高一数学函数的应用测试题及答案17
- 格式:doc
- 大小:88.00 KB
- 文档页数:8
高一数学函数试题答案及解析1.若自然数使得作竖式加法时均不产生进位现象,便称为“好数”.如因为12+13+14不产生进位现象,所以12是“好数”;但13+14+15产生进位现象,所以13不是“好数”,则不超过100的“好数”共有()A.9个B.11个C.12个D.15个【答案】C.【解析】根据题意分别求出个位数和十位数需要满足的条件,即个位数需要满足要求:,所以,所以个位数可取0,1,2三个数;又因为十位数需要满足:,所以,所以十位可以取0,1,2,3四个数,故四个数的“好数”共有个,故应选C.【考点】数的十进制;新定义.2.设,的整数部分用表示,则的值是 .【答案】1546【解析】,,,,所以.【考点】信息给予题,要善于捕捉信息,灵活运用3.关于函数,有以下命题:①函数的图像关于轴对称;②当时是增函数,当时,是减函数;③函数的最小值为;④当或时,是增函数;⑤无最大值,也无最小值。
其中正确的命题是:__________.【答案】①③④【解析】函数的定义域为,且,∴该函数为偶函数,故①正确;当时,,在上单调递减,在单调递增,故函数在单调递减,在单调递增,故②错误;因为在单调递减,在单调递增,∴在时,函数取最小值,故③正确;∵在单调递减,故在内单调递增,故④正确;有最小值,故⑤错误.【考点】1.命题的真假判断;2.函数的性质.4.已知函数,满足.(1)求常数c的值;(2)解关于的不等式.【答案】(1) ;(2) .【解析】(1)代入解析式,列出关于c的方程,解出c,注意范围;(2)根据分段函数通过分类讨论列出不等式,解出的范围,解不等式时不要忘记分类条件.试题解析:(1)∵,即,解得. 5分(2)由(1)得,由,得当时,,解得; 9分当时,,解得. 12分∴不等式的解集为. 13分【考点】1.函数求值;2.利用指数函数性质解简单指数不等式;3.分类整合思想.5.若函数对于上的任意都有,则实数的取值范围是.【答案】【解析】由函数对于上的任意都有,可知在上单调递增,因此有,解得.【考点】函数的单调性.6.函数.满足,则的值为()A.B.C.D.【答案】B【解析】因为,函数.满足,所以,解得,,故选B。
高一数学函数试题答案及解析1.若自然数使得作竖式加法时均不产生进位现象,便称为“好数”.如因为12+13+14不产生进位现象,所以12是“好数”;但13+14+15产生进位现象,所以13不是“好数”,则不超过100的“好数”共有()A.9个B.11个C.12个D.15个【答案】C.【解析】根据题意分别求出个位数和十位数需要满足的条件,即个位数需要满足要求:,所以,所以个位数可取0,1,2三个数;又因为十位数需要满足:,所以,所以十位可以取0,1,2,3四个数,故四个数的“好数”共有个,故应选C.【考点】数的十进制;新定义.2.一次函数的图像过点和,则下列各点在函数的图像上的是( ) A.B.C.D.【答案】C【解析】法一:设,由该函数的图像过点及,可得,求解得,所以,依次将A、B、C、D中的横坐标代入计算可知,只有点符合要求,故选C;法二:一次函数的图像是一条直线,由该函数的图像过点及可知,,所以直线的方程为:即,依次将各点的纵坐标减去横坐标,看是否为1,是1的点就在直线上,即该点在函数的图像上,最后确定只有C答案满足要求.【考点】1.一次函数的解析式;2.直线的方程.3.函数的一个零点是,则另一个零点是_________.【答案】【解析】本题要注意零点的概念,零点是指函数的解,并非点的坐标.依题意可知,所以,令或,所以另一个零点是1.【考点】函数的零点.4.已知是定义在上的奇函数,当时,.(1)求;(2)求的解析式;(3)若,求区间.【答案】(1)6;(2);(3).【解析】(1)利用奇函数的性质进行转化计算即可;(2)因为当时,,利用奇函数的性质先求出时的解析式,最后写出函数的解析式即可;(3)根据函数的单调性,求解不等式即分别求解不等式组与,最后取并集即可.试题解析:(1)∵是奇函数∴ 3分(2)设,则,∴∵为奇函数,∴ 5分∴ 6分(3)根据函数图像可得在上单调递增 7分当时,解得 9分当时,解得 11分∴区间为 12分.【考点】1.函数的奇偶性;2.函数的解析式;3.指数函数的性质.5.下列函数在上单调递增的是()A.B.C.D.【答案】D【解析】:对于A选项,函数在递减,故A不正确;对于B选项,函数在递减,在递增,故B不正确;对于C选项,函数在递减,故C不正确;对于D选项,函数在上单调递增,合题意综上知,D选项是正确选项【考点】本题考查指数函数、对数函数、幂函数、反比例函数等常见函数的单调性.6.若函数对于上的任意都有,则实数的取值范围是.【答案】【解析】由函数对于上的任意都有,可知在上单调递增,因此有,解得.【考点】函数的单调性.7.已知定义在R上的奇函数满足=(x≥0),若,则实数的取值范围是________.【答案】(-3,1)【解析】∵函数f(x)=x2+2x(x≥0),是增函数,且f(0)=0,f(x)是奇函数,f(x)是R上的增函数.由f(3-a2)>f(2a),,于是3-a2>2a,因此,解得-3<a<1.【考点】奇函数;函数单调性的性质.点评:本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力.8.关于函数,有下面四个结论:(1)是奇函数;(2)恒成立;(3)的最大值是; (4) 的最小值是.其中正确结论的是_______________________________________.【答案】(2)(4)【解析】根据题意,由于函数,,那么利用奇偶性定义可知,函数为偶函数因此(1)错误。
高一数学函数试题答案及解析1.·等于A.-B.-C.D.【答案】A【解析】主要考查根式的运算、根式与分数指数幂的关系。
解:·=a·(-a)=-(-a)=-(-a).2.已知函数,(1)讨论的奇偶性与单调性;(2)若不等式的解集为的值;(3)求的反函数;(4)若,解关于的不等式R).【答案】(1)①当时,在定义域内为增函数;②当时,在定义域内为减函数;(2)或;(3);(4)①当时,不等式解集为R;②当时,得,不等式的解集为;③当【解析】主要考查函数的奇偶性、单调性、指数函数与对数函数互为反函数关系、对数函数的图象和性质。
解:(1)定义域为为奇函数;,求导得,①当时,在定义域内为增函数;②当时,在定义域内为减函数;(2)①当时,∵在定义域内为增函数且为奇函数,;②当在定义域内为减函数且为奇函数,;(3)R);(4),;①当时,不等式解集为R;②当时,得,不等式的解集为;③当3.定义在R上的单调函数f(x)满足f(3)=log3且对任意x,y∈R都有f(x+y)=f(x)+f(y).(1)求证f(x)为奇函数;(2)若f(k·3)+f(3-9-2)<0对任意x∈R恒成立,求实数k的取值范围.【答案】(1)见解析;(2)【解析】主要考查函数奇偶性、单调性、指数函数与对数函数的图象和性质。
解:(1)证明:f(x+y)=f(x)+f(y)(x,y∈R),①令x=y=0,代入①式,得f(0+0)=f(0)+f(0),即 f(0)=0.令y=-x,代入①式,得 f(x-x)=f(x)+f(-x),又f(0)=0,则有0=f(x)+f(-x).即f(-x)=-f(x)对任意x∈R成立,所以f(x)是奇函数.(2)解:f(3)=log3>0,即f(3)>f(0),又f(x)在R上是单调函数,所以f(x)在R上是增函数,又由(1)f(x)是奇函数.f(k·3)<-f(3-9-2)=f(-3+9+2), k·3<-3+9+2,3-(1+k)·3+2>0对任意x∈R成立.令t=3>0,问题等价于t-(1+k)t+2>0对任意t>0恒成立.R恒成立.4.函数的图象与直线的公共点数目是()A.B.C.或D.或【答案】C【解析】有可能是没有交点的,如果有交点,那么对于仅有一个函数值;5.求函数的定义域【答案】【解析】解:∵,∴定义域为6.求函数的值域【答案】【解析】解:∵∴,∴值域为7.·等于A.-B.-C.D.【答案】A【解析】主要考查根式的运算、根式与分数指数幂的关系。
高一数学函数的应用测试题(含答案)高一数学函数的应用测试题(含答案)数学是研究现实世界空间形式和数量关系的一门科学。
小编准备了高一数学函数的应用测试题,具体请看以下内容。
一、选择题:本大题共12小题,每小题5分,共60分.1.函数的定义域是( )A.[1,+)B.45,+C.45,1D.45,1解析:要使函数有意义,只要得01,即45答案:D2.设a=20.3,b=0.32,c=logx(x2+0.3)(x1),则a,b,c的大小关系是()A.aC.c解析:∵a=20.321=2,且a=20.320=1,1∵x1,c=logx(x2+0.3)logxx2=2. cb.答案:B3.已知函数f(x)=ln(x+x2+1),若实数a,b满足f(a)+f(b-1)=0,则a+b等于()A.-1B.0C.1D.不确定解析:观察得f(x)在定义域内是增函数,而f(-x)=ln(-x+x2+1)=ln1x+x2+1=-f(x),f(x)是奇函数,则f(a)=-f(b-1)=f(1-b).a=1-b,即a+b=1.答案:C4.已知函数f(x)=-log2x (x0),1-x2 (x0),则不等式f(x)0的解集为()A.{x|0C.{x|-1-1}解析:当x0时,由-log2x0,得log2x0,即0当x0时,由1-x20,得-1答案:C5.同时满足两个条件:①定义域内是减函数;②定义域内是奇函数的函数是()A.f(x)=-x|x|B.f(x)=x3C.f(x)=sinxD.f(x)=lnxx解析:为奇函数的是A、B、C,排除D. A、B、C中在定义域内为减函数的只有A.答案:A6.函数f(x)=12x与函数g(x)= 在区间(-,0)上的单调性为()A.都是增函数B.都是减函数C.f(x)是增函数,g(x)是减函数D.f(x)是减函数,g(x)是增函数解析:f(x)=12x在x(-,0)上为减函数,g(x)= 在(-,0)上为增函数.答案:D7.若x(e-1,1),a=lnx,b=2lnx,c=ln3x,则()A.aC.b解析:a=lnx,b=2lnx=lnx2,c=ln3x.∵x(e-1,1),xx2.故ab,排除A、B.∵e-1lnx答案:C8.已知f(x)是定义在(-,+)上的偶函数,且在(-,0]上是增函数,若a=f(log47),,c=f(0.2-0.6) ,则a、b、c的大小关系是()A.cC.c解析:函数f(x)为偶函数,b=f(log123)=f(log23),c=f(0.2-0.6)=f(50.6).∵50.6log23=log49log47,f(x)在(0,+)上为减函数,f(50.6)答案:A9.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆),若该公司在这两地共销售15辆车,则能获得的最大利润为()A.45.606万元B.45.6万元C.46.8万元D.46.806万元解析:设在甲地销售x辆,则在乙地销售(15-x)辆,总利润L=L1+L2=5.06x-0.15x2+2(15-x)=-0.15x2+3.06x+30,当x=3.0620.15=10.2时,L最大.但由于x取整数,当x=10时,能获得最大利润,最大利润L=-0.15102+3.0610+30=45.6(万元).答案:B10.若f(x)是定义在R上的偶函数,且满足f(x+3)=f(x),f(2)=0,则方程f(x)=0在区间(0,6)内解的个数的最小值是()A.5B.4C.3D.2解析:f(5)=f(2+3)=f(2)=0,又∵f(-2)=f(2)=0,f(4)=f(1)=f(-2)=0,在(0,6)内x=1,2,4,5是方程f(x)=0的根.答案:B11.函数f(x)=x+log2x的零点所在区间为()A.[0,18]B.[18,14]C.[14,12]D.[12,1]解析:因为f(x)在定义域内为单调递增函数,而在四个选项中,只有f14f120,所以零点所在区间为14,12.答案:C12.定义在R上的函数f(x)满足f(x+2)=3f(x),当x[0,2]时,f(x)=x2-2x,则当x[-4,-2]时,f(x)的最小值是()A.-19B.-13C.19D.-1解析:f(x+2)=3f(x),当x[0,2]时,f(x)=x2-2x,当x=1时,f(x)取得最小值.所以当x[-4,-2]时,x+4[0,2],所以当x+4=1时,f(x)有最小值,即f(-3)=13f(-3+2)=13f(-1)=19f(1)=-19.答案:A第Ⅱ卷(非选择共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.若函数f(x)=ax2+x+1的值域为R,则函数g(x)=x2+ax+1的值域为__________.解析:要使f(x)的值域为R,必有a=0.于是g(x)=x2+1,值域为[1,+).答案:[1,+)14.若f(x)是幂函数,且满足f(4)f(2)=3,则f12=__________. 解析:设f(x)=x,则有42=3,解得2=3,=log23,答案:1315.若方程x2+(k-2)x+2 k-1=0的两根中,一根在0和1之间,另一根在1和2之间,则实数k的取值范围是__________. 解析:设函数f(x)=x2+(k-2)x+2k-1,结合图像可知,f(0)0,f(1)0,f(2)0.即2k-10,1+(k-2)+2k-10,4+2(k-2)+2k-10,解得k12,k23,即1214,我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
高一数学函数的应用练习题(含解析)函数表示每个输入值对应唯独输出值的一种对应关系。
小编预备了高一数学函数的应用练习题,具体请看以下内容。
一、选择题1.y=x-2的图象与x轴的交点坐标及其零点分别是( )A.2;2B.(2,0);2C.-2;-2D.(-2,0);-22.函数f(x)=x2+4x+a没有零点,则实数a的取值范畴是( )A.a4B.a4C.a4D.a43.函数f(x)=x2+x+3的零点的个数是( )A.0B.1C.2D.34.函数f(x)=ax2+2ax+c(a0)的一个零点是-3,则它的另一个零点是( )A.-1B.1C.-2D.25.下列函数中在区间[1,2]上有零点的是( )A.f(x)=3x2-4x+5C.f(x)=lnx-3x+6 B.f(x)=x3-5x-5D.f(x)=ex+3x-66.若函数f(x)=ax+b的零点是2,则函数g(x)=bx2-ax的零点是( )A.0,21B.021D.2,- 21C.0,- 22??x+2x-3,x0,7.函数f(x)=?的零点个数为( ) ?-2+lnx,x0?A.0B.1C.2D.31?x8.函数y=x3与y=??2?的图象的交点为(x0,y0),则x0所在区间为( )A.(-2,-1)C.(0,1) B.(-1,0)D.(1,2)9.若函数f(x)=x2-ax+b的两个零点是2和3,则函数g(x)=bx2-ax-1的零点是( )1A.-1 611C. 23 1 B.1和- 6 11D.-2310.某工厂生产甲、乙两种成本不同的产品,原先按成本价出售,由于市场销售发生变化,甲产品连续两次提价,每次提价差不多上20%;同时乙产品连续两次降价,每次降价差不多上20%,结果都以92.16元出售,现在厂家同时出售甲、乙产品各一件,盈亏的情形是( )A.不亏不盈B.赚23.68元C.赚47.32元二、填空题 D.亏23.68元1.函数f(x)=x2-4x-5的零点是________.2. 已知关于任意实数x,函数f(x)满足f(-x)=f(x).若f(x)有2 009个零点,则这2 009个零点之和为________.6.方程2x+x2=3的实数解的个数为_______. -7.英语老师预备存款5000元.银行的定期存款中存期为1年的年利率1. 98%.试运算五年后本金和利息共有________元.(列算式即可)三、解答题1.已知函数f(x)=2x-x2,问方程f(x)=0在区间[-1,0]内是否有解,什么缘故?2.函数f(x)=x2-ax-b的两个零点是2和3,求函数g(x)=bx2-ax-1的零点.3.二次函数f(x)=ax2+bx+c的零点是-2和3,当x(-2,3)时,f(x)0,且f(-6)=36,求二次函数的解析式.14.定义在R上的偶函数y=f(x)在(-,0]上递增,函数f(x)的一个零点为-2足f(log1)0的x的取值集合.4函数的应用练习题答案一. 选择题BBABD CCCBD二.填空题1. -1或5 2. 0 3. 2 4. 5000(1+1.98%)5=5514.99(元).三.解答题1-1. [解析] 因为f(-1)=21-(-1)2,f(0)=20-02=10,2而函数f(x)=2x-x2的图象是连续曲线,因此f(x)在区间[-1,0]内有零点,即方程f(x)=0在区间[-1,0]内有解.2. 【解析】由题意知方程x2-ax-b=0的两根分别为2和3,a=5,b=-6,g(x)=-6x2-5x-1.11由-6x2-5x-1=0得x1=-,x2=-2311函数g(x)的零点是-. 233. [解析] 由条件知f(x)=a(x+2)(x-3)且a0∵f(-6)=36,a=1 f(x)=(x+2)(x-3)满足条件-2f(x)=x2-x-6.11-=0,4. [解析] ∵-f??221∵f(x)为偶函数,f()=0,21-,∵f(x)在(-,0]上递增,f(log1x)f??2410log1x-12,24∵f(x)为偶函数,f(x)在[0,+)上单调减,1又f(log1x)f(,241110log1xx1,x2. 2224单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。
高一数学函数试题答案及解析1.已知,函数.若,则()A.B.C.D.【答案】A.【解析】首先由可得,,即①;然后根据可得,,即②.最后将①代入②可得,,即,故应选A.【考点】二次函数的求值.2.已知点是直线上的任意一点,则的最小值为()A.B.C.D.【答案】A【解析】点是直线上的任意一点,则有,即,所以有,显然当时,有最小值.【考点】消元法,二次函数中配方法求最值.3.函数的一个零点是,则另一个零点是_________.【答案】【解析】本题要注意零点的概念,零点是指函数的解,并非点的坐标.依题意可知,所以,令或,所以另一个零点是1.【考点】函数的零点.4.已知函数().(1)证明:当时,在上是减函数,在上是增函数,并写出当时的单调区间;(2)已知函数,函数,若对任意,总存在,使得成立,求实数的取值范围.【答案】(1)证明详见解析,在是减函数,在是增函数;(2).【解析】(1)根据函数单调性的定义进行证明即①设;②作差:;③因式分解到最简;④根据条件判定符号;⑤作出结论,经过这五步即可证明在单调递减,同理可证在是增函数,最后由奇函数的性质得出;在是减函数,在是增函数;(2)先将“对任意,总存在,使得成立”转化为“函数在区间的值域包含了在区间的值域”,分别根据函数的单调性求出这两个函数的值域,最后由集合的包含关系即可得到的取值范围.试题解析:(1)证明:当时①设是区间上的任意两个实数,且,则∵,∴,∴,即∴在是减函数 4分②同理可证在是增函数 5分综上所述得:当时,在是减函数,在是增函数 6分∵函数是奇函数,根据奇函数图像的性质可得当时,在是减函数,在是增函数 8分(2)∵() 8分由(1)知:在单调递减,单调递增∴, 10分又∵在单调递减∴由题意知:于是有:,解得 12分.【考点】1.函数的单调性与最值;2.函数的奇偶性;3.函数的值域.5.如图,点从点出发,分别按逆时针方向沿周长均为的正三角形、正方形运动一周,两点连线的距离与点走过的路程的函数关系分别记为,定义函数对于函数,下列结论正确的个数是()①;②函数的图像关于直线对称;③函数值域为;④函数在区间上单调递增.A.1B.2C.3D.4【答案】D【解析】由题意可得由函数与的图像可得函数由图像可知,①②③④都正确.【考点】1.函数的图像;2.分段函数;3.函数的单调性;4.函数的值域.6.关于的方程恰有个不同的实根,则的取值范围是________.【答案】【解析】设,,若有解,则须,即,当时,只有两解,当时,只有3个解,当时,都有四个不同的实数解,先将方程转化为,则要使关于的方程恰有8个根,则关于的二次方程在内有两个不等的正实根,记,则须有即,解之得.【考点】1.函数与方程;2.二次方程根的分布问题.7.定义在区间上的奇函数为增函数,偶函数在上图象与的图象重合.设,给出下列不等式,其中成立的是( )①②③④A.①④B.②③C.①③D.②④【答案】C【解析】因为,定义在区间上的奇函数为增函数,偶函数在上图象与的图象重合.即偶函数在上是增函数,在是减函数。
高一数学函数试题答案及解析1.已知函数,的部分图象如图所示,则( )A.B.C.D.【答案】B【解析】根据题意,由于函数,的部分图象可知函数的周期为,故可知将代入可知,函数值为零,则可知得到,故可知由于过点(0,1)可知A=1,故可知解析式为,故,故答案为B.【考点】函数的性质点评:主要考查了三角函数图象与性质的运用,属于基础题。
2.已知函数,则满足不等式的实数的取值范围是__________________.【答案】【解析】因为,函数是单调增函数,且为奇函数,所以,即,所以,,解得,实数的取值范围是。
【考点】函数的单调性,抽象不等式解法,一元一次不等式组的解法。
点评:小综合题,利用函数的单调性,将抽象不等式转化成具体不等式,是此类问题的一般解法。
3.关于函数,有下面四个结论:(1)是奇函数;(2)恒成立;(3)的最大值是; (4) 的最小值是.其中正确结论的是_______________________________________.【答案】(2)(4)【解析】根据题意,由于函数,,那么利用奇偶性定义可知,函数为偶函数因此(1)错误。
对于(2)因为,故可知恒成立;正确,对于的最大值是,实际上取不到,因此错误,对于(4) 的最小值是,当x=0时,函数取得最小值为,因此成立,故答案为(2)(4)【考点】函数的性质点评:主要是考查了函数的奇偶性和单调性的运用,属于中档题。
4.设定义在上的奇函数f(x)在上是减函数,若f(1-m)< f(m)求的取值范围.【答案】【解析】解:∵f(x)是定义在上的奇函数,且f(x)在上是减函数∴f(x)在[-2,0] 也是减函数,∴f(x)在上单调递减故满足条件的m的值为【考点】函数的奇偶性;函数的单调性点评:解不是具体的不等式,像本题的f(1-m)< f(m),常结合函数的单调性求解。
5.若f(x)是偶函数,g(x)是奇函数,且,求f(x)和g(x)的解析式。
高一数学(必修1)第三章 函数的应用(含幂函数)[基础训练]一、选择题1.若)1(,,)1(,1,4,)21(,2522>==-=+====a a y x y x y x y x y y x y xx 上述函数是幂函数的个数是( ) A .0个 B .1个 C .2个 D .3个2.已知)(x f 唯一的零点在区间(1,3)、(1,4)、(1,5)内,那么下面命题错误的( ) A .函数)(x f 在(1,2)或[)2,3内有零点 B .函数)(x f 在(3,5)内无零点 C .函数)(x f 在(2,5)内有零点 D .函数)(x f 在(2,4)内不一定有零点3.若0,0,1a b ab >>>,12log ln 2a =,则log a b 与a 21log 的关系是( )A .12log log a b a < B .12log log a b a =C .12log log a b a > D .12log log a b a ≤4. 求函数132)(3+-=x x x f 零点的个数为 ( ) A .1 B .2 C .3 D .45.已知函数)(x f y =有反函数,则方程0)(=x f ( ) A .有且仅有一个根 B .至多有一个根 C .至少有一个根 D .以上结论都不对6.如果二次函数)3(2+++=m mx x y 有两个不同的零点,则m 的取值范围是( ) A .()6,2- B .[]6,2- C .{}6,2- D .()(),26,-∞-+∞7.某林场计划第一年造林10000亩,以后每年比前一年多造林20%,则第四年造林( ) A .14400亩 B .172800亩 C .17280亩 D .20736亩二、填空题1.若函数()x f 既是幂函数又是反比例函数,则这个函数是()x f = 。
2.幂函数()f x 的图象过点(,则()f x 的解析式是_____________。
高一上学期数学(必修一)《第三章函数的应用》同步练习题及答案(人教版)一、单选题1.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,第一季度共获利42万元,已知二月份和三月份利润的月增长率相同.设二、三月份利润的月增长率为x ,则x 满足的方程为( )A .210(1)42x +=B .21010(1)42x ++=C .1010(1)10(12)42x x ++++=D .21010(1)10(1)42x x ++++=2.某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,如图所示,由图中给出的信息可知,营销人员没有销售量时的收入是( )A .310元B .300元C .390元D .280元3.某公司在甲、乙两地同时销售一种品牌车,销售x 辆该品牌车的利润(单位:万元)分别为2121L x x=-+和22L x =.若该公司在两地共销售15辆,则能获得的最大利润为( )A .90万元B .60万元C .120万元D .120.25万元4.把长为12cm 的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是( )A .233cm 2B .24cmC .232cmD .223cm5.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为( )m .A .400B .12C .20D .306.单位时间内通过道路上指定断面的车辆数被称为“道路容量”,与道路设施、交通服务、环境、气候等诸多条件相关.假设某条道路一小时通过的车辆数N 满足关系2010000.70.3v N v v d =++,其中0d 为安全距离,v为车速()m /s .当安全距离0d 取30m 时,该道路一小时“道路容量”的最大值约为( )A .135B .149C .165D .1957.某中学体育课对女生立定跳远项目的考核标准为:立定跳远距离1.33米得5分,每增加0.03米,分值增加5分,直到1.84米得90分后,每增加0.1米,分值增加5分,满分为120分.若某女生训练前的成绩为70分,经过一段时间的训练后,成绩为105分,则该女生训练后,立定跳远距离增加了( )A .0.33米B .0.42米C .0.39米D .0.43米8.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A 地出发前往B 地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的85继续骑行,经过一段时间,甲先到达B 地,乙一直保持原速前往B 地.在此过程中,甲、乙两人相距的路程y (单位:米)与乙骑行的时间x (单位:分钟)之间的关系如图所示,则下列说法错误的是( )A .乙的速度为300米/分钟B .25分钟后甲的速度为400米/分钟C .乙比甲晚14分钟到达B 地D .A 、B 两地之间的路程为29400米二 、多选题 9.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f(x)=√x x <A,√A x ⩾A(A,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,下列结果正确的是( )A. A =16B. c =60C. A =4D. c =3010.对任意两个实数a ,b ,定义max{ a,b}={a,a >b,若f(x)=2−x 2,g(x)=x 2下列关于函数F(x)=max{ f(x),g(x)}的说法正确的有( )A. 函数F(x)是偶函数B. 函数F(x)有四个单调区间C. 方程F(x)=2有四个不同的根D. 函数F(x)的最大值为1,无最小值11.函数y =[x]的函数值表示不超过x 的最大整数.例如[1.1]=1,[2.3]=2设函数f(x)={1−x 2,x <0,x −[x],x ⩾0,则下列说法正确的是( )A. 函数f(x)的值域为(−∞,0]B. 若x ⩾0,则[f(x)]=0C. 方程f(x)=1有无数个实数根D. 若方程f(x)=−x +a 有两个不等的实数根,则实数a 的取值范围是[0,+∞)12.已知函数f(x)={x 2,x ⩽0,−x 2,x >0,则下列结论中正确的是( ) A. f(√2)=2B. 若f(m)=9,则m ≠±3C. f(x)是奇函数D. 在f(x)上R 单调递减三、填空题13.某建材商场国庆期间搞促销活动,规定:如果顾客选购物品的总金额不超过600元,则不享受任何折扣优惠;如果顾客选购物品的总金额超过600元,则超过600元部分享受一定的折扣优惠,折扣优惠按下表累计计算. 可以享受折扣优惠金额折扣优惠率 不超过500元的部分5% 超过500元的部分 10% 某人在此商场购物获得的折扣优惠金额为30元,则他实际所付金额为__________元.14.函数()()222323y x x x x =---+零点的个数为_____________.15.如图,在半径为4(单位:cm )的半圆形(O 为圆心)铁皮上截取一块矩形材料ABCD ,其顶点,A B 在直径上,顶点,C D 在圆周上,则矩形ABCD 面积的最大值为____(单位:2cm ).四、解答题16..如图,某灌溉渠的横断面是等腰梯形,底宽2m ,渠深为1.8m ,斜坡的倾斜角是45°(无水状态不考虑).(1)试将横断面中水的面积()A h (2m )表示成水深h (m )的函数;(2)当水深为1.2m 时,求横断面中水的面积.17.“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,把每尾鱼的平均生长速度v (单位:千克/年)表示为养殖密度x (单位:尾/立方米)的函数.当04x <≤时,v 的值为2;当420x <≤时,v 是关于x 的一次函数.当x =20时,因缺氧等原因,v 的值为0.(1)当020x <≤时,求函数()v x 的表达式;(2)当x 为多大时,鱼的年生长量(单位:千克/立方米)()()f x x v x =⋅可以达到最大?并求出最大值.18.首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下进行技术攻关,采取了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似的表示为21200800002y x x =-+ ,且处理每吨二氧化碳得到可利用的化工产品价值为100元. (1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使单位不亏损?19.吉祥物“冰墩墩”在北京2022年冬奥会强势出圈,并衍生出很多不同品类的吉祥物手办.某企业承接了“冰墩墩”玩具手办的生产,已知生产此玩具手办的固定成本为200万元.每生产x 万盒,需投入成本()h x 万元,当产量小于或等于50万盒时()180100h x x =+;当产量大于50万盒时()2603500h x x x =++,若每盒玩具手办售价200元,通过市场分析,该企业生产的玩具手办可以全部销售完(利润=售价-成本,成本=固定成本+生产中投入成本)(1)求“冰墩墩”玩具手办销售利润y (万元)关于产量x (万盒)的函数关系式;(2)当产量为多少万盒时,该企业在生产中所获利润最大?20.随着城市居民汽车使用率的增加,交通拥堵问题日益严重,而建设高架道路、地下隧道以及城市轨道公共运输系统等是解决交通拥堵问题的有效措施.某市城市规划部门为提高早晚高峰期间某条地下隧道的车辆通行能力,研究了该隧道内的车流速度v (单位:千米/小时)和车流密度x (单位:辆/千米)所满足的关系式:()60,030R 80,30120150x v k k x x <≤⎧⎪=∈⎨-<≤⎪-⎩.研究表明:当隧道内的车流密度达到120辆/千米时造成堵塞,此时车流速度是0千米/小时.(1)若车流速度v 不小于40千米/小时,求车流密度x 的取值范围;(2)隧道内的车流量y (单位时间内通过隧道的车辆数,单位:辆/小时)满足y x v =⋅,求隧道内车流量的最大值(精确到1辆/小时),并指出当车流量最大时的车流密度(精确到1辆/千米).(参考数据:5 2.236) 参考答案1.D 2.B3.C4.D5.C6.B7.B8.C9.AB;10.AB;11.BD;12.CD;13.112014.215.1616.(1)依题意,横断面中的水面是下底为2m ,上底为()22h +m ,高为h m 的等腰梯形,所以()()()222220 1.82h A h h h h h ++=⋅=+<≤. (2)由(1)知()()220 1.8A h h h h =+<≤ ()21.2 1.22 1.2 3.84h =+⨯=所以当水深为1.2m 时,横断面水中的面积为3.842m .17.(1)依题意,当04x <≤时()2v x =;当420x <≤时,()v x 是关于x 的一次函数,假设()(0)v x ax b a =+≠则42200a b a b +=⎧⎨+=⎩,解得0.1252.5a b =-⎧⎨=⎩所以()2,040.125 2.5,420x v x x x <≤⎧=⎨-+<≤⎩. (2)当04x <≤时()()()2028v x f x x v x x =⇒<=⋅=≤;当420x <≤时()()20.125 2.50.125 2.5v x x f x x x =-+⇒=-+当()2.51020.125x =-=⨯-时,()f x 取得最大值()1012.5f =. 因为12.58>,所以当x =10时,鱼的年生长量()f x 可以达到最大,最大值为12.53/千克米.18.(1)由题意知,平均每吨二氧化碳的处理成本为180000180000200220020022y x x x x x=+-≥⋅-=; 当且仅当1800002x x = ,即400x = 时等号成立 故该当每月处理量为400吨时,才能使每吨的平均处理成本最低为200元.(2)不获利,设该单位每个月获利为S 元,则2211100100200800003008000022S x y x x x x x ⎛⎫=-=--+=-+- ⎪⎝⎭()21300350002x =--- 因为[]400,600x ∈,则[]80000,40000S ∈--故该当单位每月不获利,需要国家每个月至少补贴40000元才能不亏损.19.(1)当产量小于或等于50万盒时20020018010020300y x x x =---=-当产量大于50万盒时222002006035001403700y x x x x x =----=-+-故销售利润y (万元)关于产量x (万盒)的函数关系式为220300,050,N 1403700,50x x y x x x x -≤≤⎧=∈⎨-+->⎩(2)当050x ≤≤时2050300700y ≤⨯-=;当50x >时21403700y x x =-+-当140702x ==时,21403700y x x =-+-取到最大值,为1200. 因为7001200<,所以当产量为70万盒时,该企业所获利润最大.20.(1)解:由题意知当120x =(辆/千米)时,0v =(千米/小时)代入80150k v x=--,解得2400k = 所以60,030240080,30120150x v x x <≤⎧⎪=⎨-<≤⎪-⎩. 当030x <≤时,6040v =≥,符合题意;当30120x <≤时,令24008040150x-≥-,解得90x ≤,所以3090x <≤. 所以,若车流速度v 不小于40千米/小时,则车流密度x 的取值范围是(]0,90.(2)解:由题意得60,030240080,30120150x x y x x x x <≤⎧⎪=⎨-<≤⎪-⎩当030x <≤时,60y x =为增函数,所以1800y ≤,当30x =时等号成立;当30120x <≤时 ()()2150180150450024004500808080180150150150150x x x y x x x x x --+--⎡⎤⎛⎫=-==--+ ⎪⎢⎥---⎝⎭⎣⎦ 4800(35)3667≤-≈. 当且仅当4500150150x x-=-,即30(55)83x =-≈时等号成立. 所以,隧道内车流量的最大值约为3667辆/小时,此时车流密度约为83辆/千米.。
高一数学函数及其表示试题答案及解析1.函数的图象与直线的公共点数目是()A.0B.1C.0或1D.1或2【答案】B【解析】若函数在处有意义,在函数的图象与直线的公共点数目是1;若函数在处无意义,则两者没有交点,∴有可能没有交点,如果有交点,那么仅有一个,故选B.【考点】函数定义与图象2.如图所示,当时,函数的图象是 ( )【答案】D【解析】对于D,当a<0时,b<0,所以抛物线的开口向下,并且直线的斜率为负值,在y轴上的截距为负值.因而选D.3.若函数的定义域为,值域为,则的取值范围是()A.B.C.D.【答案】B【解析】因为,又因为x=2时,y=-6;当x=0或x=4时,y=-2.所以,故应选B.4.某工厂8年来某产品总产量y与时间t年的函数关系如下图,则:①前3年中总产量增长速度越来越慢;②前3年总产量增长速度增长速度越来越快;③第3年后,这种产品年产量保持不变.④第3年后,这种产品停止生产;以上说法中正确的是_______.【答案】②④【解析】由函数图象可知在区间[0,3]上,图象图象凹陷上升的,表明年产量增长速度越来越快;在区间(3,8]上,如果图象是水平直线,表明总产量保持不变,即年产量为0.∴②④正确.5.下列哪组中的两个函数是同一函数()A.与B.与C.与D.与【答案】B【解析】根据同一函数的定义可知,定义域和对应法则相同时。
那么选项A中,定义域不同,选项B中,定义域和对应法则相同;选项C中,定义域不同,选项D中,定义域不同,故选B.6.若函数,则=_____ __ _____【解析】因为函数,,令x=1,则可知f(2)=1-1=0.7.对于函数,定义域为,以下命题正确的是(只要求写出命题的序号)①若,则是上的偶函数;②若对于,都有,则是上的奇函数;③若函数在上具有单调性且则是上的递减函数;④若,则是上的递增函数。
【答案】②③【解析】因为根据偶函数的定义可知,要满足定义域内任何一个变量满足f(x)=f(-x),故命题1错误。
模块质量检测(一)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设U =R ,A ={x|x>0},B ={x|x>1},则A ∩∁U B =( ) A{x|0≤x<1} B .{x|0<x ≤1} C .{x|x<0} D .{x|x>1}【解析】 ∁U B ={x|x ≤1},∴A ∩∁U B ={x|0<x ≤1}.故选B. 【答案】 B2.若函数y =f(x)是函数y =a x (a>0,且a ≠1)的反函数,且f(2)=1,则f(x)=( )A .log 2x B.12x C .log 12x D .2x -2【解析】 f(x)=log a x ,∵f(2)=1, ∴log a 2=1,∴a =2. ∴f(x)=log 2x ,故选A. 【答案】 A3.下列函数中,与函数y =1x 有相同定义域的是( )A .f(x)=ln xB .f(x)=1x C .f(x)=|x| D .f(x)=e x 【解析】 ∵y =1x的定义域为(0,+∞).故选A. 【答案】 A4.已知函数f(x)满足:当x ≥4时,f(x)=⎝ ⎛⎭⎪⎫12x;当x<4时,f(x)=f(x +1).则f(3)=( )A.18 B .8 C.116 D .16【解析】 f(3)=f(4)=(12)4=116. 【答案】 C5.函数y =-x 2+8x -16在区间[3,5]上( ) A .没有零点 B .有一个零点 C .有两个零点 D .有无数个零点 【解析】 ∵y =-x 2+8x -16=-(x -4)2, ∴函数在[3,5]上只有一个零点4. 【答案】 B6.函数y =log 12(x 2+6x +13)的值域是( ) A .R B .[8,+∞)C .(-∞,-2]D .[-3,+∞) 【解析】 设u =x 2+6x +13 =(x +3)2+4≥4y =log 12u 在[4,+∞)上是减函数,∴y ≤log 124=-2,∴函数值域为(-∞,-2],故选C. 【答案】 C7.定义在R 上的偶函数f(x)的部分图象如图所示,则在(-2,0)上,下列函数中与f(x)的单调性不同的是( )A .y=x2+1B .y =|x|+1C .y =⎩⎨⎧ 2x +1,x ≥0x 3+1,x<0D .y =⎩⎨⎧e x ,x ≥0e -x ,x<0【解析】 ∵f(x)为偶函数,由图象知f(x)在(-2,0)上为减函数,而y =x 3+1在(-∞,0)上为增函数.故选C.【答案】 C8.设函数y =x 3与y =⎝ ⎛⎭⎪⎫12x -2的图象的交点为(x 0,y 0),则x 0所在的区间是( )A .(0,1)B .(1,2) C(2,3) D .(3,4)【解析】 由函数图象知,故选B.【答案】 B9.函数f(x)=x 2+(3a +1)x +2a 在(-∞,4)上为减函数,则实数a 的取值范围是( )A .a ≤-3B .a ≤3C .a ≤5D .a =-3【解析】 函数f(x)的对称轴为x =-3a +12, 要使函数在(-∞,4)上为减函数, 只须使(-∞,4)⊆(-∞,-3a +12) 即-3a +12≥4,∴a ≤-3,故选A. 【答案】 A10.某新品牌电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售790台,则下列函数模型中能较好反映销量y 与投放市场的月数x 之间的关系的是( )A .y =100xB .y =50x 2-50x +100C .y =50×2xD .y =100log 2x +100 【解析】 对C ,当x =1时,y =100; 当x =2时,y =200; 当x =3时,y =400;当x =4时,y =800,与第4个月销售790台比较接近.故选C. 【答案】 C11.设log 32=a ,则log 38-2 log 36可表示为( ) A .a -2 B .3a -(1+a)2 C .5a -2 D .1+3a -a 2【解析】 log 38-2log 36=log 323-2log 3(2×3) =3log 32-2(log 32+log 33) =3a -2(a +1)=a -2.故选A. 【答案】 A12.已知f(x)是偶函数,它在[0,+∞)上是减函数.若f(lg x)>f(1),则x 的取值范围是( )A.⎝ ⎛⎭⎪⎫110,1B.⎝ ⎛⎭⎪⎫0,110∪(1,+∞) C.⎝ ⎛⎭⎪⎫110,10 D .(0,1)∪(10,+∞) 【解析】 由已知偶函数f(x)在[0,+∞)上递减, 则f(x)在(-∞,0)上递增,∴f(lg x)>f(1)⇔0≤lg x<1,或⎩⎨⎧lg x<0-lg x<1⇔1≤x<10,或⎩⎨⎧0<x<1lg x>-1⇔1≤x<10,或110<x<1⇔110<x<10,∴x 的取值范围是⎝ ⎛⎭⎪⎫110,10.故选C.【答案】 C二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)13.已知全集U ={2,3,a 2-a -1},A ={2,3},若∁U A ={1},则实数a 的值是________.【答案】 -1或214.已知集合A ={x|log 2x ≤2},B =(-∞,a),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =________.【解析】 A ={x|0<x ≤4},B =(-∞,a).若A ⊆B ,则a>4,即a 的取值范围为(4,+∞),∴c =4.【答案】 415.函数f(x)=⎝ ⎛⎭⎪⎫23x 2-2x 的单调递减区间是________.【解析】 该函数是复合函数,可利用判断复合函数单调性的方法来求解,因为函数y =⎝ ⎛⎭⎪⎫23u 是关于u 的减函数,所以内函数u =x 2-2x 的递增区间就是函数f(x)的递减区间.令u =x 2-2x ,其递增区间为[1,+∞),根据函数y =⎝ ⎛⎭⎪⎫23u是定义域上的减函数知,函数f(x)的减区间就是[1,+∞).【答案】 [1,+∞) 16.有下列四个命题: ①函数f(x)=|x||x -2|为偶函数; ②函数y =x -1的值域为{y|y ≥0};③已知集合A ={-1,3},B ={x|ax -1=0,a ∈R },若A ∪B =A ,则a 的取值集合为{-1,13};④集合A ={非负实数},B ={实数},对应法则f :“求平方根”,则f 是A 到B 的映射.你认为正确命题的序号为:________.【解析】 函数f(x)=|x||x -2|的定义域为(-∞,2)∪ (2,+∞),它关于坐标原点不对称,所以函数f(x)=|x||x -2|既不是奇函数也不是偶函数,即命题①不正确;函数y =x -1的定义域为{x|x ≥1},当x ≥1时,y ≥0,即命题②正确; 因为A ∪B =A ,所以B ⊆A ,若B =Ø,满足B ⊆A ,这时a =0;若B ≠Ø,由B ⊆A ,得a =-1或a =13.因此,满足题设的实数a 的取值集合为{-1,0,13},即命题③不正确;依据映射的定义知,命题④正确.【答案】 ②④三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知函数f(x)=x 2-3x -10的两个零点为x 1,x 2(x 1<x 2),设A ={x|x ≤x 1,或x ≥x 2},B ={x|2m -1<x<3m +2},且A ∩B =Ø,求实数m 的取值范围.【解析】 A ={x|x ≤-2,或x ≥5}.要使A ∩B =Ø,必有⎩⎨⎧2m -1≥-2,3m +2≤5,3m +2>2m -1,或3m +2<2m -1, 解得⎩⎪⎨⎪⎧m ≥-12,m ≤1,m>-3,或m<-3,即-12≤m ≤1,或m<-3.18.(本小题满分12分)已知函数f(x)=x 2+2ax +2,x ∈[-5,5]. (1)当a =-1时,求f(x)的最大值和最小值;(2)求实数a 的取值范围,使y =f(x)在区间[-5,5]上是单调函数. 【解析】 (1)当a =-1时,f(x)=x 2-2x +2=(x -1)2+1,x ∈[-5,5]. 由于f(x)的对称轴为x =1,结合图象知, 当x =1时,f(x)的最小值为1, 当x =-5时,f(x)的最大值为37.(2)函数f(x)=(x +a)2+2-a 2的图象的对称轴为x =-a , ∵f(x)在区间[-5,5]上是单调函数, ∴-a ≤-5或-a ≥5.故a 的取值范围是a ≤-5或a ≥5.19.(本小题满分12分)(1)计算:⎝ ⎛⎭⎪⎫27912+(lg5)0+(2764)-13;(2)解方程:log 3(6x -9)=3. 【解析】 (1)原式=⎝ ⎛⎭⎪⎫25912+(lg5)0+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫343-13 =53+1+43=4.(2)由方程log 3(6x -9)=3得6x -9=33=27,∴6x =36=62,∴x =2. 经检验,x =2是原方程的解.20.(本小题满分12分)有一批影碟机(VCD)原销售价为每台800元,在甲、乙两家商场均有销售,甲商场用下面的方法促销:买一台单价为780元,买两台单价为760元,依次类推,每多买一台单价均减少20元,但每台最低不低于440元;乙商场一律按原价的75%销售,某单位需购买一批此类影碟机,问去哪家商场购买花费较少?【解析】 设购买x 台,甲、乙两商场的差价为y ,则去甲商场购买共花费(800-20x)x ,由题意800-20x ≥440.∴1≤x ≤18(x ∈N ).去乙商场花费800×75%x(x ∈N *). ∴当1≤x ≤18(x ∈N *)时y =(800-20x)x -600x =200x -20x 2, 当x>18(x ∈N *)时,y =440x -600x =-160x , 则当y>0时,1≤x ≤10; 当y =0时,x =10; 当y<0时,x>10(x ∈N ).综上可知,若买少于10台,去乙商场花费较少;若买10台,甲、乙商场花费相同;若买超过10台,则去甲商场花费较少.21.(本小题满分12分)已知函数f(x)=lg(1+x)-lg(1-x). (1)求函数f(x)的定义域; (2)判断函数f(x)的奇偶性;【解析】 (1)由⎩⎨⎧1+x>0,1-x>0,得-1<x<1,∴函数f(x)的定义域为(-1,1).(2)定义域关于原点对称,对于任意的x ∈(-1,1),有-x ∈(-1,1),f(-x)=lg(1-x)-lg(1+x)=-f(x) ∴f(x)为奇函数.22.(本小题满分14分)设a>0,f(x)=e x a +ae x 是R 上的偶函数. (1)求a 的值;(2)证明:f(x)在(0,+∞)上是增函数.【解析】 (1)解:∵f(x)=e x a +ae x 是R 上的偶函数, ∴f(x)-f(-x)=0. ∴e x a +a e x -e -x a -ae-x =0,即⎝ ⎛⎭⎪⎫1a -a e x +⎝ ⎛⎭⎪⎫a -1a e -x=0 ⎝ ⎛⎭⎪⎫1a -a (e x -e -x)=0. 由于e x -e -x 不可能恒为0, ∴当1a -a =0时,式子恒成立.又a>0,∴a =1.(2)证明:∵由(1)知f(x)=e x +1e x , 在(0,+∞)上任取x 1<x 2. f(x 1)-f(x 2)=ex 1+1ex 1-ex 2-1ex 2=(ex 1-ex 2)+(ex 2-ex 1)·1ex 1+x 2.∵e>1,∴0<ex 1<ex 2,ex 1·ex 2>1, ∴ex 1+x 2>1,(ex 1-ex 2)⎝ ⎛⎭⎪⎫1-1ex 1+x 2<0, ∴f(x 1)-f(x 2)<0,即f(x 1)<f(x 2),∴f(x)在(0,+∞)上是增函数.。