说明这个函数在区间(2,3)内有零点x0,即原方程的解. 用二分法逐次计算,列表如下:区间中点的值中点函数近似值(2,3)2.50.157(2,2.5)2.25-0.993(2.25,2.5)2.375-0.438(2.375,2.5)2.437 5-0.145 5由表可得x0∈(2,2.5),x0∈(2.25,2.5),x0∈(2.375,2.5),x0∈(2.4375,2.5).因为|2.4375-2.5|=0.0625<0.1,所以方程2x+x-8=0在区间(2,3)内的近似解可取为2.4375.20【解析】设二次函数为f(x)=ax2+bx+c(a≠0).由题意知:c=3,-=2.设x1,x2是方程ax2+bx+c=0的两根,则+=10,所以(x1+x2)2-2x1x2=10,所以-=10,所以16-=10,所以a=1.代入-=2中,得b=-4.所以f(x)=x2-4x+3.21【解析】p(x)=R(x)-C(x)=-20x2+2500x-4000,x∈[1,100],x∈N,所以Mp(x)=p(x+1)-p(x)=[-20(x+1)2+2500(x+1)-4000]-(-20x2+2500x-4000),=2480-40x,x∈[1,100],x∈N;所以p(x)=-20+74125,x∈[1,100],x∈N,故当x=62或63时,p(x)max=74120(元),因为Mp(x)=2480-40x为减函数,当x=1时有最大值2440.故不具有相等的最大值.边际利润函数取最大值时,说明生产第二台机器与生产第一台的利润差最大.22【解析】(1)设参加社会实践的老师有m人,学生有n人,则学生家长有2m人,若都买二等座单程火车票且花钱最少,则全体学生都需买二等座火车票,依题意得:解得则2m=20,答:参加社会实践的老师、家长与学生各有10人、20人与180人.(2)由(1)知所有参与人员总共有210人,其中学生有180人,①当180≤x<210时,最经济的购票方案为:学生都买学生票共180张,(x-180)名成年人买二等座火车票,(210-x)名成年人买一等座火车票.所以火车票的总费用(单程)y与x之间的函数关系式为:y=51×180+68(x-180)+81(210-x),即y=-13x+13950(180≤x<210).②当0<x<180时,最经济的购票方案为:一部分学生买学生票共x张,其余的学生与家长、老师一起购买一等座火车票共(210-x)张.所以火车票的总费用(单程)y与x之间的函数关系式为:y=51x+81(210-x),即y=-30x+17010(0<x<180).(3)由(2)小题知,当180≤x<210时,y=-13x+13950,由此可见,当x=209时,y的值最小,最小值为11233元,当x=180时,y的值最大,最大值为11610元.当0<x<180时,y=-30x+17010,由此可见,当x=179时,y的值最小,最小值为11640元,当x=1时,y的值最大,最大值为16980元.所以可以判断按(2)小题中的购票方案,购买单程火车票至少要花11233元,最多。
高一数学函数的应用试题答案及解析1.若是方程的解,则属于区间()A.B.C.D.【答案】C【解析】令,因为,,根据函数的零点存在定理有属于区间.【考点】本小题主要考查函数零点存在定理的应用.点评:函数的零点存在定理有时要与图象结合使用.2.定义在R上的偶函数满足:①对都有;②当且时,都有,若方程在区间上恰有3个不同实根,实数的取值范围是 .【答案】【解析】因为是偶函数,所以在中令可得,所以是周期为6的周期函数,又当且时,都有,所以该函数在上递增,所以再上递减,所以在上只有两个实数根,所以若方程在区间上恰有3个不同实根,则需要区间长度解得【考点】本小题主要考查根的存在性及根的个数判断和函数奇偶性的性质以及抽象函数及其应用. 点评:本题是一道抽象函数问题,题目的设计“小而巧”,解题的关键是巧妙的赋值,利用其奇偶性和所给的关系式得到函数的周期性,再利用周期性求函数值.灵活的“赋值法”是解决抽象函数问题的基本方法,属于中档题.3.某公司要将一批不易存放的蔬菜从地运到地,有汽车、火车两种运输工具可供选择,两种运输工具的主要参考数据如下表:途中速度途中单位费用装卸时间装卸费用.(1)设采用汽车与火车运输的总费用分别为与,求与的解析式;(2)试根据、两地距离的大小比较采用哪种运输工具更合算(即运输总费用最小).(注:总费用=途中费用+装卸费用+损耗费用)【答案】(1);(2)当A、B两地距离小于时,采用汽车运输好;当A、B两地距离等于时,采用汽车或火车都一样;当A、B两地距离大于时,采用火车运输好.【解析】本题以实际问题为载体,考查函数模型的构建,考查解不等式,解题的关键是正确运用表格中的数据(1)根据表格,利用总费用=途中费用+装卸费用+损耗费用,分别求出运输的总费用;(2)分类讨论,比较它们的大小,由此确定采用哪种运输工具较好解:(1)由题意可知,用汽车运输的总费用为:;4分用火车运输的总费用为:8分(2)由得;由得由得10分答:当A、B两地距离小于时,采用汽车运输好;当A、B两地距离等于时,采用汽车或火车都一样;当A、B两地距离大于时,采用火车运输好. 12分4.设,则()A.y3>y1>y2B.y2>y1>y3C.y1>y2>y3D.y1>y3>y2【答案】D【解析】函数是增函数。
高一数学函数试题答案及解析1.·等于A.-B.-C.D.【答案】A【解析】主要考查根式的运算、根式与分数指数幂的关系。
解:·=a·(-a)=-(-a)=-(-a).2.在f1(x)=x,f2(x)=x2,f3(x)=2x,f4(x)=log x四个函数中,x1>x2>1时,能使[f(x1)+f(x2)]<f()成立的函数是A.f1(x)=x B.f2(x)=x2C.f3(x)=2x D.f4(x)=log x【答案】A【解析】主要考查基本初等函数的图象和性质。
由图形可直观得到:只有f1(x)=x为“上凸”的函数.3.甲、乙两人解关于的方程:甲写错了常数b,得到根为,乙写错了常数c,得到根为.求方程的真正根。
【答案】4或8【解析】主要考查对数方程解法。
解:原方程可变形为:4.已知,若,则的值是()A.B.或C.,或D.【答案】D【解析】该分段函数的三段各自的值域为,而∴∴;5.·等于A.-B.-C.D.【答案】A【解析】主要考查根式的运算、根式与分数指数幂的关系。
解:·=a·(-a)=-(-a)=-(-a).6.若方程有解,则a的取值范围是()A.a>0或a≤-8B.a>0C.D.【答案】D【解析】主要考查解指数方程的换元法,一元二次方程根的分布讨论。
解答过程中巧妙地转化为求函数的值域。
解:方程有解,等价于求的值域∵∴,则a的取值范围为,故选D。
7.函数(1),(2) ,(3) ,(4) 中在上为增函数的有[ ]A.(1)和(2)B.(2)和(3)C.(3)和(4)D.(1)和(4)【答案】C【解析】主要考查函数单调性的概念及函数单调性判定方法。
解:当时为减函数。
为④两函数在(-∞,0)上是增函数.8.如果函数在区间(-∞,4]上是减函数,那么实数a的取值范围是()A.a≥-3B.a≤-3C.a≤5D.a≥3【答案】B【解析】主要考查函数单调性的概念及二次函数单调区间判定方法。
第三章 函数的应用单元检测卷(A)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.已知函数f (x )=6x -log 2x ,在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)2.函数f(x)=ln 2x -3lnx+2的零点是( )A .(e,0)或(e 2,0)B .(1,0)或(e 2,0)C .(e 2,0)D .e 或e 23.当x 越来越大时,下列函数中,增长速度最快的应是( )A .y =3x B .y =log 3xC .y =x 3 D .y =3x4.已知函数f (x )的图象如图,其中零点的个数与可以用二分法求解的个数分别为( )A .4,4B .3,4C .5,4D .4,35.设f (x )=x 3+bx +c 是[-1,1]上的增函数,且f(−12)⋅f(12)<0,则方程f (x )=0在[-1,1]内( )A .可能有3个实根B .可能有2个实根C .有唯一实根D .没有实根6.方程|x |-ax =0(a >0)的零点有( )A .1个 B .2个C .3个 D .至少1个7.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x 倍,需经过y 年,则函数y =f(x)的图象大致是( )8.用二分法求函数f(x)的一个正实数零点时,经计算f(0.64)<0,f(0.72)>0,f(0.68)<0,则函数的一个精确度为0.1的正实数零点的近似值为( )A .0.9 B .0.7C .0.5 D .0.49.已知关于x 的方程a·4x +b·2x +c =0(a≠0),常数a ,b 同号,b ,c 异号,则下列结论中正确的是( )A .此方程无实根B .此方程有两个互异的负实根C .此方程有两个异号实根D .此方程仅有一个实根10.某大型民企为激励创新,计划逐年加大研发资金投入.若该民企2016年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该民企全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)( )A .2017年B .2018年C .2019年D .2020年11.已知f(x)是奇函数并且是R 上的单调函数,若函数y =f(2x 2+1)+f(λ-x)只有一个零点,则实数λ的值是( )A.14B.18C . -78D .-3812.已知函数f(x)=e x ,x ≤0lnx,x >0,g(x)=f(x)+x +a.若g(x)存在2个零点,则a 的取值范围是( )A .[-1,0)B .[0,+∞)C .[-1,+∞)D .[1,+∞)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.函数f (x )=lg x +1的零点是______.14.设y =x 3与y =(12)x -2的图象的交点为(x 0,y 0),若x 0所在的区间是(n ,n +1)(n ∈Z),则n =________.15.已知函数f (x )=Error!则函数g (x )=f (1-x )-1的零点个数为_______16.已知函数f (x )=|x 2+3x |,x ∈R.若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)若关于x 的方程3x 2-5x +a =0的一个根在(-2,0)内,另一个根在(1,3)内,求a 的取值范围.18.(本小题满分12分)如图所示,已知边长为8米的正方形钢板有一个角被锈蚀,其中AE =4米,CD =6米.为合理利用这块钢板,在五边形ABCDE 内截取一个矩形BNPM ,使点P 在边DE 上.(1)设MP =x 米,PN =y 米,将y 表示成x 的函数,求该函数的解析式及定义域;(2)求矩形BNPM 面积的最大值.19.(本小题满分12分)关于x的二次方程x2+(m-1)x+1=0在区间[0,2]上有解,求实数m的取值范围20.(本小题满分12分)《中华人民共和国个人所得税法》规定,个人所得税起征点为3500元(即3500元以下不必纳税,超过3500元的部分为当月应纳税所得额),应缴纳的税款按下表分段累计计算:全月应纳税所得额税率%不超过1 500元的部分3超过1 500元至4 500元部分10(1)列出公民全月工资总额x(0<x<8 000)元与当月应缴纳税款额y元的函数解析式.(2)刘丽十二月份缴纳个人所得税款300元,那么她当月工资总额是多少?21.(本小题满分12分)已知函数f(x)=2x,x∈R.(1)当m取何值时方程|f(x)-2|=m有一个解?两个解?(2)若不等式f2(x)+f(x)-m>0在R上恒成立,求m的取值范围.22.(本小题满分12分)设函数f(x)=x+1x的图象为C1,C1关于点A(2,1)对称的图象为C2,C2对应的函数为g(x).(1)求g(x)的解析式;(2)若直线y=m与C2只有一个交点,求m的值和交点坐标.第三章 函数的应用单元检测卷(A)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.已知函数f (x )=6x -log 2x ,在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)【答案】:C【解析】:因为函数f(x)在定义域(0,+∞)上是连续不断的,且f(2)=3-1>0,f(4)=32-2<0,所以,函数f(x)的零点在区间(2,4)内.2.函数f(x)=ln 2x -3lnx +2的零点是( )A .(e,0)或(e 2,0) B .(1,0)或(e 2,0) C .(e 2,0)D .e 或e 2【答案】:D【解析】:f(x)=ln 2x -3lnx +2=(lnx -1)(lnx -2),由f(x)=0得x =e 或x =e 2.3.当x 越来越大时,下列函数中,增长速度最快的应是( )A .y =3x B .y =log 3x C .y =x 3 D .y =3x【答案】:D【解析】:几种函数模型中,指数函数增长最快,故选D .4.已知函数f (x )的图象如图,其中零点的个数与可以用二分法求解的个数分别为( )A .4,4B .3,4C .5,4D .4,3【答案】:D【解析】:图象与x 轴有4个交点,所以零点的个数为4;左、右函数值异号的有3个零点,所以可以用二分法求解的个数为3.5.设f (x )=x 3+bx +c 是[-1,1]上的增函数,且f(−12)⋅f(12)<0,则方程f (x )=0在[-1,1]内( )A .可能有3个实根B .可能有2个实根C .有唯一实根D .没有实根【解析】:由于f(x)=x 3+bx +c 是[-1,1]上的增函数,且f(−12)⋅f(12)<0,所以f(x)在(−12,12)上有唯一零点,即方程f(x)=0在[-1,1]内有唯一实根.6.方程|x |-ax =0(a >0)的零点有( )A .1个B .2个C .3个 D .至少1个【答案】:A【解析】;令f(x)=|x|,g(x)=ax (a>0),作出两个函数的图象,如图,从图象可以看出,交点只有1个.7.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x 倍,需经过y 年,则函数y =f(x)的图象大致是( )【答案】:D【解析】:设该林区的森林原有蓄积量为a ,由题意,ax =a(1+0.104)y ,故y =log1.104x(x ≥1),∴y =f(x)的图象大致为D 中图象.8.用二分法求函数f(x)的一个正实数零点时,经计算f(0.64)<0,f(0.72)>0,f(0.68)<0,则函数的一个精确度为0.1的正实数零点的近似值为( )A .0.9B .0.7C .0.5D .0.4【答案】:B【解析】:由题意可知函数的零点在(0.68,0.72)内,四个选项中只有0.7,满足|0.7-0.68|<0.1,故选B .9.已知关于x 的方程a·4x +b·2x +c =0(a≠0),常数a ,b 同号,b ,c 异号,则下列结论中正确的是( )A .此方程无实根B .此方程有两个互异的负实根C .此方程有两个异号实根D .此方程仅有一个实根【解析】:由常数a ,b 同号,b ,c 异号,可得a ,c 异号,令2x =t ,则方程变为at 2+bt +c =0,t>0,由于此方程的判别式Δ=b 2-4ac>0,故此方程有2个不等实数根,且两根之积为ca<0,故关于t 的方程只有一个实数根,故关于x 的方程只有一个实数根.10.某大型民企为激励创新,计划逐年加大研发资金投入.若该民企2016年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该民企全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)( )A .2017年B .2018年C .2019年D .2020年【答案】:D【解析】:设从2016年起,过了n(n ∈N*)年该民企全年投入的研发资金超过200万元,则130×(1+12%)n ≥200,则n ≥l g2013l g 1.12≈0.30-0.110.05=3.8,由题意取n =4,则n +2 016=2 020.故选D.11.已知f(x)是奇函数并且是R 上的单调函数,若函数y =f(2x 2+1)+f(λ-x)只有一个零点,则实数λ的值是( )A.14 B.18C . -78D .-38【答案】:C【解析】:依题意,方程f(2x 2+1)+f(λ-x)=0只有1个解,故f(2x 2+1)=-f(λ-x)=f(x -λ)有1个实数解.∴2x 2+1=x -λ,即2x 2-x +1+λ=0有两相等实数解,故Δ=1-8(1+λ)=0,解得λ=-78.故选C.12.已知函数f(x)=e x ,x ≤0lnx,x >0,g(x)=f(x)+x +a.若g(x)存在2个零点,则a 的取值范围是( )A .[-1,0)B .[0,+∞)C .[-1,+∞)D .[1,+∞)【答案】:C【解析】:令h(x)=-x -a ,则g(x)=f(x)-h(x).在同一坐标系中画出y =f(x),y =h(x)图象的示意图,如图所示.若g(x)存在2个零点,则y =f(x)的图象与y =h(x)的图象有2个交点.平移y =h(x)的图象可知,当直线y =-x -a 过点(0,1)时,有2个交点,此时1=-a ,a =-1.当y =-x -a 在y =-x +1上方,即a<-1时,仅有1个交点,不符合题意;当y =-x -a 在y =-x +1下方,即a>-1时,有2个交点,符合题意.综上,a 的取值范围为[-1,+∞).故选C.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.函数f (x )=lg x +1的零点是______.【答案】:110.【解析】:由lg x +1=0,得lg x =-1,所以x =110.14.设y =x 3与y =(12)x -2的图象的交点为(x 0,y 0),若x 0所在的区间是(n ,n +1)(n ∈Z),则n =________.【答案】:1【解析】:作出y =x 3与y =(12)x -2的图象观察可知1<x 0<2.故n =1.15.已知函数f (x )=Error!则函数g (x )=f (1-x )-1的零点个数为_______【答案】:3【解析】:g (x )=f (1-x )-1=Error!=Error!易知当x ≥1时,函数g(x)有1个零点;当x<1时,函数g(x)有2个零点,所以函数g(x)的零点共有3个,16.已知函数f (x )=|x 2+3x |,x ∈R.若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围为________.【答案】(0,1)∪(9,+∞)【解析】:设y 1=f (x )=|x 2+3x |,y 2=a |x -1|.在同一平面直角坐标系中作出y 1=|x 2+3x |,y 2=a |x -1|的图象,如图.由图可知f (x )-a |x -1|=0有4个互异的实数根等价于y 1=|x 2+3x |与y 2=a |x -1|的图象有4个不同的交点,且4个交点的横坐标都小于1,所以Error!有两组不同的解.消去y 得x 2+(3-a )x +a =0,该方程有两个不等实根.所以Δ=(3-a )2-4a >0,即a 2-10a +9>0,解得a <1或a >9.又由图象得a>0,∴0<a<1或a>9.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)若关于x 的方程3x 2-5x +a =0的一个根在(-2,0)内,另一个根在(1,3)内,求a 的取值范围.解:设f(x)=3x 2-5x+a,则f(x)为开口向上的抛物线(如图所示).∵f(x)=0的两根分别在区间(-2,0),(1,3)内,∴f (−2)>0f(0)<0 f(1)<0 f(3)>0 即3×(−2)2−5×(−2)+a >0a <03−5+a <03×9−5×3+a >0解得-12<a<0.∴所求a 的取值范围是(-12,0).18.(本小题满分12分)如图所示,已知边长为8米的正方形钢板有一个角被锈蚀,其中AE =4米,CD =6米.为合理利用这块钢板,在五边形ABCDE 内截取一个矩形BNPM ,使点P 在边DE 上.(1)设MP =x 米,PN =y 米,将y 表示成x 的函数,求该函数的解析式及定义域;(2)求矩形BNPM 面积的最大值.解:(1)作PQ ⊥AF 于Q ,所以PQ =(8-y )米,EQ =(x -4)米.又△EPQ ∽△EDF ,所以EQPQ =EFFD ,即x -48-y =42.所以y =-12x +10,定义域为{x |4≤x ≤8}.(2)设矩形BNPM 的面积为S 平方米,则S (x )=xy =x (10−x2)=-12(x -10)2+50,S (x )是关于x 的二次函数,且其图象开口向下,对称轴为x =10,所以当x ∈[4,8]时,S (x )单调递增.所以当x =8时,矩形BNPM 的面积取得最大值,为48平方米.19.(本小题满分12分)关于x 的二次方程x 2+(m -1)x +1=0在区间[0,2]上有解,求实数m 的取值范围解:设f(x)=x2+(m -1)x +1,x ∈[0,2],①若f(x)=0在区间[0,2]上有一解x0,当0<x 0<2时,∵f(0)=1>0,则f(2)<0,又f(2)=22+(m -1)×2+1,∴m<-32;当x 0=2时,42(m 1)10122m +-+=⎧⎪⎨-->⎪⎩,无解.②若f(x)=0在区间[0,2]上有两解,则01022(2)0m f ∆≥⎧⎪-⎪≤-≤⎨⎪≥⎪⎩,即是:2(m 1)40314(m 1)210m ⎧--≥⎪-≤≤⎨⎪+-⨯+≥⎩∴313132m m m m ⎧⎪≥≤-⎪-≤≤⎨⎪⎪≥-⎩或,所以-32≤m ≤-1.由①②可知m 的取值范围是(-∞,-1].20.(本小题满分12分)《中华人民共和国个人所得税法》规定,个人所得税起征点为3500元(即3500元以下不必纳税,超过3500元的部分为当月应纳税所得额),应缴纳的税款按下表分段累计计算:全月应纳税所得额税率%不超过1 500元的部分3超过1 500元至4 500元部分10(1)列出公民全月工资总额x(0<x<8 000)元与当月应缴纳税款额y 元的函数解析式.(2)刘丽十二月份缴纳个人所得税款300元,那么她当月工资总额是多少?解:(1)依题意可得:①当0<x≤3500时,y =0.②当3500<x≤5 000时,y =(x -3500)×3%=0.03x -105.③当5000<x<8000时,y =45+(x -5000)×10%=0.1x -455,综上可得y =0,035000.03105,350050000.1455,50008000x x x x x <≤⎧⎪-<≤⎨⎪-<<⎩.(2)因为需交税300元,故有5000<x<8000,所以300=0.1x -455,所以x =7550.答:刘丽十二月份工资总额为7550元.21.(本小题满分12分)已知函数f(x)=2x ,x ∈R.(1)当m 取何值时方程|f(x)-2|=m 有一个解?两个解?(2)若不等式f 2(x)+f(x)-m>0在R 上恒成立,求m 的取值范围.解:(1)令F(x)=|f(x)-2|=|2x -2|,G(x)=m ,画出F(x)的图象如图所示.由图象看出,当m =0或m≥2时,函数F(x)与G(x)的图象只有一个交点,原方程有一个解;当0<m<2时,函数F(x)与G(x)的图象有两个交点,原方程有两个解.(2)令f(x)=t(t>0),H(t)=t 2+t ,因为H(t)=(t +12)2-14在区间(0,+∞)上是增函数,所以H(t)>H(0)=0.因此要使t 2+t>m 在区间(0,+∞)上恒成立,应有m≤0,即所求m 的取值范围为(-∞,0].22.(本小题满分12分)设函数f(x)=x +1x 的图象为C 1,C 1关于点A(2,1)对称的图象为C 2,C 2对应的函数为g(x).(1)求g(x)的解析式;(2)若直线y =m 与C 2只有一个交点,求m 的值和交点坐标.解:(1)设点P(x ,y)是C 2上的任意一点,高中11则P(x ,y)关于点A(2,1)对称的点P′(4-x,2-y),代入f(x)=x +1x ,可得2-y =4-x +14-x ,即y =x -2+1x -4,∴g(x)=x -2+1x -4.(2)由124y my x x =⎧⎪⎨=-+⎪-⎩消去y 得x 2-(m +6)x +4m +9=0.Δ=(m +6)2-4(4m +9),∵直线y =m 与C 2只有一个交点,∴Δ=0,解得m =0或m =4.当m =0时,经检验合理,交点为(3,0);当m =4时,经检验合理,交点为(5,4).。
模块质量检测(一)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设U =R ,A ={x|x>0},B ={x|x>1},则A ∩∁U B =( ) A{x|0≤x<1} B .{x|0<x ≤1} C .{x|x<0} D .{x|x>1}【解析】 ∁U B ={x|x ≤1},∴A ∩∁U B ={x|0<x ≤1}.故选B. 【答案】 B2.若函数y =f(x)是函数y =a x (a>0,且a ≠1)的反函数,且f(2)=1,则f(x)=( )A .log 2x B.12x C .log 12x D .2x -2【解析】 f(x)=log a x ,∵f(2)=1, ∴log a 2=1,∴a =2. ∴f(x)=log 2x ,故选A. 【答案】 A3.下列函数中,与函数y =1x 有相同定义域的是( )A .f(x)=ln xB .f(x)=1x C .f(x)=|x| D .f(x)=e x 【解析】 ∵y =1x的定义域为(0,+∞).故选A. 【答案】 A4.已知函数f(x)满足:当x ≥4时,f(x)=⎝ ⎛⎭⎪⎫12x;当x<4时,f(x)=f(x +1).则f(3)=( )A.18 B .8 C.116 D .16【解析】 f(3)=f(4)=(12)4=116. 【答案】 C5.函数y =-x 2+8x -16在区间[3,5]上( ) A .没有零点 B .有一个零点 C .有两个零点 D .有无数个零点 【解析】 ∵y =-x 2+8x -16=-(x -4)2, ∴函数在[3,5]上只有一个零点4. 【答案】 B6.函数y =log 12(x 2+6x +13)的值域是( ) A .R B .[8,+∞)C .(-∞,-2]D .[-3,+∞) 【解析】 设u =x 2+6x +13 =(x +3)2+4≥4y =log 12u 在[4,+∞)上是减函数,∴y ≤log 124=-2,∴函数值域为(-∞,-2],故选C. 【答案】 C7.定义在R 上的偶函数f(x)的部分图象如图所示,则在(-2,0)上,下列函数中与f(x)的单调性不同的是( )A .y=x2+1B .y =|x|+1C .y =⎩⎨⎧ 2x +1,x ≥0x 3+1,x<0D .y =⎩⎨⎧e x ,x ≥0e -x ,x<0【解析】 ∵f(x)为偶函数,由图象知f(x)在(-2,0)上为减函数,而y =x 3+1在(-∞,0)上为增函数.故选C.【答案】 C8.设函数y =x 3与y =⎝ ⎛⎭⎪⎫12x -2的图象的交点为(x 0,y 0),则x 0所在的区间是( )A .(0,1)B .(1,2) C(2,3) D .(3,4)【解析】 由函数图象知,故选B.【答案】 B9.函数f(x)=x 2+(3a +1)x +2a 在(-∞,4)上为减函数,则实数a 的取值范围是( )A .a ≤-3B .a ≤3C .a ≤5D .a =-3【解析】 函数f(x)的对称轴为x =-3a +12, 要使函数在(-∞,4)上为减函数, 只须使(-∞,4)⊆(-∞,-3a +12) 即-3a +12≥4,∴a ≤-3,故选A. 【答案】 A10.某新品牌电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售790台,则下列函数模型中能较好反映销量y 与投放市场的月数x 之间的关系的是( )A .y =100xB .y =50x 2-50x +100C .y =50×2xD .y =100log 2x +100 【解析】 对C ,当x =1时,y =100; 当x =2时,y =200; 当x =3时,y =400;当x =4时,y =800,与第4个月销售790台比较接近.故选C. 【答案】 C11.设log 32=a ,则log 38-2 log 36可表示为( ) A .a -2 B .3a -(1+a)2 C .5a -2 D .1+3a -a 2【解析】 log 38-2log 36=log 323-2log 3(2×3) =3log 32-2(log 32+log 33) =3a -2(a +1)=a -2.故选A. 【答案】 A12.已知f(x)是偶函数,它在[0,+∞)上是减函数.若f(lg x)>f(1),则x 的取值范围是( )A.⎝ ⎛⎭⎪⎫110,1B.⎝ ⎛⎭⎪⎫0,110∪(1,+∞) C.⎝ ⎛⎭⎪⎫110,10 D .(0,1)∪(10,+∞) 【解析】 由已知偶函数f(x)在[0,+∞)上递减, 则f(x)在(-∞,0)上递增,∴f(lg x)>f(1)⇔0≤lg x<1,或⎩⎨⎧lg x<0-lg x<1⇔1≤x<10,或⎩⎨⎧0<x<1lg x>-1⇔1≤x<10,或110<x<1⇔110<x<10,∴x 的取值范围是⎝ ⎛⎭⎪⎫110,10.故选C.【答案】 C二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)13.已知全集U ={2,3,a 2-a -1},A ={2,3},若∁U A ={1},则实数a 的值是________.【答案】 -1或214.已知集合A ={x|log 2x ≤2},B =(-∞,a),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =________.【解析】 A ={x|0<x ≤4},B =(-∞,a).若A ⊆B ,则a>4,即a 的取值范围为(4,+∞),∴c =4.【答案】 415.函数f(x)=⎝ ⎛⎭⎪⎫23x 2-2x 的单调递减区间是________.【解析】 该函数是复合函数,可利用判断复合函数单调性的方法来求解,因为函数y =⎝ ⎛⎭⎪⎫23u 是关于u 的减函数,所以内函数u =x 2-2x 的递增区间就是函数f(x)的递减区间.令u =x 2-2x ,其递增区间为[1,+∞),根据函数y =⎝ ⎛⎭⎪⎫23u是定义域上的减函数知,函数f(x)的减区间就是[1,+∞).【答案】 [1,+∞) 16.有下列四个命题: ①函数f(x)=|x||x -2|为偶函数; ②函数y =x -1的值域为{y|y ≥0};③已知集合A ={-1,3},B ={x|ax -1=0,a ∈R },若A ∪B =A ,则a 的取值集合为{-1,13};④集合A ={非负实数},B ={实数},对应法则f :“求平方根”,则f 是A 到B 的映射.你认为正确命题的序号为:________.【解析】 函数f(x)=|x||x -2|的定义域为(-∞,2)∪ (2,+∞),它关于坐标原点不对称,所以函数f(x)=|x||x -2|既不是奇函数也不是偶函数,即命题①不正确;函数y =x -1的定义域为{x|x ≥1},当x ≥1时,y ≥0,即命题②正确; 因为A ∪B =A ,所以B ⊆A ,若B =Ø,满足B ⊆A ,这时a =0;若B ≠Ø,由B ⊆A ,得a =-1或a =13.因此,满足题设的实数a 的取值集合为{-1,0,13},即命题③不正确;依据映射的定义知,命题④正确.【答案】 ②④三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知函数f(x)=x 2-3x -10的两个零点为x 1,x 2(x 1<x 2),设A ={x|x ≤x 1,或x ≥x 2},B ={x|2m -1<x<3m +2},且A ∩B =Ø,求实数m 的取值范围.【解析】 A ={x|x ≤-2,或x ≥5}.要使A ∩B =Ø,必有⎩⎨⎧2m -1≥-2,3m +2≤5,3m +2>2m -1,或3m +2<2m -1, 解得⎩⎪⎨⎪⎧m ≥-12,m ≤1,m>-3,或m<-3,即-12≤m ≤1,或m<-3.18.(本小题满分12分)已知函数f(x)=x 2+2ax +2,x ∈[-5,5]. (1)当a =-1时,求f(x)的最大值和最小值;(2)求实数a 的取值范围,使y =f(x)在区间[-5,5]上是单调函数. 【解析】 (1)当a =-1时,f(x)=x 2-2x +2=(x -1)2+1,x ∈[-5,5]. 由于f(x)的对称轴为x =1,结合图象知, 当x =1时,f(x)的最小值为1, 当x =-5时,f(x)的最大值为37.(2)函数f(x)=(x +a)2+2-a 2的图象的对称轴为x =-a , ∵f(x)在区间[-5,5]上是单调函数, ∴-a ≤-5或-a ≥5.故a 的取值范围是a ≤-5或a ≥5.19.(本小题满分12分)(1)计算:⎝ ⎛⎭⎪⎫27912+(lg5)0+(2764)-13;(2)解方程:log 3(6x -9)=3. 【解析】 (1)原式=⎝ ⎛⎭⎪⎫25912+(lg5)0+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫343-13 =53+1+43=4.(2)由方程log 3(6x -9)=3得6x -9=33=27,∴6x =36=62,∴x =2. 经检验,x =2是原方程的解.20.(本小题满分12分)有一批影碟机(VCD)原销售价为每台800元,在甲、乙两家商场均有销售,甲商场用下面的方法促销:买一台单价为780元,买两台单价为760元,依次类推,每多买一台单价均减少20元,但每台最低不低于440元;乙商场一律按原价的75%销售,某单位需购买一批此类影碟机,问去哪家商场购买花费较少?【解析】 设购买x 台,甲、乙两商场的差价为y ,则去甲商场购买共花费(800-20x)x ,由题意800-20x ≥440.∴1≤x ≤18(x ∈N ).去乙商场花费800×75%x(x ∈N *). ∴当1≤x ≤18(x ∈N *)时y =(800-20x)x -600x =200x -20x 2, 当x>18(x ∈N *)时,y =440x -600x =-160x , 则当y>0时,1≤x ≤10; 当y =0时,x =10; 当y<0时,x>10(x ∈N ).综上可知,若买少于10台,去乙商场花费较少;若买10台,甲、乙商场花费相同;若买超过10台,则去甲商场花费较少.21.(本小题满分12分)已知函数f(x)=lg(1+x)-lg(1-x). (1)求函数f(x)的定义域; (2)判断函数f(x)的奇偶性;【解析】 (1)由⎩⎨⎧1+x>0,1-x>0,得-1<x<1,∴函数f(x)的定义域为(-1,1).(2)定义域关于原点对称,对于任意的x ∈(-1,1),有-x ∈(-1,1),f(-x)=lg(1-x)-lg(1+x)=-f(x) ∴f(x)为奇函数.22.(本小题满分14分)设a>0,f(x)=e x a +ae x 是R 上的偶函数. (1)求a 的值;(2)证明:f(x)在(0,+∞)上是增函数.【解析】 (1)解:∵f(x)=e x a +ae x 是R 上的偶函数, ∴f(x)-f(-x)=0. ∴e x a +a e x -e -x a -ae-x =0,即⎝ ⎛⎭⎪⎫1a -a e x +⎝ ⎛⎭⎪⎫a -1a e -x=0 ⎝ ⎛⎭⎪⎫1a -a (e x -e -x)=0. 由于e x -e -x 不可能恒为0, ∴当1a -a =0时,式子恒成立.又a>0,∴a =1.(2)证明:∵由(1)知f(x)=e x +1e x , 在(0,+∞)上任取x 1<x 2. f(x 1)-f(x 2)=ex 1+1ex 1-ex 2-1ex 2=(ex 1-ex 2)+(ex 2-ex 1)·1ex 1+x 2.∵e>1,∴0<ex 1<ex 2,ex 1·ex 2>1, ∴ex 1+x 2>1,(ex 1-ex 2)⎝ ⎛⎭⎪⎫1-1ex 1+x 2<0, ∴f(x 1)-f(x 2)<0,即f(x 1)<f(x 2),∴f(x)在(0,+∞)上是增函数.。