固体的结构与性质
- 格式:doc
- 大小:674.50 KB
- 文档页数:11
化学实验教案固体的结构与性质化学实验教案:固体的结构与性质引言:固体是我们日常生活中常见的物质状态之一。
不同固体的结构与性质会对其化学性质、物理性质和应用产生重要影响。
本实验旨在通过实验操作,研究不同固体的结构与性质的关系,深化对固体基本概念的理解,并培养学生观察、记录和分析实验数据的能力。
实验材料:- 实验装置:烧杯,试管,酒精灯,玻璃滴管,试剂瓶等。
- 实验药品:氯化钠、硫酸铜、石碱、氯化铅等。
- 实验器具:移液管、酒精灯、显微镜等。
实验目的:1. 了解固体的基本概念和性质。
2. 研究不同固体的结构对性质的影响。
实验步骤:步骤一:氯化钠的结构与性质1. 取一定量的氯化钠放入烧杯中。
2. 加入适量的水,充分搅拌,观察氯化钠在水中的溶解现象。
3. 用试纸测定溶液的酸碱性质。
4. 使用显微镜观察溶液中的晶体结构。
步骤二:硫酸铜的结构与性质1. 取一定量的硫酸铜放入试管中。
2. 用酒精灯将试管加热,观察硫酸铜的颜色变化。
3. 使用显微镜观察加热后的硫酸铜颗粒的结构。
步骤三:石碱的结构与性质1. 取一定量的石碱放入烧杯中。
2. 加入适量的酸,观察石碱与酸反应的现象。
3. 用试纸测定反应产物的酸碱性质。
步骤四:氯化铅的结构与性质1. 取一定量的氯化铅放入试管中。
2. 使用显微镜观察氯化铅颗粒的结构。
3. 将试管加热,观察氯化铅在加热后的变化。
实验结果与分析:1. 氯化钠在水中溶解后形成透明的溶液,并呈现碱性。
显微镜下观察到晶体结构。
2. 硫酸铜加热后颜色变深,表明有结构或化学反应发生。
显微镜下观察到颗粒形状的变化。
3. 石碱与酸反应产生气体,并呈现酸性。
反应后产物的酸碱性质与反应前的石碱不同。
4. 氯化铅在加热后发生颜色变化,并形成新的固体产物。
结论:1. 固体的结构与性质密切相关,不同固体表现出不同的结构与性质。
2. 结构决定性质,固体的化学性质和物理性质与其结构有关。
3. 通过观察实验现象、结果和显微镜下的结构,可以帮助我们深入理解固体的结构与性质关系。
固体的结构与性质固体是物质的一种基本状态,其结构和性质对于我们理解和应用物质至关重要。
本文将从固体的结构与性质两个方面进行探讨,帮助读者深入了解固体的特点和相关知识。
一、固体的结构固体是由原子、离子或分子组成的,其内部结构紧密有序。
常见的固体结构有晶体和非晶体两类。
1. 晶体结构晶体是由规则重复排列的三维晶体格点构成的。
按照晶格的形状分类,晶体又可分为立方晶系、四方晶系、六方晶系、正交晶系、单斜晶系和三斜晶系六类。
晶体结构的特点包括:(1)周期性:晶体结构呈现规律的重复性,几何形状具有对称性。
(2)硬度:晶体由于内部原子、离子或分子的结合力较强,因此常具有较高的硬度。
(3)透明性:某些晶体的结构对入射光具有高度的吸收和散射,从而使得它们呈现出透明的性质。
2. 非晶体结构非晶体没有明确的晶体结构,其原子、离子或分子的排列形式是无序的、杂乱的。
非晶体的特点包括:(1)无规则性:非晶体内部原子、离子或分子无明显的规律性排列,呈现无序状态。
(2)随机性:在非晶态下,固体的物理性质随着组成成分的变化呈现连续性、可调节性。
(3)折射性:非晶体对光的折射性较强,使得它们呈现出不透明的特征。
二、固体的性质固体的性质是其结构特点所决定的,在以下几个方面表现出差异:1. 密度不同结构的固体具有不同的密度。
在一定温度和压力下,晶体的密度较大,而非晶体的密度较小。
这是因为晶体的有序排列使得原子、离子或分子之间的间隙较小,而非晶体中的无序性使得间隙较大。
2. 热导率晶体的热导率一般较高,是因为晶体中原子、离子或分子的排列紧密有序,传热路径较短。
非晶体由于其无序性,传热路径较长,因此热导率较低。
3. 电导率根据固体中携带电荷的粒子类型和可移动性的不同,固体的电导率表现出多样性。
金属固体因其自由电子的存在具有优良的导电性;离子晶体由于离子在结构中的周期性排列具有较高的电离度和离子迁移性;而非金属固体的电导率则相对较低。
4. 弹性固体的弹性是指其在受力作用下产生的变形和恢复的能力。
固体理论知识点总结1. 固体的结构固体的结构是固态理论研究的重要内容之一。
固体的结构可以分为晶体和非晶体两种。
晶体是一种有序排列的固体,其中原子或分子以一定的规则排列,使得晶格结构具有周期性。
晶体的结构可以被描述为晶格和基元的组合。
晶格是空间中一组平行排列的点,在每个点上放置着一个基元,即晶体的最小重复单元。
晶体的结构可以根据晶格的对称性分为立方晶系、四方晶系、六角晶系、正交晶系、单斜晶系和三斜晶系六种。
非晶体是一种没有规则排列的固体,其中原子或分子的排列没有周期性,呈现出无序的结构。
非晶体的结构通常被描述为玻璃态或凝胶态。
2. 固体的性质固体的性质是由其结构和相互作用力决定的。
固体的性质包括机械性能、导电性、磁性、光学性质等。
其中,机械性能是固体最基本的性质之一,包括硬度、弹性模量、屈服强度等。
导电性是固态物理学中的重要研究内容,固体的导电性与其电子结构和晶格结构密切相关。
磁性是固态物理学中另一个重要的性质,固体的磁性可以分为铁磁性、反铁磁性、顺磁性和抗磁性四种。
光学性质是固体的另一个重要性质,包括折射率、吸收系数、反射率等。
3. 固体的相互作用固体中原子或分子之间存在着多种相互作用力,包括离子键、共价键、金属键、范德华力等。
离子键是一种电子转移的化学键,它是正离子和负离子之间的相互吸引力。
共价键是一种共享电子的化学键,它是由两个原子之间的电子共享所形成的化学键。
金属键是金属原子之间的一种特殊相互作用力,它是由金属原子之间的自由电子形成的。
范德华力是分子之间的一种弱相互作用力,它是由分子之间的瞬时偶极子相互作用所形成的力。
4. 固体的缺陷固体中存在着各种各样的缺陷,包括点缺陷、线缺陷、面缺陷等。
点缺陷是由于晶格中一个或多个原子的缺失或额外存在而形成的缺陷,包括空位缺陷、间隙缺陷、固溶体等。
线缺陷是由于晶体中晶格排列出现错误而形成的缺陷,包括蠕滑位错、螺位错、边界位错等。
面缺陷是由于晶格中晶面的形成而引起的缺陷,包括晶界、晶粒边界、孪晶界等。
固体的结构与性质固体是物质存在的一种状态,其分子或原子以固定的位置排列,相互间具有一定的结构和性质。
本文将探讨固体的结构特征以及对其性质的影响。
一、晶体结构晶体是固体中最有序、结构最规则的形态。
晶体的结构由重复排列的单位结构单元组成,这些结构单元通过晶体内部的转换与堆积形成整齐的晶体结构。
1. 点阵结构晶体结构的基本特征是点阵结构,即离子、分子或原子在晶体中以一定的法则排列。
常见的点阵结构包括立方晶系、四方晶系、正交晶系、斜方晶系、六方晶系和三斜晶系等。
2. 晶体面及晶胞晶体面指晶体的各个表面,其位置由晶胞决定。
晶胞是晶体中最小的结构单位,由一定数量的晶体面组成。
不同晶体的晶胞形状和大小各异,反映了各自的晶体结构。
3. 空间群空间群是描述晶体点阵结构的数学概念,它由旋转、平移、镜像操作和点群对称等元素组成。
空间群的不同反映了晶体的对称性,对晶体的性质和应用具有重要的影响。
二、非晶态结构非晶态是一种无典型结构的固体形态,其原子或分子排列无序。
非晶态是具有熵增益的形态,因而具有较高的熔点和较大的硬度。
非晶态结构的形成与快速冷却或高压下的固化有关。
1. 玻璃态玻璃是一种典型的非晶态结构,具有无序排列的原子或分子。
玻璃的制备通常通过快速冷却,使晶体无法形成有序结构,从而呈现出非晶态特征。
玻璃具有良好的透明性、热稳定性和化学稳定性。
2. 聚合物非晶态聚合物在液态聚合过程中,由于聚合物链的缩短和杂乱的分子运动,导致聚合物呈现无序排列的非晶态结构。
聚合物非晶态结构的形成直接影响了聚合物的物理性质、力学性能和热稳定性。
三、结构与性质的关系固体的结构直接影响其性质,不同结构的固体表现出不同的物理、化学性质。
以下是几个典型的例子。
1. 晶体的硬度晶体的硬度与其晶体结构以及离子或分子间的相互作用力有关。
通常,离子键和共价键较强,因此具有离子结构或共价结构的晶体通常比分子结构的晶体硬度更高。
2. 聚合物的弹性聚合物的结构对其弹性和可塑性起着关键作用。
固体的性质与结构一、固体的定义与特点1.定义:固体是一种物质状态,具有固定的形状和体积,分子间相互作用力较强。
2.特点:固体分子的运动范围有限,排列有序,密度大,稳定性好。
二、固体的结构1.晶体结构:具有规则的几何外形,分子排列有序,如金属、食盐等。
2.非晶体结构:没有规则的几何外形,分子排列无序,如玻璃、塑料等。
三、固体的性质1.密度:单位体积内物质的质量,反映了固体的紧密程度。
2.硬度:固体抵抗外力压缩的能力,反映了分子间的相互作用力。
3.熔点:固体转变为液体的温度,与分子间的相互作用力有关。
4.沸点:固体转变为气体的温度,与分子间的相互作用力有关。
5.导电性:固体导电的能力,与自由电子的多少有关。
6.导热性:固体导热的能力,与分子间的相互作用力有关。
7.延展性:固体抵抗拉伸的能力,与分子间的相互作用力有关。
四、固体的分类1.金属固体:具有良好的导电性、导热性和延展性,如铜、铁、铝等。
2.非金属固体:如食盐(氯化钠)、白糖(蔗糖)等。
3.有机固体:如塑料、橡胶等。
五、固体的应用1.建筑材料:如水泥、砖块、钢材等。
2.电子元件:如半导体材料、集成电路等。
3.日常生活用品:如瓷器、玻璃等。
4.医药领域:如药物制剂、生物材料等。
六、固体的研究方法1.实验观察:通过实验现象来研究固体的性质与结构。
2.理论分析:运用物理学、化学等知识来解释固体的性质与结构。
3.技术手段:如X射线衍射、电子显微镜等,用于观察固体微观结构。
通过以上介绍,希望你对固体的性质与结构有更深入的了解。
在今后的学习和生活中,你可以不断探索和发现固体世界的奥秘。
习题及方法:1.习题:固体的定义是什么?请简述其特点。
方法:回顾课本中关于固体的定义和特点的描述,提取关键信息。
答案:固体的定义是具有固定的形状和体积的物质状态,其特点是分子间相互作用力较强,分子的运动范围有限,排列有序,密度大,稳定性好。
2.习题:晶体的结构具有哪些特点?请举例说明。
固体的结构与性质实验报告实验目的:探究固体的结构与性质之间的关联,并分析实验数据得出结论。
实验材料:1. 硫酸铁(III)晶体2. 硫酸铜结晶3. 碘晶体4. 钠晶体5. 锌晶体6. 磷酸二氢氨铜(II)晶体7. 纸张8. 水杯9. 显微镜10. 试管11. 试管架12. 烧杯13. 实验台14. 草图纸实验步骤:1. 将硫酸铁(III)晶体置于试管中,用显微镜观察晶体的形态、大小和颜色,并记录在草图纸上。
2. 将硫酸铜结晶放入烧杯中,加入适量的水搅拌溶解,然后观察溶液的颜色变化,并记录下来。
3. 在另一个烧杯中放入碘晶体,加入少量的酒精,观察晶体的溶解过程,并记录观察到的现象。
4. 用钳子夹住一个钠晶体,将其放入水杯中,观察钠的性质,并记录下来。
5. 取一根锌棒,将其轻轻擦在纸张上,观察到的现象并记录。
6. 在试管中放入磷酸二氢氨铜(II)晶体,加入适量的水,观察溶液的颜色变化,并记录。
实验结果与分析:1. 硫酸铁(III)晶体常见为橙红色晶体,呈长方体状,结晶体间排列有序。
2. 硫酸铜结晶溶解后,溶液呈淡蓝色,表明硫酸铜溶解时离子分散在溶液中。
3. 碘晶体加入酒精中溶解,观察到碘晶体逐渐消失,表明碘分子在酒精中发生了离子化作用。
4. 钠放入水中,迅速发生剧烈的气化反应,同时放出氢气,钠的性质较为活泼。
5. 锌棒擦在纸张上,纸张的颜色转变为灰黑色,表明锌发生氧化反应产生氧化锌。
6. 磷酸二氢氨铜(II)晶体溶解后,溶液呈淡绿色,说明磷酸二氢氨铜(II)离子分散在溶液中。
结论:通过以上实验,我们可以得出以下结论:1. 固体的结构与性质密切相关。
硫酸铁(III)晶体、硫酸铜结晶和磷酸二氢氨铜(II)晶体的离子以无序的方式分散在溶液中,而碘和锌晶体的分子则发生了化学反应或氧化作用。
2. 固体的性质受其原子、分子或离子的活性影响。
钠晶体具有较高的活性,能与水反应产生氢气;锌则参与氧化反应生成氧化锌。
3. 固体溶解过程中,溶解度和颜色变化可以用来间接反映固体结构和性质的差异。
第七章固体的结构与性质思考题1.常用的硫粉是硫的微晶,熔点为112.8℃,溶于CS2,CCl4等溶剂中,试判断它属于哪一类晶体?分子晶体2.已知下列两类晶体的熔点:(1) 物质NaF NaCl NaBr NaI熔点/℃993 801 747 661(2) 物质SiF4SiCl4SiBr4 SiI4熔点/℃-90.2 -70 5.4 120.5为什么钠的卤化物的熔点比相应硅的卤化物的熔点高?而且熔点递变趋势相反? 因为钠的卤化物为离子晶体,硅的卤化物为分子晶体,所以钠的卤化物的熔点比相应硅的卤化物的熔点高,离子晶体的熔点主要取决于晶格能,NaF、NaCl、NaBr、NaI随着阴离子半径的逐渐增大,晶格能减小,所以熔点降低。
分子晶体的熔点主要取决于分子间力,随着SiF4、SiCl4、SiBr4、SiI4相对分子质量的增大,分子间力逐渐增大,所以熔点逐渐升高。
3.当气态离子Ca2+,Sr2+,F-分别形成CaF2,SrF2晶体时,何者放出的能量多?为什么?形成CaF2晶体时放出的能量多。
因为离子半径r(Ca2+)<r(Sr2+),形成的晶体CaF2的核间距离较小,相对较稳定的缘故。
4. 解释下列问题:(1)NaF的熔点高于NaCl;因为r(F-)<r(Cl-),而电荷数相同,因此,晶格能:NaF>NaCl。
所以NaF的熔点高于NaCl。
(2)BeO的熔点高于LiF;由于BeO中离子的电荷数是LiF 中离子电荷数的2倍。
晶格能:BeO>LiF。
所以BeO的熔点高于LiF。
(3)SiO2的熔点高于CO2;SiO2为原子晶体,而CO2为分子晶体。
所以SiO2的熔点高于CO2。
(4)冰的熔点高于干冰(固态CO2);它们都属于分子晶体,但是冰分子中具有氢键。
所以冰的熔点高于干冰。
(5)石墨软而导电,而金刚石坚硬且不导电。
石墨具有层状结构,每个碳原子采用SP2杂化,层与层之间作用力较弱,同层碳原子之间存在大π键,大π键中的电子可以沿着层面运动。
所以石墨软而导电。
而金刚石中的碳原子采用SP3杂化,属于采用σ键连接的原子晶体。
所以金刚石坚硬且不导电。
5.下列说法是否正确?(1)稀有气体是由原子组成的,属原于晶体;×(2)熔化或压碎离子晶体所需要的能量,数值上等于晶格能;×(3)溶于水能导电的晶体必为离子晶体;×(4)共价化合物呈固态时,均为分子晶体,因此熔、沸点都低;×(5)离子晶体具有脆性,是由于阳、阴离子交替排列,不能错位的缘故。
√6.解释下列事实:(1)MgO可作为耐火材料;为离子晶体,熔点高。
(2)金属Al,Fe都能压成片、抽成丝,而石灰石则不能;因为金属Al,Fe为金属晶体。
而石灰石为离子晶体。
(3)在卤化银中,AgF可溶于水,其余卤化银则难溶于水,且从AgCl到AgI溶解度减小;AgF、AgCl、AgBr、AgI 随着阴离子半径的增大,阴离子的变形性增大,离子间的极化不断增强,由离子键逐步过渡到共价键。
所以溶解度逐步减小。
(4)NaCl易溶于水,而CuCl难溶于水。
Cu+是18电子构型,而Na+是8电子构型,Cu+的极化力比Na+强,所以CuCl 中几乎是以共价键结合,而NaCl是离子晶体。
所以NaCl 易溶于水,而CuCl难溶于水。
7.下列物质的键型有何不同?Cl2 HCl AgI LiF。
其键型分别为:非极性共价键、极性共价键、由离子键过渡到极性共价键、离子键。
8.已知:AlF3为离子型,AlCl3,AlBr3为过渡型,AlI3为共价型。
试说明它们键型差别的原因。
AlF3、AlCl3、AlBr3、AlI3随着阴离子半径的逐步增大,离子的变形增大,离子间的极化不断增强,因此由离子键逐渐过渡到共价键。
9. 实际晶体内部结构上的点缺陷有几种类型? 晶体内部结构上的缺陷对晶体的物理、化学性质有无影响? 有空穴缺陷、置换缺陷、间充缺陷三种。
晶体内部结构上的缺陷影响晶体的光、电、磁、声、力以及热等方面的物理及化学性能。
10. 试用能带理论说明金属导体、半导体和绝缘体的导电性能。
在外电场的作用下,金属导带中的电子作定向运动而形成电流,所以金属能导电;半导体由于禁带较窄,满带中的电子容易被激发越过禁带跃迁到导带上去,因此具有一定的导电能力;由于绝缘体的电子都在满带上,而且禁带较宽,即使在外电场的作用下,满带中的电子也难以被激发越过禁带跃迁到导带上去,因此不能导电。
11. 离子半径r(Cu+)<r(Ag+),所以Cu+的极化力大于Ag+。
但Cu2S的溶解度却大于Ag2S,何故? Cu+和Ag+均属18电子构型,尽管Cu+的极化力大于Ag+的,但是Ag+的变形性大于Cu+的,导致Ag2S的附加极化作用加大,键的共价成分增大、溶解度减小。
12.(1)今有元素X,Y,Z,其原子序数分别为6,38,80,试写出它们的电子分布式,说明它们在周期表中的位置;(2)X,Y两元素分别与氯形成的化合物的熔点哪一个高?为什么?(3)Y,Z两元素分别与硫形成的化合物的溶解度哪一个小? 为什么?(4)X元素与氯形成的化合物其分子偶极矩等于零,试用杂化轨道理论解释。
(1)(2)Y与Cl形成的化合物熔点高。
因为YCl2是离子晶体,而XCl4是分子晶体。
(3)Z与S形成的化合物溶解度小。
因为Z2+为18电子构型,其极化力、变形性都大,因而形成的硫化物离子之间的极化作用较大,键的共价程度较大,所以溶解度小;而Y2+为8电子构型,Y2+的极化力、变形性都较小,所以YS的溶解度较大。
(4)X与Cl形成XCl4化合物,X发生等性的SP3杂化,XCl4呈四面体,其分子的偶极矩等于零。
习题1.已知下列各晶体: NaF、ScN、TiC、MgO, 它们的核间距相差不大,试推测并排出这些化合物熔点高低、硬度大小的次序。
解:这些化合物熔点高低、硬度大小的次序为:TiC>ScN>MgO>NaF.2.下列物质中,试推测何者熔点最低?何者最高?(1) NaCl KBr KCl MgO (2) N2Si NH3解:(1)KBr的熔点最低,MgO最高;(2) N2的熔点最低,Si最高。
3.写出下列各种离子的电子分布式,并指出它们各属于何种电子构型?Fe3+Ag+Ca2+Li+S2-Pb2+Pb4+Bi3+4. 今试推测下列物质分别属于哪一类晶体?物质 B LiCl BCl3熔点/℃2300 605 -107.3解:B属原子晶体,LiCl属离子晶体,BCl3为分子晶体。
5. (1)试推测下列物质可形成何种类型的晶体?O2H2S KCl Si Pt(2)下列物质熔化时,要克服何种作用力?AlN Al HF(s) K2S解:(1) O 2、H 2S 为分子晶体,KCl 为离子晶体,Si 为原子晶体,Pt 为金属晶体。
(2) AlN 为共价键,Al 为金属键,HF(s)为氢键和分子间力,K 2S 为离子键。
6. 根据所学晶体结构知识,填出下表。
7. 用下列给出的数据,计算AlF 3(s)的晶格能(U )。
A1(s) —→ Al(g), 1326.4sub m H kJ mol ∅-∆=Al(g) - 3e- —→ Al 3+(g); I =I 1 + I 2 + I 3 = 5139.1 kJ·mol -1Al(s) + 3/2F 2(g) —→ AlF 3(s);11510f m H kJ mol ∅-∆=-F 2(g) —→ 2F(g); D θ(F-F) = 156.9 kJ·mol-1F(g) + e- —→ F -(g);11322A E kJ mol -=-解8. 已知KI 的晶格能U = 649kJ ·mol -1,K 的升华热190sub m H kJ mol ∅-∆=,K 的电离能I 1 = 418.9kJ ·mol -1,I 2的解离能D θ(I-I)=152.549kJ·mol -1,I 的电子亲合能E A1 = -295kJ·mol -1, I 2的升华热162.4sub m H kJmol ∅-∆=,求KI 的生成焓f m H ∅∆ ?解:9.将下列两组离子分别按离子极化力及变形性由小到大的次序重新排列。
(1)Al3+Na+Si4+(2)Sn2+Ge2+I-解:(1)极化力:Na+、Al3+、Si4+,变形性:Si4+、Al3、Na+;(2)极化力:Ge2+、Sn2+、I-,变形性:I-、Sn2+、Ge2+10.试按离子极化作用由强到弱的顺序重新排出下列物质的次序。
MgCl2SiCl4NaCl AlCl3解:SiCl4、AlCl3、MgCl2、NaCl。
11.比较下列每组中化合物的离子极化作用的强弱,并预测溶解度的相对大小。
(1) ZnS CdS HgS(2) PbF2PbCl2PbI2(3) CaS FeS ZnS解:(1) 离子极化作用由强到弱:HgS>CdS>ZnS; 溶解度由小到大:HgS<CdS<ZnS.(2) 离子极化作用由强到弱:PbI2>PbCl2>PbF2;溶解度由小到大PbI2<PbCl2<PbF2.(3) 离子极化作用由强到弱:ZnS>FeS>CaS;溶解度由小到大ZnS<FeS<CaS.。