数学建模时间序列分析讲解
- 格式:ppt
- 大小:994.50 KB
- 文档页数:103
财务预测和建模方法财务预测和建模是企业管理和决策过程中至关重要的一环。
它们通过运用统计学和数学建模技术,帮助企业预测未来的财务情况,并为决策提供依据。
本文将介绍几种常用的财务预测和建模方法。
一、时间序列分析法时间序列分析法是一种根据历史财务数据进行预测的方法。
它基于假设,即过去的数据模式将在未来重复出现。
时间序列分析法主要包括以下步骤:(1)观察和识别数据模式:通过查看历史财务数据,分析数据的趋势、季节性、周期性等模式。
(2)选择适当的模型:根据观察到的数据模式,选择合适的时间序列模型,如移动平均模型、指数平滑模型、ARIMA模型等。
(3)模型参数估计:利用历史数据对选定的模型进行参数估计,以得到一个较为准确的模型。
(4)预测未来数据:使用参数估计的模型,对未来的财务数据进行预测。
二、回归分析法回归分析法是一种通过建立依赖于相关变量的数学模型来进行预测的方法。
在财务预测中,通常选择线性回归模型。
回归分析法主要包括以下步骤:(1)确定相关变量:通过分析历史数据,确定可能与财务指标相关的变量。
例如,可以选择销售额、市场规模、利率等作为解释变量。
(2)建立回归模型:根据选定的相关变量,建立一个线性回归模型,将解释变量与财务指标建立起关系。
(3)模型参数估计:利用历史数据对回归模型进行参数估计,以确定模型中的系数。
(4)预测未来数据:使用参数估计的回归模型,对未来的财务数据进行预测。
三、财务比率分析法财务比率分析法是一种通过分析企业财务比率的变化趋势来进行预测的方法。
财务比率是衡量企业财务状况和经营绩效的重要指标,包括偿债能力、盈利能力、运营能力等方面的比率。
财务比率分析法主要包括以下步骤:(1)选择关键比率:挑选出与企业关键财务指标相关的财务比率,如资产负债率、净利润率、存货周转率等。
(2)分析比率变化趋势:通过比较历史数据,观察并分析财务比率的变化趋势,判断企业财务状况的发展方向。
(3)预测未来比率:根据财务比率的变化趋势,预测未来的财务比率,并据此进行财务预测。
想象一下,你的任务是:根据已有的历史时间数据,预测未来的趋势走向。
作为一个数据分析师,你会把这类问题归类为什么?当然是时间序列建模。
从预测一个产品的销售量到估计每天产品的用户数量,时间序列预测是任何数据分析师都应该知道的核心技能之一。
常用的时间序列模型有很多种,在本文中主要研究ARIMA模型,也是实际案例中最常用的模型,这种模型主要针对平稳非白噪声序列数据。
时间序列概念时间序列是按照一定的时间间隔排列的一组数据,其时间间隔可以是任意的时间单位,如小时、日、周月等。
通过对这些时间序列的分析,从中发现和揭示现象发展变化的规律,并将这些知识和信息用于预测。
比如销售量是上升还是下降,是否可以通过现有的数据预测未来一年的销售额是多少等。
1 ARIMA(差分自回归移动平均模型)简介模型的一般形式如下式所示:1.1 适用条件●数据序列是平稳的,这意味着均值和方差不应随时间而变化。
通过对数变换或差分可以使序列平稳。
●输入的数据必须是单变量序列,因为ARIMA利用过去的数值来预测未来的数值。
1.2 分量解释●AR(自回归项)、I(差分项)和MA(移动平均项):●AR项是指用于预测下一个值的过去值。
AR项由ARIMA中的参数p定义。
p值是由PACF图确定的。
●MA项定义了预测未来值时过去预测误差的数目。
ARIMA中的参数q代表MA项。
ACF图用于识别正确的q值●差分顺序规定了对序列执行差分操作的次数,对数据进行差分操作的目的是使之保持平稳。
ADF可以用来确定序列是否是平稳的,并有助于识别d值。
1.3 模型基本步骤1.31 序列平稳化检验,确定d值对序列绘图,进行ADF 检验,观察序列是否平稳(一般为不平稳);对于非平稳时间序列要先进行d 阶差分,转化为平稳时间序列1.32 确定p值和q值(1)p 值可从偏自相关系数(PACF)图的最大滞后点来大致判断,q 值可从自相关系数(ACF)图的最大滞后点来大致判断(2)遍历搜索AIC和BIC最小的参数组合1.33 拟合ARIMA模型(p,d,q)1.34 预测未来的值2 案例介绍及操作基于1985-2021年某杂志的销售量,预测某商品的未来五年的销售量。
数学建模中时间序列详细说明(总19页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除基于Excel的时间序列预测与分析1 时序分析方法简介时间序列相关概念时间序列的内涵以及组成因素所谓时间序列就是将某一指标在不同时间上的不同数值,按照时间的先后顺序排列而成的数列。
如经济领域中每年的产值、国民收入、商品在市场上的销量、股票数据的变化情况等,社会领域中某一地区的人口数、医院患者人数、铁路客流量等,自然领域的太阳黑子数、月降水量、河流流量等等,都形成了一个时间序列。
人们希望通过对这些时间序列的分析,从中发现和揭示现象的发展变化规律,或从动态的角度描述某一现象和其他现象之间的内在数量关系及其变化规律,从而尽可能多的从中提取出所需要的准确信息,并将这些知识和信息用于预测,以掌握和控制未来行为。
时间序列的变化受许多因素的影响 ,有些起着长期的、决定性的作用 ,使其呈现出某种趋势和一定的规律性;有些则起着短期的、非决定性的作用,使其呈现出某种不规则性。
在分析时间序列的变动规律时,事实上不可能对每个影响因素都一一划分开来,分别去作精确分析。
但我们能将众多影响因素,按照对现象变化影响的类型,划分成若干时间序列的构成因素,然后对这几类构成要素分别进行分析,以揭示时间序列的变动规律性。
影响时间序列的构成因素可归纳为以下四种:(1)趋势性(Trend),指现象随时间推移朝着一定方向呈现出持续渐进地上升、下降或平稳的变化或移动。
这一变化通常是许多长期因素的结果。
(2)周期性(Cyclic),指时间序列表现为循环于趋势线上方和下方的点序列并持续一年以上的有规则变动。
这种因素是因经济多年的周期性变动产生的。
比如,高速通货膨胀时期后面紧接的温和通货膨胀时期将会使许多时间序列表现为交替地出现于一条总体递增地趋势线上下方。
(3)季节性变化(Seasonal variation),指现象受季节性影响 ,按一固定周期呈现出的周期波动变化。
时间序列分析模型时间序列分析是一种广泛应用于统计学和经济学领域的建模方法,用于研究随时间变化的数据。
它的目的是揭示和预测数据中隐含的模式和关系,以便更好地理解和解释现象,并做出相应的决策。
时间序列分析模型可以分为统计模型和机器学习模型两类。
一、统计模型1.平稳时间序列模型:平稳时间序列是指在统计学意义上均值和方差都是稳定的序列。
常用的平稳时间序列模型包括:自回归移动平均模型(ARMA)、自回归整合移动平均模型(ARIMA)和季节性自回归整合移动平均模型(SARIMA)等。
-自回归移动平均模型(ARMA)是根据时间序列数据的自相关和移动平均性质建立的模型。
它将序列的当前值作为过去值的线性组合来预测未来值。
ARMA(p,q)模型中,p表示自回归项的阶数,q表示移动平均项的阶数。
-自回归整合移动平均模型(ARIMA)在ARMA模型基础上引入差分操作,用于处理非平稳时间序列。
ARIMA(p,d,q)模型中,d表示差分的次数。
-季节性自回归整合移动平均模型(SARIMA)是ARIMA模型的扩展,在存在季节性变化的时间序列数据中应用。
SARIMA(p,d,q)(P,D,Q)s模型中,s表示季节周期。
2.非平稳时间序列模型:非平稳时间序列是指均值和/或方差随时间变化的序列。
常用的非平稳时间序列模型包括:趋势模型、季节性调整模型、自回归积分滑动平均模型(ARIMA)和季节性自回归积分滑动平均模型(SARIMA)等。
- 趋势模型用于描述数据中的趋势变化,例如线性趋势模型(y = ax + b)和指数趋势模型(y = ab^x)等。
-季节性调整模型用于调整季节性变化对数据的影响,常见的方法有季节指数调整和X-12-ARIMA方法。
-自回归积分滑动平均模型(ARIMA)和季节性自回归积分滑动平均模型(SARIMA)在非平稳时间序列中引入差分操作进行模型建立。
二、机器学习模型机器学习模型在时间序列分析中发挥了重要作用,主要应用于非线性和高维数据的建模和预测。
一.时间序列分析的相关概念♦随机过程:若对于每一个特定的t ∈T ,X(t)是一个随机变量,则称这一族无穷多个随机变量{X(t),t ∈T}是一个随机过程。
♦纯随机过程:随机过程X(t)(t=1,2,…),如果是由一个不相关的随机变量序列构成的,即对于所有s ≠t ,随机变量X t 和X s 的协方差均为零,则称其为纯随机过程。
♦♦♦♦独立增量随机过程:任意两相邻时刻上的随机变量之差是相互独立的,则称其为独立增量随机过程。
二阶矩过程:若随机过程{X(t),t ∈T},对每个t ∈T ,X(t)的均值和方差存在,则称其为二阶矩过程。
正态过程:若{X(t)}的有限维分布都是正态分布,则称{X(t)}为正态随机过程。
平稳过程(严平稳):如果对于时间t 的任意n 个值t 1,t 2,…,t n 和任意实数 ,随机过程X(t)的n 维分布函数满足关系式F n (x 1,x 2,…,x n ; t 1,t 2,…,t n ) = F n (x 1,x 2,…,x n ; t 1+ε,t 2+ε,…,t n+ε),则称X(t)为平稳过程。
即是统计特性不随时间的平移而变化的过程。
♦宽平稳:若随机过程{X(t),t ∈T}的均值和协方差存在,且满足①EX t ∈a,∀t ∈T ;②E[X t+τ-a][X t -a]=R(τ),∀t,t+τ∈T ,则称{X(t),t ∈T}为宽平稳随机过程,R(τ)为X(t)的协方差函数。
♦非平稳随机过程:不具有平稳性的过程就是非平稳过程。
即序列均值或协方差与时间有关时,就可以认为是非平稳的。
♦♦自相关:指时间序列观察资料互相之间的依存关系。
动态性(记忆性):指系统现在的行为与其历史行为的相关性。
如果某输入对系统后继n 个时刻的行为都有影响,就说该系统具有n 阶动态性。
二.刻画时间序列统计特性的各种数字特征的定义、性质等♦均值函数其中,F t (x)为随机序列X t 的分布密度函数。
多元时间序列数据建模与分析随着科技不断发展,数据分析已经成为了我们生产生活中不可或缺的工具。
然而,单一的时间序列数据往往并不能完全反映出事物的真实状态,因此,我们需要对多元时间序列数据进行分析。
本文将从多元时间序列建模的角度来探讨如何对多元时间序列数据进行建模和分析。
一、多元时间序列数据的基本概念多元时间序列数据是指在不同时间点上对多个变量进行测量的数据。
例如,我们可以通过不同时间点上对于股票价格、财务指标等多个变量的测量,来构建一个多元时间序列数据集。
通常情况下,多元时间序列数据集可以用一个矩阵来表示,其中行代表时间,列代表变量。
二、多元时间序列预处理在进行多元时间序列数据分析之前,我们需要对原始数据进行一系列的预处理工作。
这些工作包括缺失值的填充、异常值的处理、平稳性检验等。
1. 缺失值的填充由于实际数据采集过程中出现了各种各样的问题,导致我们采集到的数据中可能会存在缺失值。
造成缺失值的原因很多,例如仪器故障、采样频率不够等。
在对多元时间序列数据进行处理时,我们需要采用一些有效的方法对缺失值进行填充,以确保后续分析结果的准确性。
2. 异常值的处理多元时间序列数据中的异常值通常指的是那些与其它数据明显不相符的值。
如果不对异常值进行处理,它们会严重地影响时间序列模型的建立和预测结果的准确性。
因此,在进行多元时间序列数据分析时,必须采用一些有效的方法对异常值进行处理。
3. 平稳性检验平稳性是指在同一时间点上不同变量之间的均值和方差都是稳定的。
我们通常需要对多元时间序列数据的平稳性进行检验,以确保时间序列不会出现季节性和趋势性变化,从而保证预测结果的准确性。
三、多元时间序列建模在进行多元时间序列建模之前,需要先对数据进行一系列的预处理工作,包括缺失值的填充、异常值的处理、平稳性检验等。
预处理工作完成后,我们就可以开始进行多元时间序列建模。
1. 时间序列模型常见的时间序列模型有ARIMA、VAR、VMA、ARMA、VARMA等。
时间序列分析模型时间序列分析模型是一种通过对时间序列数据进行建模和分析的方法,旨在揭示数据中的趋势、季节性、周期和不规则波动等特征,并进行预测和决策。
时间序列分析模型在经济、金融、市场、气象、医学等领域都有广泛的应用。
本文将介绍几种常见的时间序列分析模型。
1. 移动平均模型(MA)移动平均模型是时间序列分析中最简单的模型之一。
它基于一个基本假设,即观察到的时间序列数据是对随机误差的线性组合。
该模型表示为:y_t = c + e_t + θ₁e_(t-1) + θ₂e_(t-2) + … + θ_qe_(t-q)其中,y_t 是观察到的数据,c 是常数,e_t 是随机误差,θ₁,θ₂,…,θ_q 是移动平均项的参数,q 是移动平均项的阶数。
2. 自回归模型(AR)自回归模型是基于一个基本假设,即观察到的时间序列数据是过去若干时间点的线性组合。
自回归模型表示为:y_t = c + ϕ₁y_(t-1) + ϕ₂y_(t-2) + … + ϕ_p y_(t-p) + e_t其中,y_t 是观察到的数据,c 是常数,e_t 是随机误差,ϕ₁,ϕ₂,…,ϕ_p 是自回归项的参数,p 是自回归项的阶数。
3. 自回归移动平均模型(ARMA)自回归移动平均模型将自回归模型和移动平均模型结合在一起,用于处理同时具有自相关和移动平均性质的时间序列数据。
自回归移动平均模型表示为:y_t = c + ϕ₁y_(t-1) + ϕ₂y_(t-2) + … + ϕ_p y_(t-p) + e_t +θ₁e_(t-1) + θ₂e_(t-2) + … + θ_qe_(t-q)其中,y_t 是观察到的数据,c 是常数,e_t 是随机误差,ϕ₁,ϕ₂,…,ϕ_p 是自回归项的参数,θ₁,θ₂,…,θ_q 是移动平均项的参数,p 是自回归项的阶数,q 是移动平均项的阶数。
4. 季节性自回归移动平均模型(SARIMA)季节性自回归移动平均模型是自回归移动平均模型的扩展,用于处理具有季节性和趋势变化的时间序列数据。