超临界流体
- 格式:doc
- 大小:37.50 KB
- 文档页数:2
超临界流体法
超临界流体法是一种新型的化学反应技术,它利用超临界流体的特殊
性质,在高压高温的条件下进行化学反应。
超临界流体是介于气态和
液态之间的状态,具有高扩散性、低粘度、高溶解度、可调性等优点,因此在化学反应中具有广泛的应用前景。
超临界流体法的优点主要体现在以下几个方面:
1. 可以实现高效的反应:超临界流体具有高扩散性和低粘度,可以使
反应物快速混合并扩散,从而提高反应速率和效率。
2. 可以实现高选择性的反应:超临界流体的溶解度可以随着温度和压
力的变化而调节,可以实现对反应物的选择性溶解,从而实现高选择
性的反应。
3. 可以实现无溶剂反应:超临界流体可以作为反应介质,不需要使用
有机溶剂等传统的溶剂,从而减少了对环境的污染和对人体的危害。
4. 可以实现对反应产物的高效分离:超临界流体的物理性质可以随着
温度和压力的变化而调节,可以实现对反应产物的高效分离和回收。
超临界流体法在有机合成、催化反应、材料制备等领域都有广泛的应用。
例如,在有机合成中,超临界流体法可以实现高效的合成反应,可以减少反应时间和反应温度,从而提高反应效率和产物纯度;在催化反应中,超临界流体法可以实现高选择性的反应,可以减少催化剂的使用量,从而降低成本和环境污染;在材料制备中,超临界流体法可以实现高效的材料合成和表面修饰,可以制备出具有特殊性质的材料。
总之,超临界流体法是一种具有广泛应用前景的新型化学反应技术,它具有高效、高选择性、无溶剂、高效分离等优点,在有机合成、催化反应、材料制备等领域都有广泛的应用。
随着科技的不断发展和人们对环境保护的要求越来越高,超临界流体法将会成为一种重要的化学反应技术。
超临界流体超临界二氧化碳纯净的物质随着温度和压力的变化,会呈现出气体、液体或固体不同的物理状态;当到达某个特定的温度和压力时,物质的气、液界面会消失,此时的温度称为临界温度T,而压力称为临界压力P超临界流体(SCF)就是温度和压力处于临界点以上的流体超临界流体是一种兼具气体和液体物理性质的独特流体。
它本质上仍是一种气态,但又不同于常规意义上的气体,而是一种稠密的气态。
超临界流体的密度与液体相似,粘度和扩散能力与气体相似,表面张力近似于零,有利于流体的传质和传热。
此外,超临界流体的介电常数对压力非常敏感,可以通过改变压力来调控超临界流体溶解不同极性的物质。
超临界流体还具有较强的可压缩性,略微地调节温度和压力就能改变超临界流体的物理性质超临界二氧化碳(scCO2)是应用最为广泛的一种。
因为scCO2除了拥有超临界流体本身所具有的渗透性能好、传质系数高等特点之外,还拥有以下优点:(1)CO2达到超临界状态的条件很温和,只需温度超过31.1 °C、压力超过7.38MPa,CO2就会转变为scCO2;(2)CO2来源广泛,价格低廉,并且无色、无毒、无臭、无害,具有优异的化学稳定性,不会发生燃烧和爆炸;(3)scCO2在聚合物熔体中具有较高的扩散性和溶解度,对聚合物熔体有较强的增塑作用,从而能显著降低熔体黏度,提高熔体的流动性;(4)scCO2能轻易从产物中脱除,完全省去了使用传统溶剂带来的复杂的后处理工序,并且还能实现对CO2的回收利用;(5)CO2分子成对称结构,极性较弱,它能溶解非极性或极性较弱的物质,可以作为反应介质或萃取剂;若要溶解无机盐类或极性较强的物质,需要在scCO2中加入一些极性共溶剂(如乙醇)来改善它的极性。
1.3 scCO2在聚合物发泡中的应用聚合物发泡材料是指以聚合物(塑料、橡胶、弹性体或天然高分子材料)为基体而内部含有无数气泡的多孔材料,也可以视为以气体为填料的复合材料。
超临界流体(SCF)是指处于临界温度(Tc)和临界压力(Pc)以上的流体,其具有如下特性:(1)粘度低,传质阻力小,扩散速度快,是化学反应的良好介质;(2)常温常压下不相溶的物质在超临界状态下具有较大的溶解度,可形成均相体系,减小了相间传质阻力,大大提高了反应速度;(3)温度或压力的微小变化可以使流体的性质(如密度等)发生很大的变化,从而使溶质在超临界流体中的溶解度发生很大的变化,这样有利于溶剂和溶质或催化剂分离。
超临界流体中的解聚反应,主要利用超临界流体优异的溶解能力和传质性能,分解或降解高分子废弃物,得到气体、液体和固体产物。
在日常生活中,有大量的塑料废弃物产生,在聚合物的生产过程及塑料加工中,也会产生一些废料、边角料等。
采用超临界解聚技术可使之转换为燃料油或各种化学原料,也可还原成化学单体循环使用,这样一方面消除了大量塑料废弃物对环境的严重污染,另一方面将塑料废弃物重新回收利用,防止了资源浪费。
水是自然界最重要的溶剂,它无毒、无害、与许多反应物无需分离,是重要的反应介质。
水的临界温度为374.3℃,临界压力为22.05 MPa。
超临界水具有常态下有机溶剂的性能,溶解有机物,而不溶解无机物,还具有氧化性。
它可以与空气、氮气、氧气、和二氧化碳等气体完全互溶,所以它可以作为氧化反应的介质,又可以直接进行氧化反应。
但对废旧塑料的分解,也有好多人用超临界甲醇、乙醇。
由于塑料的化学成分不一样,所以进行超临界水解时所采取的实验方案也不一样,要对各种废旧塑料进行分类处理。
我所选取的主要有三类废旧塑料类型分别是PET、PE、PS。
1、PETPET 是聚对苯二甲酸乙二醇酯的简称,广泛应用于合成纤维、薄膜、塑料。
其中PET 塑料瓶在世界范围内有逐步取代玻璃瓶成为市场上主要饮料容器的趋势。
因此,它的回收再利用技术受到人们的广泛重视。
以超临界水为溶剂,能够快速分解PET 和回收单体对苯二甲酸(PTA)。
用超临界水水解得到的单体产物正是各种聚合物的原材料,而且回收的对苯二甲酸纯度为99%。
超临界流体的应用及其原理1. 超临界流体的概述超临界流体是指在临界温度和临界压力之上的流体状态。
在这种状态下,物质的性质会发生显著的改变,表现出类似气体和液体的特性。
超临界流体具有较高的扩散性、低的粘度和高的溶解能力,使其在很多领域得到广泛的应用。
2. 超临界流体的应用领域2.1 超临界流体的溶剂应用•超临界流体在化学领域中被广泛应用于溶剂中,用于提取天然产品、合成新材料等。
包括药物、天然色素、化妆品等领域。
2.2 超临界流体的催化应用•通过调节超临界流体的条件,可以提高催化剂的反应活性和选择性,使催化反应变得更高效。
2.3 超临界流体的分离应用•超临界流体在分离技术中具有广泛的应用,尤其在石油、食品、制药等行业中。
例如,超临界流体萃取技术可以高效地分离混合物,提取纯净的目标物质。
2.4 超临界流体的材料加工应用•超临界流体可以用于材料表面的改性、纳米颗粒的制备等应用。
通过控制超临界流体的条件,可以获得具有特殊性能的材料。
3. 超临界流体的原理超临界流体的特性与常规的气体和液体有所不同,主要是由于超临界流体接近它们的临界点,其密度和介电常数等物理性质发生显著改变。
超临界流体的原理主要涉及以下方面:3.1 超临界流体的临界点•超临界流体的临界温度和临界压力是其特殊性质的基础。
在超临界流体的临界点附近,物质的性质会发生剧烈的变化。
3.2 超临界流体的介电常数•超临界流体的介电常数通常比气体和液体大,这使得它具有更好的溶解能力,并且可以更好地传递电荷和热量。
3.3 超临界流体的密度•超临界流体的密度是根据物质的温度和压力来决定的。
在超临界状态下,物质的密度会随着温度和压力的变化而变化。
3.4 超临界流体的扩散性•超临界流体的扩散性好,能够渗透到物质的内部,使得物质之间的反应发生。
4. 超临界流体的借助技术超临界流体在应用中借助一些关键技术来实现其目的。
4.1 压力调节技术•通过调节超临界流体的压力,可以控制流体的密度和物性,从而实现不同的应用需求。
超临界流体的制备和应用超临界流体是介于气体-液体两相之间的一种物质状态,具有一定的密度、粘度和溶解能力。
在高温高压条件下,超临界流体的物理和化学性质会发生巨大的变化,因此被广泛应用于化学、材料、环保等领域。
本文将就超临界流体的制备和应用做详细阐述。
一、超临界流体的制备1.常用制备方法超临界流体的制备主要有三种方法:压缩法、膨胀法和化学反应法。
压缩法是以高压为主要手段,通过升高温度和压力把物质压缩至临界状态,进而转化为超临界流体。
膨胀法则是通过突然减压使液体在恒压下变为超临界流体。
化学反应法是利用化学反应产生的反应热,让物质在特定温度、压力条件下形成超临界流体。
2.影响制备的因素超临界流体的制备还受到多种因素的影响,如温度、压力、溶剂、反应物浓度等。
温度和压力是制备超临界流体的关键参数,它们的选择会直接影响反应物的状态和产率。
不同的溶剂或反应物浓度也会对制备过程产生重要影响,不同的配料比例可能导致制备结果不同。
二、超临界流体的应用1.化学领域超临界流体在化学领域有多种应用,例如在化学反应和催化领域中,超临界流体既可以作为反应介质,也可以作为溶剂。
在超临界流体中,反应速率和收率往往比传统的反应更高。
此外,超临界CO2在芳香化合物的合成和分离、核磁共振(NMR)试样制备、高质量蛋白质像素制备等领域也得到了广泛应用。
2.材料领域超临界流体在材料领域有突出应用,尤其是在金属纳米材料的制备中。
由于超临界反应物的可控性和高分散能力,超临界流体可以用于制备纳米颗粒、纳米形貌粉体、高含量纳米抗菌材料等。
此外,超临界流体还广泛应用于制备二氧化硅和其他纳米材料的天然长晶体的制备过程中,可以实现高质量、高效率、低成本的纳米材料制备。
3.环保领域超临界流体在环保领域也有重要作用,主要体现在有机污染物的净化和绿色化学反应中。
超临界流体具有高渗透能力和高粘度,可以有效地替代传统有毒有机溶剂,达到绿色化学反应的目的。
同时,超临界流体通过溶解和分离技术可以实现高品质的固体废物的回收利用,有重要的环保价值。
超临界流体是温度和压力同时高于临界值的流体,亦即压缩到具有接近液体密度的气体。
超临界流体的密度和溶剂化能力接近液体,粘度和扩散系数接近气体,在临界点附近流体的物理化学性质随温度和压力的变化极其敏感,在不改变化学组成的条件下,即可通过压力调节流体的性质。
特性总体而言,超临界流体的属性介于气体和液体之间。
在表1中,显示一些常用作超临界流体的化合物之临界性质。
乙烷(C2H6)30.07 305.3 4.87 (48.1) 0.203丙烷(C3H8)44.09 369.8 4.25 (41.9) 0.217乙烯(C2H4)28.05 282.4 5.04 (49.7) 0.215丙烯(C3H6)42.08 364.9 4.60 (45.4) 0.232甲醇(CH3OH)32.04 512.6 8.09 (79.8) 0.272乙醇(C2H5OH)46.07 513.9 6.14 (60.6) 0.276丙酮(C3H6O)58.08 508.1 4.70 (46.4) 0.278在超临界流体中没有液体及气体之间的相界限,因此不存在表面张力,借由改变流体的压力和温度,可以微调超临界流体的特性,使其更类似液体或是气体。
物质在流体中的溶解度即为重要特性之一,在固定温度条件下,溶解度会随流体密度增加而增加。
由于密度也是随压力增加而增加,因此在压力增加时,溶解度也会增加。
溶解度和温度的关系比较复杂,在固定密度条件下,溶解度会随温度增加而增加,但靠近临界点时,温度轻微的增加会造成密度的大幅下降。
因此靠近临界点时,随着温度上升,溶解度会先下降,然后再上升[2]。
二种以上的超临界流体,只要温度及压力超过其临界点,二者均可以混溶,形成单一相的混合物。
二元混合物的临界点可以用二超临界流体的临界温度及临界压力,再配合加权平均求得:T c(mix) = (A的莫耳分率)x A的T c + (B的莫耳分率)x B的T c 若要有更高的准确度,临界点可以用像是彭-罗宾逊物态方程式之类的状态方程求得,或是用基团贡献(group contribution)法求得,像密度之类的其他性质,也可以用状态方程来计算[3]。
超临界流体定义纯净物质要根据温度和压力的不同,呈现出液体、气体、固体等状态变化,如果提高温度和压力,来观察状态的变化,那么会发现,如果达到特定的温度、压力,会出现液体与气体界面消失的现象该点被称为临界点,在临界点附近,会出现流体的密度、粘度、溶解度、热容量、介电常数等所有流体的物性发生急剧变化的现象温度及压力均处于临界点以上的液体叫超临界流体(supercritical fluid,简称SCF)。
例如:当水的温度和压强升高到临界点(t=374.3 ℃,p=22.05 MPa)以上时,就处于一种既不同于气态,也不同于液态和固态的新的流体态──超临界态,该状态的水即称之为超临界水。
超临界流体由于液体与气体分界消失,是即使提高压力也不液化的非凝聚性气体超临界流体的物性兼具液体性质与气体性质。
它基本上仍是一种气态,但又不同于一般气体,是一种稠密的气态。
其密度比一般气体要大两个数量级,与液体相近。
它的粘度比液体小,但扩散速度比液体快(约两个数量级),所以有较好的流动性和传递性能。
它的介电常数随压力而急剧变化(如介电常数增大有利于溶解一些极性大的物质)。
另外,根据压力和温度的不同,这种物性会发生变化。
物质在超临界流体中的溶解度,受压力和温度的影响很大.可以利用升温,降压手段(或两者兼用)将超临界流体中所溶解的物质分离析出,达到分离提纯的目的(它兼有精馏和萃取两种作用).例如在高压条件下,使超临界流体与物料接触,物料中的高效成分(即溶质)溶于超临界流体中(即萃取).分离后降低溶有溶质的超临界流体的压力,使溶质析出。
如果有效成分(溶质)不止一种,则采取逐级降压,可使多种溶质分步析出。
在分离过程中没有相变,能耗低。
如超临界流体萃取(supercrtical fluid extraction,简称SFE),超临界水氧化技术、超临界流体干燥、超临界流体染色、超临界流体制备超细微粒、超临界流体色谱(supercritical fluid chromatography)和超临界流体中的化学反应等,但以超临界流体萃取应用得最为广泛。
超临界流体
超临界流体(supercritical fluid)温度、压力高于其临界状态的流体。
温度与压力都在临界点之上的物质状态归之为超临界流体。
超临界流体具有许多独特的性质,如粘度小、密度、扩散系数、溶剂化能力等性质随温度和压力变化十分敏感:粘度和扩散系数接近气体,而密度和溶剂化能力接近液体。
超临界流体由于液体与气体分界消失,是即使提高压力也不液化的非凝聚性气体。
超临界流体的物性兼具液体性质与气体性质。
它基本上仍是一种气态,但又不同于一般气体,是一种稠密的气态。
其密度比一般气体要大两个数量级,与液体相近。
它的粘度比液体小,但扩散速度比液体快(约两个数量级),所以有较好的流动性和传递性能。
它的介电常数随压力而急剧变化(如介电常数增大有利于溶解一些极性大的物质)。
另外,根据压力和温度的不同,这种物性会发生变化。
超临界流体技术
超临界流体(Supercritical Fluids, SCF), 是一种在温度和压力处于其临界点以上时兼具液体和气体双重物性的流体。
超临界流体技术就是利用超临界流体的这种特性发展起来的一门新兴技术, 因其清洁、安全、高质、高效等显著优势超越传统技术, 被誉为“超级绿色”技术。
1超临界流体中的化学反应
1.1 超临界CO2聚合反应
超临界CO2(SC-CO2)用于聚合反应,是基于其惰性不会引起链转移,通过减压即可实现反应-分离一体化。
目前在SC-CO2中进行的的聚合反应大多为非均相聚合,主要有悬浮聚合、乳液聚合、分散聚合和沉淀聚合,前3 种都需要合成能溶于SC-CO2的特殊表面活性剂,而且聚合物很难与这些表面活性剂分离纯化,所以研究在SC-CO2中的沉淀聚合反应更具有实用意义。
SC- CO2具有双极性, 其极性与烃类相近。
根据相似相溶原理, 其既可溶解非极性物质, 又可溶解极性物质, 还能溶解许多有机固体。
对气体如H2、O2等也具有很高的溶解性, 有利于诸如催化加氢、催化氧化等反应的进行。
在不对称的催化加氢反应、Diels-Alder反应、氢甲酰化反应、烯烯键易位反应、烯环化反应等方面都有应用研究。
如, Burk[1]小组以SC-CO2为溶剂极大地提高了烯烃衍生物不对称氢化的对映性选择(99.5%,ee), 这无疑是一个完美的绿色合成反应。
陈坚等[2]在超临界CO2中进行氯乙烯(VC)自由基聚合,对聚合过程和树脂颗粒特性进行了研究。
实验发现聚合存在诱导期和自动加速效应,聚合初期一次加入引发剂、提高聚合压力和搅拌都会使转化率降低。
压力提高使得凝胶效应减弱,导致聚合转化率降低;聚合过程中部分自由基和活性聚合物链被聚合物包埋、金属釜壁面对自由基和活性聚合物链的终止作用也导致聚合转化率降低。
聚合成粒过程有别于传统氯乙烯悬浮聚合,树脂由初级粒子聚集而成,且多孔疏松、无皮膜。
1.2超临界水氧化的应用
超临界水氧化是一种对有机物废料处理的新技术[3,4],它的优点是被处理的有机物和氧在超临界水中可以完全混溶, 即反应过程中反应物成单一流体相; 并且在温度足够高( 400~ 600℃ ) 时, 氧化速度非常快, 可以在几分钟内将有机物完全转化为CO2和水。
由于这项技术具有工业化前景, 一些发达国家已经建立了中试装置, 可以处理的有机物包括: 酚类化合物、氯烃类化合物、含氮类化合物、有机氧化物、军用材料等。
2 超临界流体萃取技术的应用
2.1超临界流体萃取分离技术
超临界流体萃取分离技术(Supercritical FluidExt reaction, SFE) 是应用较早的超临界流体技术, 它是以超临界流体为提取剂, 在接近临界温度和临界压力的状态下, 从液体或固体物料中提取出待分离的组分, 又称为超临界溶剂提取、压力流体提取等。
许延等[5]在超临界流体萃取分馏的基础上,用连续式溶剂脱沥青装置将加氢尾油进行梯级分离,得到轻脱油、重脱油和脱油沥青。
考察了温度和压力对脱沥青油收率及性质的影响,计算了杂质的脱除率,提出了用超临界萃取分馏结果预测连续式脱沥青油残炭及镍含量的关联式。
结果表明,采用连续式溶剂脱沥青工艺,在轻脱油收率为52.2%、总脱沥青油收率为84.7%时,金属的脱除率达到99.5%,残炭脱除率达60.0%;轻脱油总金属含量仅为8.7μg/g,残炭为4.49%。
轻
脱油是良好的催化裂化原料,重脱油可作加氢裂化原料。
在化学工业中, SFE 已在精细化工、石油化工及煤化工等领域中应用, 用来分离精制芳香族的同系物等; 从油渣中脱除沥青以及砷、汞、铅和铜等重金属, 提取纯油以及废油回收利用; 萃取煤中的石蜡、煤焦油等。
采用的萃取剂主要包括水、苯、甲苯、二甲苯、醇类、轻烃等[6]。
2.2超临界络合萃取技术
超临界流体萃取与有机溶剂络合作用结合, 可以对特殊环境的有害金属离子进行处理[7]。
虽然SC- CO2 的非极性使得金属离子在其中的溶解度有限, 但可以加入改性剂或有机配体来增加溶解度。
改性剂如甲醇以两种方式增加金属离子溶解度: ( 1)与金属离子配位以降低其极性; ( 2) 使SC- CO2成为一种极性溶剂。
3超临界流体色谱技术应用
超临界流体色谱( supercritical fluid chromatog raphy, 简称SFC) 是指以超临界流体为流动相, 以固体吸附剂( 如硅胶) 或键合到载体( 或毛细管壁) 上的高聚物为固定相的色谱。
混合物在SFC 上的分离机理与气相色谱( GC) 及液相色谱( LC) 一样, 即基于各化合物在两相间的分配系数不同而得到分离。
超临界流体色谱作为气相色谱和液相色谱的有力补充可用于热不稳定和低挥发性物质的分析分离和制备, 也可用于超临界流体中分子间相互作用的研究。
从20 世纪60 年代, 卟啉异构体[8]、聚苯乙烯的齐聚物、多环芳烃、抗氧剂、染料及环氧树脂、胡萝卜素、氨基酸等在SFC 上得到分离。
随着色谱技术的进步, SFC 分析的应用领域逐渐扩大。
Berger [9]综述了填充柱式SFC 在极性物质分析方面的应用, 表明SFC 已经适用于从苯酚到多元酸的酸性物质及苯胺到多元脂肪胺的碱性物质的分析。
参考文献
[1]宋礼成,范洪涛,胡青眉.金属有机化学中的绿色化学合成反应进展[J].有机化
学,2001,21(10):713- 720.
[2]陈坚,黄志明,包永忠,等. 氯乙烯在超临界二氧化碳中的沉淀聚合[J]. 浙江大学学报:工学版,2007,41(5):840-842,858.
[3] Caruana CM. Photocatalysis aim to make light work for po-llution cleanup[ J] . Chem Eng Prog, 1995, 91: 10~ 20.
[4] Modell M. Processing methods for the oxidation of organicsin supercritical water[ P] . US:
4 338 199, 1982
[5] 许延,徐伟池,许志明,等. 克拉玛依渣油悬浮床加氢尾油溶剂脱沥青研究[J]. 石油炼制与化工,2008,39(4):21-25.
[6]Demirbas A. Energy Sources, 2004, 26(10): 933- 939.
[7]Laintz K E, Hale C D, Stark P, et al. A Comparison of liquidand supercritical carbon diox ide as an extraction solventfor plating bath treatment[ J] . J Anal Chem, 1998, 70 ( 2) : 400~ 404.
[8]Klesper E, Corw in A H, Turner D A. J . Org . Chem. , 1962, 27: 700~ 708
[9]Ber ger T A. J . Chr omatogr . A , 1997, 785: 3~ 33。