国外瞬变电磁法
- 格式:ppt
- 大小:2.67 MB
- 文档页数:35
短偏移距瞬变电磁法短偏移距瞬变电磁法(Short Offsets Transient Electromagnetic Method, SOTEM)是电磁勘探方法中的一种,是一种非常有效的地下勘探技术。
通过使用短偏移距,SOTEM能够诊断地下结构的电阻率和磁导率等参数,从而提供有关地下物质的信息。
短偏移距瞬变电磁法是由法国地球物理学家Schmidt 与Claudio在1979年首先提出的。
该技术采用了高频的电磁辐射,能够产生高强度的瞬变电磁场,可以对地下的物质产生较好的穿透力,从而得到地下的电阻率和磁导率等质量参数。
SOTEM的特点是能够检测地下小的电阻和导体的物质,并且不受基底的影响。
因为在瞬变电磁场下,地下物质的电性质会影响磁场的传播,而SOTEM能够记录下被接收器感应到的地下反射系数,将其作为地下电阻率和磁导率的判断依据。
SOTEM工作原理是在地表依次布放多组非常短距离的发射源和接收器,并参照地表位置,为每个组距设置不同的固有频率。
在正常情况下,每组发射源会依次轮流发出高频瞬变电磁波,从而形成一种无线电源场。
瞬变电磁波传播的速度很快,并且可以通过地下异质结构的变化而出现反射。
每个接收器在接受到反射信号后,将信号反馈到电脑中进行处理,可以得到地下各个层次物质的电阻率和磁导率的数值。
SOTEM的优点很多。
首先,SOTEM所需的设备非常简单,只需要发射器和接收器即可。
其次,因为该技术所依据的是高频瞬变电磁波,所以可以深入地下,达到比传统勘探技术更深的深度。
另外,SOTEM适用于各种类型的地下环境,能够进行全面深入地的勘探。
此外,该技术的数据处理速度非常快。
可以准确地检测地表向下50至100公尺以及地下水和土壤的深度和成分。
SOTEM也有一些局限性。
首先,SOTEM只能检测短距离,因此它不适合深度超过100公尺的勘探。
其次,SOTEM 针对复杂地质结构的数据处理更为复杂。
此外,SOTEM所接收到的信号非常微弱,需要很好的技术来处理信号。
瞬变电磁法原理
瞬变电磁法(Transient Electromagnetic Method,简称TEM)是一种地球物理勘探方法,利用地下电阻率差异来探测地下结构的一种有效手段。
瞬变电磁法原理是基于法拉第电磁感应定律和麦克斯韦方程组,通过在地面上设置发射线圈和接收线圈,利用电磁场的感应效应来获取地下介质的电阻率信息。
在瞬变电磁法中,发射线圈产生的瞬时电流会在地下引起瞬时变化的磁场,这个瞬时变化的磁场会感应出地下的涡电流。
这些涡电流会产生自己的磁场,而这个磁场又会感应出接收线圈中的感应电压。
通过测量这个感应电压随时间的变化,就可以得到地下介质的电阻率信息。
瞬变电磁法原理的关键在于瞬时变化的电磁场。
由于地下介质的电阻率不同,对瞬变电磁场的响应也不同,因此可以通过测量感应电压的变化来推断地下的电阻率分布。
一般来说,导电性较好的地层会对瞬变电磁场产生较大的响应,而绝缘性较好的地层则会对瞬变电磁场产生较小的响应。
瞬变电磁法原理的优势在于其对地下较深部分的探测能力。
由于瞬变电磁法所产生的磁场变化非常快,因此可以感应出地下较深部分的涡电流,从而获取较深部分的电阻率信息。
这使得瞬变电磁法在地下水资源、矿产资源、地质构造等方面有着广泛的应用前景。
总的来说,瞬变电磁法原理是基于电磁感应定律和麦克斯韦方程组,利用瞬时变化的电磁场来感应地下介质的电阻率信息。
通过测量感应电压随时间的变化,可以推断地下的电阻率分布,从而实现对地下结构的探测。
瞬变电磁法在地下深部探测方面具有独特的优势,对于地质勘探、矿产资源勘查等具有重要的应用价值。
一、瞬变电磁法简介瞬变电磁测深法(Transient electromagnetic methods)或称作时间域电磁法(Time doman electromagnetic methods),简写为TEM或TDEM。
它是利用阶跃形波电磁脉冲激发,利用不接地回线向地下发射一次场;在一次场断电后,测量由地下介质产生的感应二次场随时间的变化,来达到寻找各种地质目标的一种地球物理勘探方法。
瞬变电磁法的测量原理是利用不接地回线(或电偶源)向地下发送一次脉冲磁场(或电场),即在发射回线上供一个电流脉冲方波,方波后沿下降的瞬间,将产生一个向地下传播的一次瞬变磁场,在该磁场的激励下在地质体内产生涡流,其大小取决于该地质体的导电能力,导电能力强则感应涡流强。
在一次场消失后,涡流不能立即消失,它将有一个过渡过程(衰减过程),该过渡过程又产生一个衰减的二次场向地下传播。
在地表用接收线圈接收二次磁场,该二次磁场的变化,将反映地下介质的电性情况,在接收机中按不同的延迟时间测量二次感应电动势,得到二次场随时间衰减的特性。
瞬变电磁法都是通过一次磁场激发二次涡流场来分析地下的各种地质情况,但时间域电磁法相对于频率域电磁法的最大区别在于瞬变电磁测深法是在一次场断电后测量纯二次场,不存在一次场的干扰。
另外,从傅立叶变换可知,一个阶跃形脉冲实际上是由各种高频和低频谐波叠加而成的,产生的场是一种宽频带电磁波场,因此与频率域电磁法相比,瞬变电磁测深法具有以下优点:(1)断电后观测纯二次场,可以进行近区观测,减少旁侧影响,简化了测量数据资料的处理工作,提高了探测能力和精度;(2)可用加大功率的方法增强二次场信号,提高信噪比,从而增加勘探深度;(3)穿透高阻层能力强;(4)由于采用人工源方法,随机干扰影响小;(5)采用重叠回线装置工作,可以避免地形影响;(6)线圈形状、方位要求相对不严格,测地工作简单,工效高;(7)由于测磁场,受静态位移的影响小;(8)通过多次脉冲激发,场的重复观测叠加和空间域多次覆盖技术的应用,可以提高信噪比和观测精度;(9)可以通过选择不同的时窗窗口进行观测,有效地压制各种噪声,可以获得不同勘探深度的信号,使剖面与测深工作与一体。
瞬变电磁法原理介绍瞬变电磁法俗称TEM (Time domain electromagnetic methods )法,属时间域电磁感应方法。
其探测原理是:在地面布设一回线,并给发送回线上供一个电流脉冲方波,在方波后沿下降的瞬间,产生一个向地下传播的一次磁场,在一次磁场的激励下,地质体将产生涡流,其大小取决于地质体的导电程度,在一次场消失后,该涡流不会立即消失,它将有一个过渡(衰减)过程。
该过渡过程又产生一个衰减的二次磁场向地表传播,由地面的接收回线接收二次磁场,该二次磁场的变化将反映地下地质体的电性分布情况。
如按不同的延迟时间测量二次感生电动势V(t),就得到了二次磁场随时间衰减的特性曲线。
如果地下没有良导体存在时,将观测到快速衰减的过渡过程;当存在良导体时,由于电源切断的一瞬间,在导体内部将产生涡流以维持一次场的切断,所观测到的过渡过程衰变速度将变慢,从而发现地下导体的存在。
瞬变电磁法特图3-1 瞬变电磁法原理示意图(1)对高阻层的穿透能力强,在高阻屏蔽地区用较小的回线可达到较大的探测深度,同时对低阻层有较高的分辨能力,利于在高阻围岩地区开展水文电法工作。
(2)瞬变电磁法一次磁场和被测磁场在时间上是分开的,所以,分辨率较高,并且可以在近区观测。
(3)方法本身受地形影响小。
使用回线源实现了装置的对称性,z x t>0Tx t=t 12t=t t=t 3可以减少断面的不均匀性和地层倾斜的影响。
工作中根据实际情况采用了大回线源装置,用探头接收。
大回线装置的Tx采用边长较大的矩形回线,Rx采用小型线圈(或探头)沿垂直于Tx长边的测线逐点观测磁场分量dB/dt值。
地下感应涡流向下、向外扩散的速度与大地导电率有关,导电性越好,扩散速度越慢,这意味着在导电性较好的大地上,能在更长的延时后观测到大地瞬变电磁场。
从“烟圈效应”的观点看,早期瞬变电磁场是由近地表的感应电流产生的,反映浅部电性分布;晚期瞬变地磁场主要是由深部的感应电流产生的,反映深部的电性分布。
航空瞬变电磁(ATEM)响应中IP效应研究进展航空瞬变电磁法(Airborne Transient Electromagnetic,简称ATEM),又称时间域航空电磁法(Time-Domain Airborne Electromagnetic)属于航空电磁法的一种。
目前,方法已在国外被广泛应用于地质填图、矿产勘查、水文地质监测等领域。
具有如下几个特点:成本低、效率高和地形适应性强。
该方法特别适合大面积的普查工作,并且能够在地面难以进入的恶劣环境如森林、沙漠、沼泽、湖泊等地区开展地球物理测量工作。
航空电磁探测的根本目的是通过对测量的电磁场数据的分析来判断地下导电、导磁介质的分布状况。
因此,与地面的电磁法探测一样,航空电磁数据处理解释是一项相当重要的研究工作,同时,这也是一项非常复杂的工作,尤其是大规模测量数据的成像和反演。
目前,国内航空电磁法数值正演(研究特定地下电磁介质模型的电磁响应)和反演成像方面已经有了一些初步的研究,但是在时间域航空电磁法成像和反演解释方面,由于理论相对复杂,这方面的研究成果相对较少,主要集中在二维、三维正演模拟和一维反演与定性解释。
而在国外,因为技术相对成熟,研究的热点集中于三维正演和三维反演解释。
在数值模拟上,由于航空电磁法与其他的可控源电磁勘探方法釆用的技术方面没有实质性差异,区别只是在于测量装置、方式以及釆集参数方面。
尽管各类电磁法存在着这些差异,但不论釆用何种源与接受装置,经典电磁场所满足的方程组始终不变。
从数值方法求解方程组的角度出发,而不是局限于某一种具体的电磁勘探方法讨论,可能会更好地反映电磁场数值模拟(包括正演计算和反演成像)的规律与挑战。
国际上对航空瞬变电磁数值模拟的研究开展较早,20世纪60年代就有学者研究了时间域的理论响应,并进行了相应的仿真研究,到90年代已经实现了二、三维的正演模拟。
国内航空瞬变电磁法的发展较早,但由于各种条件的限制发展缓慢。
近些年,随着国家对航空物探的重视,航空电磁法的理论研究和仪器开发研制等多项项目已被列入国家重大科研项目中。
四)瞬变电磁测深法(水文地质工作手册)1、 方法原理简介瞬变电磁测深法(简称TEMS)是一种时间域电磁法。
基于电性差异,以阶跃波形电磁脉冲激发,利用不接地回线或接地线源向地下发射一次脉冲磁场,在一次脉冲磁场的间歇期间(断电后),利用线圈或接地电极测量由地下介质产生的感应二次场(二次涡流场)随时间的变化,达到寻找目标地质体的地球物理勘探方法。
其数学物理基础为电磁感应原理,即导电介质在阶跃变化的激励磁场的激发下产生涡流场的问题。
一次脉冲信号。
二次场信号表示为:52M q Vμ⋅⋅=(1) 式中:0μ为磁导率;M 为发送线圈磁矩;q 为接收线圈等效面积;ρ为地层电阻率;t 为时间。
从上式中可以看出,二次场信号与34ρ ,54t 成反比,当探测地下良导电地质体时。
在往地面敷设的发送回线中通以一定的脉冲电流。
使回线中间及周围一定区域内便会产生稳定的磁场(称一次场或激励场),如果一次电流突然中断,则一次磁场随之消失,使处于该激励场中的良导电地质体内部由于磁通量Φ的变化而产生感应电动势d dt ε=-Φ (据法拉第电磁感应定律),感应电动势在良导电地质体中产生二次涡流,二次涡流又由于焦耳热消耗而不断衰减,其二次磁场也随之衰减(见图1)。
由于感应二次场的衰变规律与地下地质体的导电性有关,导电性越好,二次场衰减越慢;导电性越差,二次场衰减越快。
因此,通过研究二次场的衰减规律便可达到探测地下地质异常体的目的。
图1 TEM 法工作原理示意图瞬变电磁场在大地中主要以扩散形式传播,在这一过程中,电磁能量直接在导电介质中由于传播而消耗,由于趋肤效应,高频部分主要集中在地表附近,且其分布范围是源下面的局部,较低频部分传播到深处,且分布范围逐渐扩大。
传播深度:d= (2)传播速度:zd V t ∂==∂ (3)式中:t — 传播时间;σ —介质电导率;0μ— 真空中的磁导率。
由(2)式得:72210t h p π-=⨯, (4) 在中心回线下,时间与表层电阻率之间的关系可写为:()()2125031400I L t ηπρμ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦= (5) 联立(4)(5)式,可得中心回线装置估算极限探测深度H 的公式为:15210.55L I Hρη⎛⎫ ⎪⎝⎭= (6)mR N η=式中:I — 发送电流;L — 发送回线边长;1ρ—上覆电阻率;η—最小可分辨电压,它的大小与目标层几何参数和物理参数及观测时间段有关。
第1章瞬变电磁法的发展现状瞬变电磁法(Transient electromagnetic method)是一种地球物理勘探方法,在国内外得到了广泛应用。
它利用地下储层的电导率差异,通过向地下发送瞬态电磁场信号,并测量地表上相应的电磁响应信号,来了解地下储层的性质和构造。
随着科学技术的发展和对资源勘探的需求增加,瞬变电磁法也得到了不断的发展和改进。
瞬变电磁法早期应用于物探领域,主要用于寻找矿产资源和地下水。
例如,用瞬变电磁法进行的石油和天然气勘探,可以帮助确定地下蕴藏的石油和天然气的位置、分布和储量。
同时,也可以通过瞬变电磁法来寻找地下水资源,帮助农业和城市供水等领域的发展。
随着瞬变电磁法在勘探领域的成功应用,人们开始将其用于环境地质学和工程地质学等领域。
瞬变电磁法可以用于地下污染物的检测和监测,了解地下水域和土壤的污染状况,并帮助制定环境保护和修复策略。
此外,瞬变电磁法还可以用于地质灾害的预测和风险评估,例如地下水涌出、滑坡等。
为了进一步改进瞬变电磁法的应用效果,研究人员从多个方面进行了探索和改进。
首先,他们提出了一种新的瞬变电磁法测量方式,多频段法,该方法将不同频率的电磁信号同时发送到地下,测量并分析不同频率下的电磁响应信号,从而提高了勘探的精度和有效性。
其次,研究人员也对瞬变电磁法的数据处理和解释进行了改进。
他们引入了先进的数学模型和算法,利用计算机技术和数据处理软件来处理和解释瞬变电磁法的数据。
这使得对地下储层的结构和性质进行更准确的分析和判断成为可能。
另外,为了提高瞬变电磁法的勘探深度和分辨率,研究人员还利用成像技术和高性能电磁感应仪器相结合,研发了一系列新的瞬变电磁仪器和设备。
这些仪器和设备具有更高的信噪比和更快的采样速度,能够更好地探测和分析地下储层的电导率异质性。
总之,瞬变电磁法作为一种地球物理勘探方法,在矿产资源勘探、环境地质学、工程地质学等领域得到了广泛应用。
随着科学技术的发展,瞬变电磁法不断改进和创新,为地下资源勘探和环境保护提供了更精确和可靠的信息,对于我国资源勘探和环境保护具有重要意义。
瞬变电磁法原理瞬变电磁法(Transient Electromagnetic method,简称TEM)是一种地球物理勘探方法,利用瞬变电磁场在地下介质中传播的特性,来获取地下介质的电性信息。
瞬变电磁法原理的核心在于利用瞬变电磁场的感应效应,通过对地下介质中的电导率进行探测,从而揭示地下构造和岩矿成矿体的信息。
瞬变电磁法的原理可以简单概括为,在地面上设置一个发射线圈,通过传输电流产生瞬变电磁场,这个瞬变电磁场会穿透地下介质并感应出地下介质中的电磁响应。
接收线圈则用来接收地下介质中的电磁响应,通过分析接收信号的变化,可以推断地下介质的电导率分布情况,从而得到地下介质的电性信息。
瞬变电磁法原理的核心在于瞬变电磁场的感应效应。
当发射线圈传输电流时,会在地下产生一个瞬变电磁场,这个瞬变电磁场会穿透地下介质,并感应出地下介质中的电磁响应。
地下介质中的电磁响应受到地下介质电导率的影响,不同的地下介质具有不同的电导率,因此它们会对瞬变电磁场产生不同的响应。
通过接收线圈接收地下介质中的电磁响应,并分析接收信号的变化,就可以推断地下介质的电导率分布情况。
瞬变电磁法原理的关键在于对接收信号的分析。
接收线圈接收地下介质中的电磁响应,这个响应信号包含了地下介质电导率的信息。
通过对接收信号的分析,可以得到地下介质的电导率分布情况,从而揭示地下介质的电性信息。
瞬变电磁法通过对地下介质的电性信息进行探测,可以帮助地质勘探人员了解地下构造和岩矿成矿体的情况,为资源勘探和地质灾害预测提供重要的科学依据。
总之,瞬变电磁法原理是利用瞬变电磁场的感应效应,通过对地下介质的电性信息进行探测,来揭示地下构造和岩矿成矿体的信息。
通过对发射线圈传输的瞬变电磁场和接收线圈接收的电磁响应进行分析,可以得到地下介质的电导率分布情况,从而揭示地下介质的电性信息。
瞬变电磁法在资源勘探和地质灾害预测中具有重要的应用价值,是一种非常有效的地球物理勘探方法。
瞬变电磁法在铁矿采空区勘查中的应用瞬变电磁法(Transient Electromagnetic Method,TEM)是一种基于电磁场响应原理的地球物理勘查方法,已被广泛应用于铁矿采空区勘查中。
本文将详细介绍瞬变电磁法的原理和在铁矿采空区勘查中的应用。
瞬变电磁法是一种源辐射源回波接收的方法,其原理是通过在地下埋设发射线圈,产生短暂的电流脉冲,在地下的介质中激发出一定频率的电磁场。
地下的电磁场随着时间的推移逐渐衰减,通过接收线圈记录下这一过程中的电磁场变化,然后根据地球的电阻率和磁导率等物理参数,利用电磁场响应函数建立地下模型,进而提取出地下介质的相关信息。
在铁矿采空区勘查中,瞬变电磁法能够有效地检测到地下的矿体、裂隙、矿化程度等信息,为矿产资源的开发提供了重要的参考依据。
主要应用包括以下几个方面:1. 矿化体探测:铁矿采空区会形成一定的矿化体,瞬变电磁法可以快速有效地检测到这些矿化体的位置、形态和分布情况,为矿石选区提供了重要的依据。
通过分析矿化体的电阻率和磁导率等物理参数,可以评估矿体的品位和储量。
2. 裂隙检测:地下的矿山会导致地形失稳,形成一系列的裂隙和断裂带。
瞬变电磁法可以高分辨率地探测到这些裂隙的位置、走向和强度等信息,为地下水的运移和储存提供了重要的参考。
3. 水文地质勘查:铁矿采空区的地下水往往面临较大的压力变化和水质变异,瞬变电磁法可以通过对电阻率和磁导率等参数的测量,评估地下水资源的分布、供给能力和水质情况,为水文地质勘查提供了重要的参考。
4. 高精度三维成像:瞬变电磁法可以进行多组测量,通过对不同方向的数据融合和处理,建立三维地下模型,实现矿体的高精度成像。
这为铁矿采空区的开发和矿山环境的治理提供了重要支持。
瞬变电磁法在铁矿采空区勘查中具有较高的精度和可靠性,已被广泛应用于国内外的铁矿资源勘查。
随着技术的不断发展和改进,相信瞬变电磁法在铁矿采空区勘查中的应用还会进一步拓展和完善,为铁矿资源的开发提供更加有力的支持。
瞬变电磁法1、概述顺便电磁法(TEM)属于时间域电磁法,它是的原理是根据地壳中岩石或者矿体的导电性及介电性等电学性质的差异,以不接地的回线或者是连接地线通上脉冲电流为场源,地下发射一次脉冲磁场,在一次脉冲磁场间歇期间利用线圈或接地电极观测地下介质中引起的二次感应涡流场,从而探测介质电阻率的一种方法。
其基本工作方法是:于地面或空中设置通以一定波形电流的发射线圈,从而在其周围空间产生一次电磁场,并在地下导电岩矿体中产生感应电流:断电后,感应电流由于热损耗而随时间衰减,有一个瞬变的过程。
可以通过判断和分析二次的时空变化特征,来判断地下地质体的电性特征,找出其位置,产状和埋深等特征。
具有可以同时的具有时间和空间的可分性、探测深度达、分辨率高、信息丰富等优点。
近几十年来,我国科学技术快速进步,经济迅猛发展,各项基础建设稳步展开,对于各种矿产资源、能源、地下水资源等的需求快速增加。
同时,各项建设中遇到了许多工程问题,如公路建设中的地下空洞、煤田开采中的陷落柱、隧道开挖中的突水问题等等。
这些因素在一定程度上制约着我国经济的发展,而顺便电磁法的出现,利用其测量方面的优势,已经发展成为探测油气、金属和非金属矿产的一种重要方法,并且在深部地质构造研究,工程勘察、油气、矿产、水、地热勘探等领域得到了广泛的应用。
可以很好地保证资源供给,减少经济损失,加快建设进度。
2、研究现状2.1、研究历史对勘测工程工作的种种困难,把瞬变电磁法应用到地质勘探中的想法在上世纪30年代就有人提出来。
最初的时域电磁法是利用到了L.W.Blan在1993年获得专利,用电磁脉冲激发提供电偶极形成电场。
随后在前苏联有人提出了瞬变电磁测深法。
在50年代,前苏联、加拿大、美国等国已经开始就瞬变电磁法的理论与应用技术进行了深入的研究,同时期由J.R.Wait 提出了使用瞬变电磁场法寻找导电矿体的理念。
前苏联也基本已经建立了瞬变电磁法与野外施工的技术方法,更在70、80年代开展了大量的测量工作,特别是在二维和三维测量的方面就有了很大的进步,这使的瞬变电磁法在地质勘探上运用有了很大的发展。
瞬变电磁法基本理论与工作技术莫撼(东华理工学院江西抚州344000)1 瞬变电磁法概述及发展概论瞬变电磁法(Transient electromagnetic method,简称TEM法)以接地导线或不接地回线通以脉冲电流做为场源,以激励探测目的物感生二次电流,在脉冲间隙测量二次场随时间变化的响应。
二次场从产生到结束的时间是短暂的。
这就是“瞬变”或“过渡过程”名词的由来。
在国外,前苏联50年代基本建立了瞬变电磁法解释理论和野外施工的方法技术,60年代前苏联三十多个瞬变电磁法队在全国各个盆地进行普查,并成功地发现了奥伦堡地轴上的大油田。
前苏联理论研究方面也一直走在世界前列,50~60年代由JI.J.Ba等人成功地完成了瞬变电磁法的一维正、反演。
70~80年代前苏联地球物理工作者又在二、三维正演方面做了大量工作。
80年代初,前苏联学者提出了电磁波拟地震波的偏移方法,他吸取了“偏移成像”的广义概念,在电磁法中确定了正则偏移和解析延拓偏移两种方法。
80年代末,前苏联一些学者如KameHecKNN,又从激发极化现象理论出发,研究了时间域瞬变电磁法的激电效应特征及影响,成功地解释了瞬变电磁法晚期段电磁响应的变号现象。
目前,由俄罗斯生产的大功率瞬变电磁法仪器已在我国石油系统打开市场。
欧美名国虽然于50年代就提出了该方法,并做了一定的试验工作,大规模发展该方法始于70年代。
80年代以来,随着计算机技术的发展,欧美名国在瞬变电磁法的二、三维正演模拟技术方面所作工作(有限元、有限差分、积分方程及混合方法直接解时间域热传导方程或者先解频率域亥姆霍兹方程,再进行域的转换)日臻完善,代表性人物有G.W.Hohmann,P.Weidelt,G.F.West,A.P.Raiche,B.R.Spies,J.H.Knight,San Filippo,T.J.Lee等一大批学者。
国内瞬变电磁法开始于70年代初,由长春地质学院、中国有色金属工业总公司矿产地质研究院、地矿部物化探勘查研究所、中南工业大学、西安地质学院、北京矿产地质研究所和中国地质大学等单位分别在方法理论、仪器及野外试验方面做了一些工作,目前已比较完整地建立一维正、反演及方法技术理论,并自行研制了一些功率较小、勘探深度较浅的单一方法仪器,大功率、多功能瞬变电磁法仪器主要依赖进口。