数学建模时间序列分析
- 格式:ppt
- 大小:994.50 KB
- 文档页数:103
财务预测和建模方法财务预测和建模是企业管理和决策过程中至关重要的一环。
它们通过运用统计学和数学建模技术,帮助企业预测未来的财务情况,并为决策提供依据。
本文将介绍几种常用的财务预测和建模方法。
一、时间序列分析法时间序列分析法是一种根据历史财务数据进行预测的方法。
它基于假设,即过去的数据模式将在未来重复出现。
时间序列分析法主要包括以下步骤:(1)观察和识别数据模式:通过查看历史财务数据,分析数据的趋势、季节性、周期性等模式。
(2)选择适当的模型:根据观察到的数据模式,选择合适的时间序列模型,如移动平均模型、指数平滑模型、ARIMA模型等。
(3)模型参数估计:利用历史数据对选定的模型进行参数估计,以得到一个较为准确的模型。
(4)预测未来数据:使用参数估计的模型,对未来的财务数据进行预测。
二、回归分析法回归分析法是一种通过建立依赖于相关变量的数学模型来进行预测的方法。
在财务预测中,通常选择线性回归模型。
回归分析法主要包括以下步骤:(1)确定相关变量:通过分析历史数据,确定可能与财务指标相关的变量。
例如,可以选择销售额、市场规模、利率等作为解释变量。
(2)建立回归模型:根据选定的相关变量,建立一个线性回归模型,将解释变量与财务指标建立起关系。
(3)模型参数估计:利用历史数据对回归模型进行参数估计,以确定模型中的系数。
(4)预测未来数据:使用参数估计的回归模型,对未来的财务数据进行预测。
三、财务比率分析法财务比率分析法是一种通过分析企业财务比率的变化趋势来进行预测的方法。
财务比率是衡量企业财务状况和经营绩效的重要指标,包括偿债能力、盈利能力、运营能力等方面的比率。
财务比率分析法主要包括以下步骤:(1)选择关键比率:挑选出与企业关键财务指标相关的财务比率,如资产负债率、净利润率、存货周转率等。
(2)分析比率变化趋势:通过比较历史数据,观察并分析财务比率的变化趋势,判断企业财务状况的发展方向。
(3)预测未来比率:根据财务比率的变化趋势,预测未来的财务比率,并据此进行财务预测。
数学建模评价类算法
数学建模评价类算法有许多种,下面列举几种常见的算法:
1. 主成分分析(Principal Component Analysis,简称PCA):PCA是一种常用的多变量数据降维算法,它可以将高维数据映射到低维子空间,从而提取数据中的主要成分。
在数学建模中,可以利用PCA算法对数据的维度进行降维,从而减少问题的复杂度。
2. 回归分析(Regression Analysis):回归分析是一种用来研究变量之间关系的统计方法,它可以通过拟合一个数学函数来预测和解释因变量的变化。
在数学建模中,可以利用回归分析来建立数学模型,从而预测和解释问题的特征和关系。
3. 时间序列分析(Time Series Analysis):时间序列分析是一种用来研究时间序列数据的统计方法,它可以用来预测未来的数据趋势和周期性。
在数学建模中,可以利用时间序列分析来建立时间序列模型,从而预测和解释问题的时间变化规律。
4. 神经网络(Neural Network):神经网络是一种模仿人脑神经元网络结构的数学模型,它可以通过训练和学习来提取和表示数据中的模式和关系。
在数学建模中,可以利用神经网络来建立复杂的映射关系,从而解决复杂的问题。
5. 遗传算法(Genetic Algorithm):遗传算法是一种通过模拟生物进化过程来解决优化问题的算法,它通过选择、交叉和变异等操作来搜索问题的最优解。
在数学建模中,可以利用遗传
算法来优化问题的目标函数,从而找到最优解。
这些算法在数学建模中都有广泛的应用,具体选择哪种算法取决于问题的特点和要求。
同时,也可以根据不同的问题将多个算法进行组合和集成,以达到更好的建模效果。
数学建模中时间序列详细说明(总19页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除基于Excel的时间序列预测与分析1 时序分析方法简介时间序列相关概念时间序列的内涵以及组成因素所谓时间序列就是将某一指标在不同时间上的不同数值,按照时间的先后顺序排列而成的数列。
如经济领域中每年的产值、国民收入、商品在市场上的销量、股票数据的变化情况等,社会领域中某一地区的人口数、医院患者人数、铁路客流量等,自然领域的太阳黑子数、月降水量、河流流量等等,都形成了一个时间序列。
人们希望通过对这些时间序列的分析,从中发现和揭示现象的发展变化规律,或从动态的角度描述某一现象和其他现象之间的内在数量关系及其变化规律,从而尽可能多的从中提取出所需要的准确信息,并将这些知识和信息用于预测,以掌握和控制未来行为。
时间序列的变化受许多因素的影响 ,有些起着长期的、决定性的作用 ,使其呈现出某种趋势和一定的规律性;有些则起着短期的、非决定性的作用,使其呈现出某种不规则性。
在分析时间序列的变动规律时,事实上不可能对每个影响因素都一一划分开来,分别去作精确分析。
但我们能将众多影响因素,按照对现象变化影响的类型,划分成若干时间序列的构成因素,然后对这几类构成要素分别进行分析,以揭示时间序列的变动规律性。
影响时间序列的构成因素可归纳为以下四种:(1)趋势性(Trend),指现象随时间推移朝着一定方向呈现出持续渐进地上升、下降或平稳的变化或移动。
这一变化通常是许多长期因素的结果。
(2)周期性(Cyclic),指时间序列表现为循环于趋势线上方和下方的点序列并持续一年以上的有规则变动。
这种因素是因经济多年的周期性变动产生的。
比如,高速通货膨胀时期后面紧接的温和通货膨胀时期将会使许多时间序列表现为交替地出现于一条总体递增地趋势线上下方。
(3)季节性变化(Seasonal variation),指现象受季节性影响 ,按一固定周期呈现出的周期波动变化。
数学建模方法在金融交易策略设计中的应用分析引言:金融交易策略设计是金融领域中非常重要的一个任务,如何通过合理的策略设计来获取最大利润一直是投资者和交易员关注的核心问题。
数学建模方法的应用在金融交易策略设计中具有重要的作用,可以帮助交易员更好地理解市场,优化交易决策,提高交易效率。
本文将探讨数学建模方法在金融交易策略设计中的应用,并分析其优势和局限性。
一、数学建模方法在金融交易策略设计中的应用1. 时间序列分析时间序列分析是金融交易策略设计中常见的数学建模方法之一。
通过统计学原理,分析历史交易数据的走势,建立数学模型预测未来的市场走势。
时间序列分析方法包括平滑法、趋势法、周期法等。
这些方法可以帮助交易员捕捉市场走势的规律,制定适应市场的交易策略。
2. 随机过程模型随机过程模型在金融交易策略设计中广泛应用。
通过建立随机模型,模拟金融市场的波动,分析价格、波动率等随机变量的特征。
常见的随机过程模型包括布朗运动、几何布朗运动等。
这些模型可以帮助交易员预测价格变动和风险,并制定相应的交易策略。
3. 优化模型优化模型在金融交易策略设计中也起到重要作用。
通过建立数学模型,最大化投资收益或最小化风险。
常见的优化模型包括线性规划、非线性规划等。
优化模型可以帮助交易员找到最佳的交易策略,配置最优的投资组合。
二、数学建模方法在金融交易策略设计中的优势1. 提高决策精度数学建模方法可以通过对历史数据的分析,找到市场的规律和趋势。
通过合理的模型建立和参数估计,可以预测未来的市场走势。
这样,交易员可以根据数学模型的预测结果,制定更准确的交易策略,提高交易决策的精度。
2. 优化交易成本数学建模方法可以帮助交易员优化交易成本。
通过建立数学模型和优化算法,可以实现交易策略的自动化执行,减少人为操作的影响,降低交易成本。
同时,数学模型还可以帮助交易员选择最佳的交易时机和交易策略,进一步降低交易成本。
3. 提高交易效率数学建模方法可以提高交易效率。
时间序列分析模型时间序列分析是一种广泛应用于统计学和经济学领域的建模方法,用于研究随时间变化的数据。
它的目的是揭示和预测数据中隐含的模式和关系,以便更好地理解和解释现象,并做出相应的决策。
时间序列分析模型可以分为统计模型和机器学习模型两类。
一、统计模型1.平稳时间序列模型:平稳时间序列是指在统计学意义上均值和方差都是稳定的序列。
常用的平稳时间序列模型包括:自回归移动平均模型(ARMA)、自回归整合移动平均模型(ARIMA)和季节性自回归整合移动平均模型(SARIMA)等。
-自回归移动平均模型(ARMA)是根据时间序列数据的自相关和移动平均性质建立的模型。
它将序列的当前值作为过去值的线性组合来预测未来值。
ARMA(p,q)模型中,p表示自回归项的阶数,q表示移动平均项的阶数。
-自回归整合移动平均模型(ARIMA)在ARMA模型基础上引入差分操作,用于处理非平稳时间序列。
ARIMA(p,d,q)模型中,d表示差分的次数。
-季节性自回归整合移动平均模型(SARIMA)是ARIMA模型的扩展,在存在季节性变化的时间序列数据中应用。
SARIMA(p,d,q)(P,D,Q)s模型中,s表示季节周期。
2.非平稳时间序列模型:非平稳时间序列是指均值和/或方差随时间变化的序列。
常用的非平稳时间序列模型包括:趋势模型、季节性调整模型、自回归积分滑动平均模型(ARIMA)和季节性自回归积分滑动平均模型(SARIMA)等。
- 趋势模型用于描述数据中的趋势变化,例如线性趋势模型(y = ax + b)和指数趋势模型(y = ab^x)等。
-季节性调整模型用于调整季节性变化对数据的影响,常见的方法有季节指数调整和X-12-ARIMA方法。
-自回归积分滑动平均模型(ARIMA)和季节性自回归积分滑动平均模型(SARIMA)在非平稳时间序列中引入差分操作进行模型建立。
二、机器学习模型机器学习模型在时间序列分析中发挥了重要作用,主要应用于非线性和高维数据的建模和预测。
数学建模中的时间序列分析时间序列分析是数学建模中的重要工具之一,它研究随着时间变化的数据序列,并通过分析过去的数据来预测未来的趋势。
在各个领域中都有广泛的应用,如经济学、金融学、气象学等。
本文将介绍时间序列分析的基本概念、常用方法和实际应用。
一、时间序列分析的基本概念时间序列是按照时间顺序排列的数据序列,它包含了趋势、季节性、周期性和随机性等多个成分。
时间序列分析的目的是通过对这些成分进行建模和分析,从中提取出有用的信息,以实现预测和决策等目标。
1.1 趋势分析趋势是时间序列中的长期变化趋势,可以是递增的、递减的或者平稳的。
常用的趋势分析方法有移动平均法、线性回归法和指数平滑法等。
1.2 季节性分析季节性是时间序列中的周期性变化,通常以一年为周期。
季节性分析可以帮助我们了解每年的周期性波动,以及确定季节影响因素。
常用的季节性分析方法有季节性指数法、季节分解法和差分法等。
1.3 周期性分析周期性是时间序列中的较长期的波动,常用的周期性分析方法有傅立叶分析和自相关函数分析等。
1.4 随机性分析随机性是时间序列中无法解释的部分,它是由各种不可预测的因素引起的。
随机性分析可以帮助我们确定模型的合理性,以及检验模型的适用性。
二、时间序列分析的常用方法时间序列分析中常用的方法有自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)和季节性自回归移动平均模型(SARIMA)等。
2.1 ARMA模型ARMA模型是由自回归模型(AR)和移动平均模型(MA)组成的线性模型。
AR模型描述的是当前值与过去若干个值之间的线性关系,而MA模型描述的是当前值与过去若干个随机误差之间的线性关系。
2.2 ARIMA模型ARIMA模型是ARMA模型的扩展,它引入了差分操作,可以应对非平稳时间序列。
ARIMA模型包括自回归阶数(p)、差分次数(d)和移动平均阶数(q)三个参数。
2.3 SARIMA模型SARIMA模型是针对季节性时间序列的ARIMA模型的扩展,它引入了季节性差分操作。
数学建模在经济中的应用研究数学建模作为一种新兴的研究手段,近年来在经济领域得到了广泛的应用。
通过对经济问题进行模型的构建和分析,可以更好地理解和解决许多实际问题。
下面,我们将从几个方面来探讨数学建模在经济中的应用研究。
1. 时间序列分析时间序列分析是经济学中最基本的数学建模方法之一,它建立在时间数据的基础上,对经济现象和规律进行研究。
时间序列分析主要包括时间序列模型和时间序列预测两个方面。
在时间序列模型中,以ARIMA模型为例,经济学家可以对某个经济变量的历史数据进行分析,进而建立一个针对此变量的模型,来预测未来的变化趋势。
比如,股票价格、GDP增长率等都可以用ARIMA模型来进行预测。
而时间序列预测则是根据历史数据预测未来的趋势。
例如,央行通过分析通货膨胀率的时间序列,来决定是否要加大货币供应量,以达到稳定物价的目的。
2. 最优化模型在经济学中,最优化模型是一个非常重要的数学建模方法。
通过建立优化模型,可以寻找经济系统中最优的决策方案,从而提高经济效益。
例如,在生产过程中,如何合理安排生产计划以使得成本最小化;在投资中,如何配置资产以达到收益最大化等都是需要用到最优化模型的问题。
线性规划、整数规划和非线性规划都是最优化模型中常用的方法。
通过制定一定的约束条件,经济学家可以求解最优的解决方案。
3. 统计分析统计分析是建立在样本数据基础上的数学建模方法,通过统计分析可以揭示因果关系和概率关系等,从而得到更准确的预测和估计结果。
例如,经济学家在决策时需要了解市场需求、价格、消费者行为等因素,这些因素都需要通过统计分析来得到。
统计分析包括描述性统计、推断性统计两个方面。
描述性统计主要是对样本数据进行总体分析,如均值、标准差等;而推断性统计则是通过样本数据对总体进行估计,如置信区间、假设检验等。
4. 游戏论模型游戏论模型是经济学中比较有趣的一个数学建模方法,它用于分析博弈过程中的收益和策略等。
经济学家可以通过游戏论模型来预测市场的竞争格局和行为,进而制定相应的市场策略。
多元时间序列数据建模与分析随着科技不断发展,数据分析已经成为了我们生产生活中不可或缺的工具。
然而,单一的时间序列数据往往并不能完全反映出事物的真实状态,因此,我们需要对多元时间序列数据进行分析。
本文将从多元时间序列建模的角度来探讨如何对多元时间序列数据进行建模和分析。
一、多元时间序列数据的基本概念多元时间序列数据是指在不同时间点上对多个变量进行测量的数据。
例如,我们可以通过不同时间点上对于股票价格、财务指标等多个变量的测量,来构建一个多元时间序列数据集。
通常情况下,多元时间序列数据集可以用一个矩阵来表示,其中行代表时间,列代表变量。
二、多元时间序列预处理在进行多元时间序列数据分析之前,我们需要对原始数据进行一系列的预处理工作。
这些工作包括缺失值的填充、异常值的处理、平稳性检验等。
1. 缺失值的填充由于实际数据采集过程中出现了各种各样的问题,导致我们采集到的数据中可能会存在缺失值。
造成缺失值的原因很多,例如仪器故障、采样频率不够等。
在对多元时间序列数据进行处理时,我们需要采用一些有效的方法对缺失值进行填充,以确保后续分析结果的准确性。
2. 异常值的处理多元时间序列数据中的异常值通常指的是那些与其它数据明显不相符的值。
如果不对异常值进行处理,它们会严重地影响时间序列模型的建立和预测结果的准确性。
因此,在进行多元时间序列数据分析时,必须采用一些有效的方法对异常值进行处理。
3. 平稳性检验平稳性是指在同一时间点上不同变量之间的均值和方差都是稳定的。
我们通常需要对多元时间序列数据的平稳性进行检验,以确保时间序列不会出现季节性和趋势性变化,从而保证预测结果的准确性。
三、多元时间序列建模在进行多元时间序列建模之前,需要先对数据进行一系列的预处理工作,包括缺失值的填充、异常值的处理、平稳性检验等。
预处理工作完成后,我们就可以开始进行多元时间序列建模。
1. 时间序列模型常见的时间序列模型有ARIMA、VAR、VMA、ARMA、VARMA等。
数学建模中的预测方法时间序列分析模型时间序列分析模型是数学建模中常用的一种预测方法,它通过对时间序列数据的观察和分析,建立模型来预测未来的趋势和变化。
时间序列是按照时间顺序排列的数据序列,例如股票价格的变化、气温的变化、销售额的变化等等。
时间序列分析模型的基本思想是利用历史数据中的模式和规律,来预测未来的变化。
下面将介绍时间序列分析模型的基本步骤和常用的方法。
时间序列分析模型的基本步骤包括数据获取、数据预处理、模型建立、模型检验和预测。
首先,需要获取时间序列数据。
时间序列数据通常是从历史记录中获得的,可以是一定时间间隔内的观测值。
例如,如果我们要预测未来一年的销售额,那么可以用过去几年的销售额数据作为时间序列数据。
接下来,对数据进行预处理。
预处理的目的是去除数据中的噪声和异常值,使数据更加平滑和稳定。
常用的预处理方法包括平滑法(如移动平均法和指数平滑法)、差分法和季节性调整等。
然后,建立时间序列分析模型。
常用的时间序列分析模型包括移动平均模型(MA模型)、自回归模型(AR模型)、自回归移动平均模型(ARMA模型)和季节性自回归移动平均模型(SARMA模型)等。
这些模型都基于不同的假设和方法,可以用来描述时间序列数据的特征和变化规律。
模型建立完成后,需要对模型进行检验。
常用的检验方法包括残差分析、自相关图、偏自相关图等。
这些方法可以用来检验模型的拟合程度和预测效果,判断模型是否能够合理描述时间序列数据。
最后,使用建立好的模型进行预测。
根据模型的参数和特征,可以预测未来一段时间内时间序列数据的变化。
预测结果可以用来制定相应的决策和计划。
除了上述常用的时间序列分析模型,还有一些其他方法也可以用于时间序列的预测。
例如回归分析、神经网络模型、支持向量机等。
这些方法在一些特殊情况下可以提供更好的预测效果。
总之,时间序列分析模型是数学建模中常用的预测方法,它通过对时间序列数据的观察和分析,建立模型来预测未来的趋势和变化。
数学建模时间序列分析时间序列分析是一种重要的数学建模方法,专门用于处理随时间变化的数据。
它可以对数据的趋势、周期性和其他特征进行分析,从而预测未来的走势和行为。
本文将从时间序列的定义、常用方法和应用等方面进行详细介绍。
时间序列是指按照时间顺序收集的数据。
与传统的横截面数据相比,时间序列数据具有时间维度的特征,因此更能反映出数据的动态变化。
在实际应用中,时间序列分析通常用于经济学、金融学、气象学等领域中,用于预测货币汇率、股票指数、气温等。
时间序列分析的核心是寻找数据的规律性和趋势性。
常见的时间序列分析方法有平均数法、移动平均法、指数平滑法、趋势线法、周期性分析等。
平均数法是最简单的一种时间序列分析方法。
它将一系列数据的平均值作为预测的依据。
这种方法适用于数据变化较为稳定的情况。
移动平均法是对平均数法的改进。
它将一组连续的数据进行平均计算,结果作为下一个时间段的预测值。
由于考虑了连续时间段的数据,移动平均法可以更好地反映数据的趋势和变化。
指数平滑法是一种考虑到最新数据的权重较大的方法。
它基于当前数据和上一时刻的预测值,通过设定权重参数来调整预测结果。
指数平滑法的优点是能够很好地适应数据的变化,但对异常值的敏感性较高。
趋势线法是根据数据的变化趋势进行预测的方法。
通过拟合一条趋势线,可以对未来的数据进行预测。
常用的趋势线拟合方法有线性拟合、多项式拟合、指数拟合等。
周期性分析是用于寻找数据周期性变化的方法。
它通过分析数据在不同时间段的重复性来识别周期性行为。
周期性分析可以用于预测季节性销售额、股票价格等。
时间序列分析有着广泛的应用。
在经济学中,时间序列分析可以用于预测经济增长率、消费者物价指数等。
在金融学中,时间序列分析被用于预测股票价格、货币汇率等。
在气象学中,时间序列分析可以用于预测气温、降雨量等。
总之,时间序列分析是一种重要的数学建模方法。
通过对数据的趋势、周期性和其他特征进行分析,可以提供对未来走势和行为的预测。
数学建模时间序列模型1. 引言1.1 概述时间序列模型是一种数学建模方法,用于分析和预测随时间变化而变化的数据。
在各个领域,例如经济学、金融学、气象学等,时间序列模型都被广泛应用于数据分析和预测中。
时间序列模型的核心思想是利用过去的观测数据来预测未来的值。
通过对历史数据的分析,可以揭示出其中的规律和趋势,并基于这些规律和趋势来进行预测。
这使得时间序列模型成为了许多领域中非常有用的工具。
时间序列模型有许多不同的方法和技术,每种方法都有其适用的场景和特点。
常见的时间序列模型包括自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)以及季节性自回归积分移动平均模型(SARIMA)等。
这些模型都基于不同的假设和方程,用于解释和预测时间序列数据。
本文将介绍时间序列模型的基本原理和方法,并探讨在数学建模中的应用。
首先,我们将介绍时间序列模型的基本概念和定义,包括时间序列、平稳性和自相关性等。
然后,我们将深入研究数学建模的基础原理,包括数据预处理、模型选择和参数估计等。
通过学习这些基础原理,读者将能够更好地理解时间序列模型,并能够在实际问题中应用它们进行数据分析和预测。
本文将通过实例和案例分析来说明时间序列模型的应用。
我们将使用真实的数据集,并结合相关的数学模型和算法,在实际问题中进行分析和预测。
通过这种方式,读者将能够更好地理解时间序列模型的实际应用,并能够应用这些方法解决自己遇到的问题。
最后,在结论部分,我们将对本文的内容进行总结,并展望时间序列模型的未来发展方向。
时间序列模型作为一种强大的分析工具,在大数据时代将发挥越来越重要的作用。
随着数据量的增加和计算能力的提升,时间序列模型将更加精确和高效,为各行各业的决策和预测提供更准确的支持。
1.2 文章结构本文按照以下结构组织:1. 引言:在这一部分,我们将提供一个概述性的介绍,包括对时间序列模型和数学建模的定义和背景的讨论。
我们将介绍本文的目的,并列出本文的主要内容。
数学建模中的时间序列分析方法随着社会的发展和科技的进步,数学建模在各个领域中发挥着越来越重要的作用。
时间序列分析方法是数学建模中的一个重要概念,它可以帮助我们更好地了解和预测未来的情况。
本文将探讨时间序列分析方法在数学建模中的主要应用和实践。
一、时间序列分析的基本概念时间序列是指在不同时间点上收集到的数据序列。
它们可以是离散或连续的,可以是自然现象的测量数据,也可以是人类行为和经济事件的数据。
时间序列分析是一种可视化、建模和分析时间序列数据的技术。
时间序列分析可以通过将历史数据进行分析,以便识别出潜在的趋势、周期性、季节性和随机性因素,从而使我们更好地了解未来的行为并作出预测。
二、时间序列分析的主要方法时间序列分析方法有很多种,这里只介绍其中的几种主要方法。
1. 静态模型方法静态模型方法是最简单的时间序列分析方法。
它假设数据是定常的,即数据的均值和方差在不同时间段内是不变的。
静态模型可以采用回归分析进行建模和预测。
这种方法的缺点是忽略了时间上的相关性,可能导致预测结果不准确。
2. 移动平均法移动平均法是一种常见的时间序列分析方法,它是通过计算一定时间段内数据的平均值来平滑数据序列。
移动平均法可以减少数据中的噪声,从而更好地表示数据的趋势和周期性。
然而,这种方法的缺点是需要确定移动平均期数和窗口大小。
3. 自回归移动平均法自回归移动平均法是一种更复杂的时间序列分析方法,它结合了自回归和移动平均两种方法。
自回归是指当前值与前面的数据值相互之间的关系,而移动平均是指一段时间内的平均值。
自回归移动平均法可以更准确地建模和预测时间序列数据。
三、时间序列分析在数学建模中的应用时间序列分析在数学建模中有广泛的应用。
以下是其中的几个重要应用领域。
1. 经济预测时间序列分析方法可以用于经济预测,帮助分析和预测未来的经济走势。
它可以识别出经济周期和波动,帮助制定经济政策和采取相应的措施。
2. 人口统计时间序列分析方法可以用于人口统计,例如年龄分布、出生率、死亡率、迁移率等数据的分析和预测。
第二十四章 时间序列模型时间序列是按时间顺序排列的、随时间变化且相互关联的数据序列。
分析时间序列的方法构成数据分析的一个重要领域,即时间序列分析。
时间序列根据所研究的依据不同,可有不同的分类。
1.按所研究的对象的多少分,有一元时间序列和多元时间序列。
2.按时间的连续性可将时间序列分为离散时间序列和连续时间序列两种。
3.按序列的统计特性分,有平稳时间序列和非平稳时间序列。
如果一个时间序列的概率分布与时间t 无关,则称该序列为严格的(狭义的)平稳时间序列。
如果序列的一、二阶矩存在,而且对任意时刻t 满足:(1)均值为常数(2)协方差为时间间隔τ的函数。
则称该序列为宽平稳时间序列,也叫广义平稳时间序列。
我们以后所研究的时间序列主要是宽平稳时间序列。
4.按时间序列的分布规律来分,有高斯型时间序列和非高斯型时间序列。
§1 确定性时间序列分析方法概述时间序列预测技术就是通过对预测目标自身时间序列的处理,来研究其变化趋势的。
一个时间序列往往是以下几类变化形式的叠加或耦合。
(1)长期趋势变动。
它是指时间序列朝着一定的方向持续上升或下降,或停留在某一水平上的倾向,它反映了客观事物的主要变化趋势。
(2)季节变动。
(3)循环变动。
通常是指周期为一年以上,由非季节因素引起的涨落起伏波形相似的波动。
(4)不规则变动。
通常它分为突然变动和随机变动。
通常用t T 表示长期趋势项,t S 表示季节变动趋势项,t C 表示循环变动趋势项,t R 表示随机干扰项。
常见的确定性时间序列模型有以下几种类型:(1)加法模型t t t t t R C S T y +++=(2)乘法模型t t t t t R C S T y ⋅⋅⋅=(3)混合模型t t t t R S T y +⋅= t t t t t R C T S y ⋅⋅+=其中t y 是观测目标的观测记录,0)(=t R E ,22)(σ=t R E 。
如果在预测时间范围以内,无突然变动且随机变动的方差2σ较小,并且有理由认为过去和现在的演变趋势将继续发展到未来时,可用一些经验方法进行预测,具体方法如下:1.1 移动平均法设观测序列为T y y ,,1Λ,取移动平均的项数T N <。