瞬变电磁法在工程地球物理勘探中的应用
- 格式:pdf
- 大小:455.86 KB
- 文档页数:2
瞬变电磁法及其在工程地球物理勘探中的应用发布时间:2021-06-21T01:42:22.046Z 来源:《防护工程》2021年5期作者:陈建强[导读] 瞬变电磁法是利用线圈或接地极在一次脉冲磁场间隔内观测二次涡流场的一种方法。
通过测量停电后各时段地电二次场的时变规律,可以得到不同深度的地电特征。
该方法能观测到高分辨率的纯二次场,对低阻异常特别敏感。
随着瞬变电磁勘探技术的发展,瞬变电磁法在金属矿产勘探、油气勘探、工程勘探、考古勘探、煤炭勘探等领域得到了广泛应用,已成为地球物理勘探的首选方法之一。
陈建强中国电建集团北京勘测设计研究院有限公司北京朝阳 100024摘要:瞬变电磁法是利用线圈或接地极在一次脉冲磁场间隔内观测二次涡流场的一种方法。
通过测量停电后各时段地电二次场的时变规律,可以得到不同深度的地电特征。
该方法能观测到高分辨率的纯二次场,对低阻异常特别敏感。
随着瞬变电磁勘探技术的发展,瞬变电磁法在金属矿产勘探、油气勘探、工程勘探、考古勘探、煤炭勘探等领域得到了广泛应用,已成为地球物理勘探的首选方法之一。
关键词:瞬变电磁法;工程地球物理勘探;应用;分析在工程地球物理勘探中,涉及的方法多种多样,而瞬变电磁法是应用最广泛、最有效的勘探方法之一,它可以达到较高的勘探精度。
因此,有必要探讨瞬变电磁法在工程地球物理勘探中的应用。
1瞬变电磁法概述。
在应用中,该方法是基于电磁感应原理,形成了从时域人工源检测技术手段。
利用磁源和电耦合源可以成功地将脉冲磁场传输到地下。
在激励作用下,地质体中的感应涡流会随着时间的变化而产生电磁场。
由于二次场中含有丰富的地下地电信息,在一次脉冲磁场间歇过程中,可以充分利用接地极和线圈观测二次场,并对相关信息进行提取和分析,以探明下伏地质。
根据电磁感应原理,频率域和时间域的电磁场都应以麦克斯韦方程为基础,为了方便地得到时间域的电磁场,频率域的电磁场应以麦克斯韦方程为基础,利用傅立叶变换求解时域瞬态电磁场。
瞬变电磁法在井田边界附近区域探测中的应用瞬变电磁法(Transient Electromagnetic Method,TEM)是一种广泛应用于地质勘探和资源探测的电磁物理方法,它通过检测地下介质中的电阻率差异来识别地下结构和矿产资源。
在地下水资源、石油和天然气勘探、环境地质和工程地质等领域中得到了广泛的应用。
本文将重点介绍瞬变电磁法在井田边界附近区域探测中的应用。
一、瞬变电磁法原理瞬变电磁法是通过在地面上激发电磁场,利用地下介质对电磁场的响应来获取地下介质的电阻率分布情况。
激发源产生的电磁波沿地下传播,当遇到电阻率不同的地层时,电磁波会产生反射、散射等现象,接收到的电磁信号会发生变化。
通过对这些变化进行分析,就可以推断出地下介质的电阻率分布情况,从而达到探测地下结构和矿产资源的目的。
1. 井田边界的确定在油田和气田开发中,井田边界的确定对于合理规划开发布局、优化井网配置、提高油气的开采效率和降低勘探开发成本具有重要意义。
传统的井田边界确定方法主要依靠地质资料、地震资料和井数据等,存在成本高、效率低的问题。
而瞬变电磁法具有快速、经济、高效的特点,可以通过对井田边界附近区域进行瞬变电磁法探测,确定地下电阻率的变化情况,从而识别井田边界位置。
2. 油气藏开发的辅助勘探在油气藏勘探开发中,瞬变电磁法可以作为辅助勘探方法,通过对油气藏附近地区的电磁响应进行分析,来识别可能存在的储集层、圈闭、构造、断层等地质构造特征,为油气藏的勘探开发提供重要的地质信息。
3. 地下水资源的探测瞬变电磁法在地下水资源勘探中也得到了广泛的应用。
在井田边界附近区域,常常存在着地下水和油气藏的相互影响关系,通过对井田边界附近区域进行瞬变电磁法探测,可以识别地下水的赋存状态和分布情况,为地下水资源的开发利用提供重要的地质信息。
4. 环境地质与工程地质应用瞬变电磁法在环境地质与工程地质领域的应用也日益增多。
在井田边界附近区域,地下构造、地下水位、地下水化学成分等对环境和工程地质具有重要的影响,通过对这些影响因素进行瞬变电磁法探测,可以为环境地质与工程地质勘察提供可靠的地质信息。
地球物理勘探中瞬变电磁法的应用摘要:在我国现代化社会建设发展过程中,无论是在资源勘查、工程建设等领域方面,地球物理勘探工作至关重要,其中瞬变电磁法应用领域较广,该技术具有较强的灵活性,且勘探效率较高,勘探结果准确性能够得到充分保障,还能够优化地球物理勘探工作成本,具有良好的应用效果。
因此,本文将对瞬变电磁法进行深入地研究与分析,并提出一些合理的意见和措施,旨在进一步提高技术应用水平。
关键词:瞬变电磁法;地球物理勘探;技术优势;应用方式;地球物理勘探技术的应用较为广泛,能够准确获得被勘探区域的具体信息,从而确定地球构造的实际情况,在建筑工程、煤矿采空区探测等领域具有良好的应用效果,能够为后续的开发以及建设工作提供科学的信息和数据支持。
瞬变电磁法因其独特的技术优势应用较为广泛,能够有效提高地球物理勘探工作效率,所以需要准确掌握瞬变电磁法的技术原理,从而提高该勘探技术应用水平,促进地球物理勘探工作更好地开展。
1地球物理勘探及瞬变电磁法的基本概念分析1.1地球物理勘探地球物理勘探技术为地质学专业范畴,是将物理学的内容作为技术基础,利用测量和观察物理场的变化和分布情况,完成对地球构成元素、空间中存在的多种物质构造和其演化过程的探索,同时能够对变化规律进行分析,得到一定区域内的地质构造、地质情况、资源埋藏等信息,同时在自然灾害监测、预测与应对方面具有重要作用。
因为组成地壳的不同岩层介质在密度、弹性、导电性、放射性、导热性以及磁性方面存在一定差异,且差异会引起地球物理场的局部变化,通过对这些差异的分布和变化把控,能够实现地球物勘探工作目标。
1.2瞬变电磁法瞬变电磁法的主要工作原理为:在地面安装一定波形的电流发射设备,使得磁场在周围空间位置上部产生,同时使得感应电流产生在地下到点矿体内。
感应电流会随着断电而产生热损耗,且在不同时间内表现出不同的衰减程度;高频成分的电磁场一般出现在早期阶段,具有较快的衰减性,一般没有较大的趋肤深度;低频率电磁场主要出现在晚期阶段,具有较慢的衰减速度,同时趋肤深度较大。
瞬变电磁法在井田边界附近区域探测中的应用瞬变电磁法(Transient Electromagnetic Method,简称TEM)是一种广泛应用于地球物理勘探领域的电磁探测方法,它主要利用瞬时电流产生的强磁场与地下岩石中的电导率差异相互作用,通过测量感应电动势来推断地下结构。
在井田边界附近的区域探测中,瞬变电磁法具有很大的应用潜力和优势。
在井田边界附近区域探测中,瞬变电磁法可以提供有关地下构造的详细信息。
井田边界附近的地下构造通常非常复杂,包括沉积物层、岩石层、断层等。
通过进行瞬变电磁法探测,可以获取地下不同层次的电导率信息,进而推断地下结构的分布情况。
这对于井田边界附近的地质勘探和油气资源评价具有重要意义。
瞬变电磁法在井田边界附近区域的探测中,具有较高的分辨率和探测深度。
瞬变电磁法利用瞬时电流产生的强磁场感应地下岩石中的感应电流,通过测量感应电动势来推断地下电导率分布。
由于瞬变电磁法测量信号的高频特性和观测过程的短时程,它可以提供较高的空间分辨率和时间分辨率。
这使得瞬变电磁法可以在较短的时间内获得大量的高质量数据,并有效地区分不同地层的电导率差异。
瞬变电磁法还可以用于井田边界附近区域的水文地质勘探。
井田边界附近的地下水资源通常是井田开发的关键因素之一。
瞬变电磁法可以提供关于地下水的信息,如水位、水层厚度、水质等。
通过分析地下水的电导率分布,可以追踪地下水体系的流动路径和水质变化,为井田开发和水资源管理提供重要的科学依据。
瞬变电磁法在井田边界附近区域的应用也存在一些挑战和限制。
瞬变电磁法的数据处理和解释相对复杂,需要使用高度专业化的软件和算法进行处理。
由于在井田边界附近区域存在噪音干扰和电源效应,瞬变电磁法的信号质量和解释精度可能会受到一定程度的影响。
瞬变电磁法在井田边界附近区域的探测中具有较大的应用潜力和优势,它可以提供地下构造和地下水的详细信息,为井田开发和资源评价提供科学依据。
瞬变电磁法的应用也面临一些挑战和限制,需要在实际应用中结合其他地球物理勘探方法和地质数据进行综合分析和解释。
瞬变电磁法在地球物理勘探中的应用研究摘要:现如今,瞬变电磁法发展极快,它在地球物理勘探方面受到了极大的青睐。
瞬变电磁法相对于传统的直流电勘探法具有较大的优势,包括灵敏度高、探测深度较深以及抗干扰性强等,这也使得瞬变电磁法被广泛应用于煤矿、油田等领域。
为了满足现代地球物理勘探的应用需求,应用瞬变电磁法时需要充分结合实际生产条件,尽可能地控制其分辨率和精度。
从瞬变电磁法的基本原理出发,探讨了其发展及应用,同时分析了它在工程物探领域的应用实况,侧面证明了瞬变电磁法的科学性和可行性。
关键词:瞬变电磁法;地球物理勘探;应用引言瞬变电磁法是利用不接地回线或接地线源向地下发射一次脉冲磁场,在一次脉冲磁场间歇期间,利用线圈或接地电极观测二次涡流场的方法。
通过测量断电后各个时间段的二次场随时间变化规律,可得到不同深度的地电特征。
该方法观测纯二次场,分辨率较高,尤其对低阻异常反应敏感。
随着瞬变电磁勘探技术的不断发展,目前广泛应用到金属矿产勘查、油气勘探、工程勘查、考古探测、煤田勘探等诸多多领域,成为地球物理勘探的首选方法之一。
1瞬变电磁法的原理最早期对瞬变电磁法理论进行研究的是苏联科学家,到现在历经了近百年的发展,TEM理论层面的研究已越来越成熟。
同时,中国的科学家们也对TEM的理论研究做出了不可或缺的贡献,比如方文藻著作的《瞬变电磁测探法原理》、朴化荣所著作的《电磁探测法原理》以及蒋邦远所著作的《实用近区磁源瞬变电磁法勘探》等,都对瞬变电磁法的理论研究起到了重要的推动作用。
当前在瞬变电磁法理论层面的研究主要是有关它正反演计算方面的问题。
就目前的研究进展可分为一维、二维、2.5维和三维。
一维正演计算大多数通过频率域所得到地下空间的电磁响应公式,然后再换到时间域进行计算;二维正演计算主要通过有限差分法和有限元方法进行计算,然后换算到时间域进行计算;但是2.5维的正演计算中时间域的模拟计算目前仍未得到完全解决,科学家们曾经通过有限元的方法对时间域和电磁场进行了正演的模拟计算,这也为多维度反演计算提供了理论依据。
瞬变电磁法在井田边界附近区域探测中的应用瞬变电磁法(Transient Electromagnetic Method, TEM)是地球物理勘探中的一种常见技术,能够广泛用于找矿、油气勘探、环境地质勘探等领域。
其原理是利用短时间(毫秒级别)内的高强度电场激发地下的感应电流,根据反演方法推断地下物质的电性特征,进而推测地下结构和成分。
在油气勘探中,瞬变电磁法通常用于探测油气藏的边界和储层性质。
较早的使用方法是针对长距离、浅埋和规则的储层,如盐顶、河道等。
但随着勘探难度加大,如复杂的深埋储层,需要更高的技术和更完善的算法才能有效探测,这也成为TEM技术发展的方向。
一、对于沉积中的较浅和中深层结构探测能力较强。
瞬变电磁法的探测深度大约在1000米左右,对于位于井田边界相对较浅的层位和中深层结构,能够提供较为精确的电性特征。
并且,由于这些层位和结构与井田相邻,往往具有地质相似性,所以TEM法探测结果与地下储层的地质模型也更加吻合。
二、对于非均质介质的识别能力较强。
井田边界处往往是不规则甚至高度非均质的区域,而瞬变电磁法可以探测到这些区域的电性异常,使得我们能够发现以往难以察觉的储层和构造异常。
三、在资料处理和解释方面具备成熟的算法。
近年来,瞬变电磁法的资料处理、算法和反演方法进行了较大的创新,使得其成为井田边界附近区域探测的重要手段。
常用的数据处理和解释方式包括三维反演、峰值滤波、脉冲反演等。
这些方法的出现使得我们能够更加准确地推测储层和构造特征。
在应用方面,瞬变电磁法通常需要依托电磁仪器和野外勘探工具,完成勘探和数据获取。
电磁仪器根据不同的应用有不同的参数配置,如工作信号频率、发射电流强度、接收倍增器等。
野外勘探工具包括促进电源、测量器和数据记录仪等。
在野外勘探过程中,为了避免干扰引起的误差和探测深度前置的影响,通常需要采取多个方向的测量和模拟,以提高探测的准确性。
总之,瞬变电磁法是井田边界探测的有力工具,依靠先进的资料处理算法和灵敏的电磁仪器,能够帮助勘探人员更精确地预测油气藏的结构和性质。
瞬变电磁法在井田边界附近区域探测中的应用瞬变电磁法(Transient Electromagnetic method,简称TEM),是一种地球物理勘探方法,通过施加时间变化的电流源在地下产生电磁场,利用接收器观测地下介质对电磁场的响应,从而推断地下构造和岩石性质。
瞬变电磁法在井田边界附近区域的探测中具有广泛的应用。
1. 油田勘探:瞬变电磁法可以用于勘探油田边界的水层开发潜力。
在油田边界附近的区域,通常存在大量的水层,这些水层可以作为水驱油田的开发资源。
瞬变电磁法可以提供水层的准确位置和储量信息,为油田的开发和管理提供重要的依据。
2. 水资源勘探:瞬变电磁法可以用于寻找地下水资源。
在井田边界附近的区域,地下水通常是受到地下构造和岩石性质的影响而分布不均匀。
利用瞬变电磁法可以探测地下水层的存在和分布,帮助地下水资源的开发和管理。
3. 煤层气勘探:瞬变电磁法可用于煤层气资源的勘探。
煤层气是由煤层内的煤矸石和煤层间隙中吸附和吸附剂的气体组成的。
瞬变电磁法可以测量地下煤层气的储存和分布情况,为煤层气的勘探和开发提供技术支持。
4. 地下管道检测:瞬变电磁法可以用于检测地下管道。
在井田边界附近的区域,常常有大量的地下管道,如输油管道、输气管道等。
瞬变电磁法可以探测地下管道的位置和深度,为地下管道的建设、维护和管理提供技术支持。
5. 地质灾害预测:瞬变电磁法可以用于预测地质灾害。
在井田边界附近的区域,常常存在地质灾害风险,如地震、滑坡、崩塌等。
瞬变电磁法可以探测地下构造和岩石性质的变化,从而帮助预测地质灾害的发生和发展趋势,为地质灾害的防范和防治提供技术支持。
瞬变电磁法在井田边界附近区域的探测中具有广泛的应用,可以用于油田勘探、水资源勘探、煤层气勘探、地下管道检测和地质灾害预测等领域,为资源开发和地下工程建设提供重要的技术支持。
瞬变电磁法在井田边界附近区域探测中的应用瞬变电磁法是一种地球物理勘探方法,可以用于探测地下的导电体。
在石油和天然气勘探中,瞬变电磁法已经被广泛采用,其原因是该方法能够高效地识别不同类型的油气藏。
与传统的电法勘探方法相比,瞬变电磁法有更强的探测深度和分辨率,同时具有较高的数据采集速度和成像效果。
在井田边界附近区域探测中,瞬变电磁法的应用主要通过测量电磁波在地下不同介质中的传播情况,探测地下的导电体。
位于油气藏边界的导电体可以反映油气藏的边界位置和几何形态。
因此,瞬变电磁法在识别井田边界和油气藏空间分布方面发挥着重要作用。
1.确定地下结构瞬变电磁法可以提供有关地下结构的信息,包括地下岩石、土壤、水和油气等物质的分布情况以及不同介质的边界位置。
这些信息对于确定井田的边界和油气藏的空间分布非常重要。
2.检测导电体瞬变电磁法通过探测地下导电体来识别油气藏的边界位置和几何形态。
油气藏周围的导电体可以是烃源岩、裂缝、孔隙或盐丘。
导电体的空间分布和形态信息可以揭示出油气藏的地质特征和运移演化历史。
3.计算电阻率瞬变电磁法可以计算出不同介质的电阻率,其中包括地下的岩石、土壤、水和油气等物质。
因为电阻率是不同介质的电性质之一,因此它反映了介质的导电能力和水分含量。
计算出的电阻率信息对于确定地下结构和判断油气藏类型非常有用。
4.分析地下介质特性总之,瞬变电磁法在井田边界附近区域探测中具有重要的应用价值。
根据采集的数据,结合地质模型和实际生产数据,可以更准确地识别油气藏,并开展有效的勘探和开发工作。
将来随着勘探技术的不断发展和完善,瞬变电磁法的应用前景将会更加广阔。