(线性代数)矩阵秩的8大性质、重要定理以及关系
- 格式:docx
- 大小:322.59 KB
- 文档页数:5
矩阵的秩的定理
矩阵的秩的定理,也称为格拉姆-施密特(Gram-Schmidt)定理或斯皮耳定理(Sylvester's law),是线性代数中的一个基本定理。
它描述了一个矩阵的秩,也称为矩阵的“行秩”或“列秩”,等于其行向量组或列向量组的极大线性无关组中向量的个数。
具体地,设A是一个n\times m矩阵,r是它的秩,则:
1. 存在n\times r矩阵B和r\times m矩阵C,使得A=BC;
2. r等于矩阵A中的行向量组或列向量组的极大线性无关组中向量的个数。
这个定理的证明可以通过线性代数的一般理论,包括线性空间的基本概念和线性相关性等进行推导。
矩阵的秩的定理在很多数学和工程应用中都得到了广泛的应用,如矩阵分解、矩阵压缩、图像处理、信号处理和统计学中的因子分析等。
矩阵秩的性质大全及证明矩阵的秩是指矩阵中最多能线性无关的列(或行)的数量。
下面是矩阵秩的一些性质和证明:秩加性性质如果有两个矩阵$A$ 和$B$,则有:$$\text{rank}(A+B) \leq \text{rank}(A)+\text{rank}(B)$$证明:设$A$ 的秩为$r_A$,$B$ 的秩为$r_B$。
则存在$r_A$ 个线性无关列$a_1, a_2, \dots, a_{r_A}$ 和$r_B$ 个线性无关列$b_1, b_2, \dots, b_{r_B}$,使得$A$ 和$B$ 分别可以写成如下形式:$$A = \begin{bmatrix} a_1 & a_2 & \dots & a_{r_A} & * & \dots & * \end{bmatrix}$$$$B = \begin{bmatrix} b_1 & b_2 & \dots & b_{r_B} & * & \dots & * \end{bmatrix}$$其中星号表示可以是任意列。
由于$a_1, a_2, \dots, a_{r_A}$ 和$b_1, b_2, \dots, b_{r_B}$ 都是线性无关的,所以$A+B$ 中前$r_A+r_B$ 列是线性无关的。
因此$\text{rank}(A+B) \leq r_A+r_B = \text{rank}(A)+\text{rank}(B)$。
秩乘法性质如果有两个矩阵$A$ 和$B$,则有:$$\text{rank}(AB) \leq \min(\text{rank}(A),\text{rank}(B))$$证明:设$A$ 的秩为$r_A$,$B$ 的秩为$r_B$。
则存在$r_A$ 个线性。
第五讲 矩阵的秩矩阵的秩是线性代数中又一重要概念,它描述了矩阵的一个重要的数值特征:在判定线性方程组是否有解,向量组的线性相关性,求矩阵的特征向量以及在多项式、空间几何等多个方面都有广泛的应用。
本讲我们主要了解矩阵秩的概念及其与方程组各类型解的关系。
5.1.1 矩阵秩的定义在第二讲中,我们通过矩阵的初等行(列)变换定义了矩阵的行(列)阶梯形、矩阵的行(列)最简形以及矩阵的标准形。
其中矩阵行(列)阶梯形与矩阵行(列)最简形可以不唯一,但矩阵的标准形唯一。
因此,下面就利用矩阵标准形的唯一性来给出矩阵秩的概念。
定义5.1 对于给定的m n ⨯矩阵A ,它的标准形(-)(-)(-)(-)rr n r m r r m r n r m nE OF O O ⨯⨯⨯⨯⎛⎫=⎪⎝⎭由数r 完全确定,我们称数r 为矩阵m n A ⨯的秩(rank ),记作()R A 。
其中, r E 是r 阶单位矩阵;其余都是零矩阵。
注:(1) 零矩阵的秩为零:()0R O =;(2) 矩阵的秩就是矩阵标准形中左上角单位矩阵的阶数。
(3)对于n 阶方阵A ,当()R A n =时,称A 为满秩矩阵。
当()R A n <时,称A 为降秩矩阵.例5.1 求矩阵111610121210A ⎛⎫⎪=-- ⎪ ⎪-⎝⎭的秩。
解 先将A 通过初等变换化为标准形111610121210A ⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭2131111601280306r r r r --⎛⎫⎪−−−→ ⎪ ⎪⎝⎭323111601280026r r -⎛⎫ ⎪−−−→ ⎪ ⎪⎝⎭111601280013⎛⎫ ⎪→ ⎪ ⎪⎝⎭12312101201280013r r r ---⎛⎫ ⎪−−−→ ⎪ ⎪⎝⎭13232100101020013r r r r +-⎛⎫⎪−−−→ ⎪ ⎪⎝⎭()4142433312,3100001000010c c c c c c E O -⨯--⎛⎫ ⎪−−−−−→= ⎪ ⎪⎝⎭可看出,矩阵A 的标准形中左上角是3阶单位矩阵,所以()3R A =. 矩阵秩有如下性质 性质5.1 ()()TR A R A =; 性质5.2 }{0()min ,R A m n ≤≤;性质5.3 如果n 阶方阵A 可逆,则()R A n =;(可逆矩阵也称为满秩矩阵)性质5.4 {}()min (),()R PA R P R A ≤; 当P 可逆时,()()R PA R A =;若 P Q 、都可逆,且有PAQ B =,则()()R A R B =.性质5.5 max {}(),()(|)()+()R A R B R A B R A R B ≤≤;特别地,当B 为列矩阵时,有max {}(),()(|)()+1R A R B R A B R A ≤≤;性质5.6 ()()();()()().r A B r A r B r A B r A r B +≤+-≥-性质5.7 设A 为m n ⨯矩阵且()R A r =,则A 的任意S 行组成的矩阵B ,有().r B r s n ≥+-下面只证明性质5.3和性质5.4,其余的性质请学生自证。
矩阵秩的8大性质:①A,宀)冬mini加小I ;③若A〜叭则R(A) = K(B)j④若可逆•则R(PAQ) = R(A),下面再介绍几个常用的矩阵秩的性质:⑤maxi R( A )>R(B)|^J R(A t B)^J R(A) + P (B), 特别地,当B = b为非零列向量时,有R(A)MR(A』)MR(A)+ 1.⑦R(AB)^min{K(A)t K(B)|,(见下节定理7)⑧若A…B“二0,则R(A) + R(B)Mm(见下章例13)设AB= O■若A为列满秩矩阵,则B-0.线性方程组的解:定理3 H元线性方程组A x=&(i)无解的充分必要条件是K(A)CR(A』);(ii)有惟一解的充分必要条件是R(A) = R(A,b)=n;(iii)有无限多解的充分必要条件是R(A) = R(A』)Cr?・定理4 n元齐次线性方程组Ax=OW零解的充分必要条件是R(A)Cm £35翹方聽AE鬧械酬髓件默⑷=R(A"定理6解方gAX=£有解的充分必要条件是R(A) = R(A,B).定理7 «AB = C,则R(C)Wmin|R(A),R(B)h向量组的线性相关性:定鰹1向跖能由向量组严心线憐示的充分必要桑件是j£^A=(a H fl J1»<t a w )的秩等于矩阵B =(爲卫?广』册』)的税.定理2向虽组B4訥严上能由向蚩组A0 叫…心 线性表示的 充分必要条件是矩阵A = («i 严心)的秩等于矩阵(A,B)=(釦严心, 27啲秩,即 R(A} = R(A,B)・推论向輦组宀%与向HfflB :*1(h lt -s6,等价的充分必要 条件是J?(A) = R(B)-J?(A,B)t其中A 和月是向僮组A 和B 所构成的矩阵”定理3设向員组Bl 】』?「讪能由向證组A a 厲厂心线性表示. 则R(h 』W 血KR 仏曲宀仇)・阵A = g 曲严松)的秩小于向懂个数奶向咼组线性无关曲充分必要条件 是R ⑷二皿血“也线性相关成盲之,若向储组B 线性无关侧向A 也线性无关.(2) 7«个"维向虽组成的向量组,当维数«小于向虽个数加时一定钱牲相 关•特别地,n + ltwt 向量一定线性相关,(3) 设向量组人:叭』2,线性无关,而向量组线性 相关侧向虽b 必能由向鈕组A 钱性表示,且表示式是惟一的.定理4,%线性相关的充分必要条件是它所构成的矩 定理5 (1)若向员组A0严心线性相关』IJ 向量組SW *对比:矩阵A =(叭』加小,%)的秧等于矩阵B = 的税,定理5线性方程组曲M 有解的充分必要憑件是R ⑷= R(A ;b)?l定理2向虽组时血严血能由向量组A :釘』线性表示的 充分必要条件是矩阵4二(尙,伽「・,心)的秩等于矩阵= 儿7)的秩,即R(A) = R(A 』}.条件是定理1 JSA 仙疋“5—线性表示的充分必要条件是 推论 向量组A :%与向 组…出等价的充分必要曬b 能由向 R(A) = R(B) = R(A t B),其中A 和B 是向世组A 和B 所构成的矩阵・定理6矩阵方程AX=B 有解的充分必要条件是R(A) = R(A t B).则RO】』?严,h)WR(a*2严叫)・n定理4向燧组小勺严心黠相关的充分必要条件是它所构成的矩阵亦⑴曲「心)的秩小于向齢数用洞鞠黠无关的充分必縣件是R(A)n||能4 "元制:黠方翻X0有鶴繃充分必要条瞬丽石~|觀5如騎次難方翻(13)的系協行臟D判屈粽黠方翱(13)蹣粹館定理5’如果撅黠方翩(13)辭輔』陀的系舫脱必腮.。
矩阵的秩的性质总结1. 什么是矩阵的秩?矩阵的秩是矩阵最重要的性质之一。
它是描述矩阵列空间的维度,也可以看作是矩阵中线性无关的列或行的数量。
对于一个 m × n 的矩阵 A,它的秩记作 rank(A) 或 r(A)。
矩阵的秩是矩阵A的最大非零子式的阶数。
2. 矩阵秩的性质性质1:矩阵的行秩等于列秩对于任意 m × n 的矩阵 A,它的行秩和列秩是相等的,即 rank(A) = rank(A^T),其中 A^T 表示 A 的转置矩阵。
性质2:矩阵的秩不超过它的维数对于任意 m × n 的矩阵 A,它的秩不会超过它的行数和列数中的较小值,即rank(A) ≤ min{m, n}。
性质3:矩阵的零空间维数等于它的列数减去秩对于一个 m × n 的矩阵 A,它的零空间维数等于 n - rank(A),其中 n 为矩阵 A的列数。
性质4:矩阵的秩可能受大小变化的影响矩阵的秩在进行大小变化时可能发生变化。
例如,如果一个矩阵 A 的某一行乘以一个非零数,那么这个矩阵的秩不会改变。
性质5:矩阵乘法中秩的关系对于两个矩阵 A 和 B,我们有以下关系:rank(AB) ≤ min{rank(A), rank(B)}。
3. 矩阵秩的应用解线性方程组矩阵的秩在解线性方程组时起到了重要的作用。
通过求解矩阵 A 的秩和增广矩阵的秩,可以判断线性方程组的解的情况。
线性相关性与线性无关性矩阵的秩可以用来判断向量组的线性相关性与线性无关性。
一个向量组的秩等于向量组中线性无关向量的最大个数。
求矩阵的逆对于一个方阵 A,如果它的秩等于它的行数(或列数),那么它是一个可逆矩阵,可以求出它的逆矩阵。
矩阵的相抵标准形矩阵的秩可以用来推导矩阵的相抵标准形。
相抵标准形是矩阵在初等行变换和初等列变换下的标准形式。
结论矩阵的秩是矩阵理论中一个非常重要的概念。
它能够帮助我们理解矩阵的性质,并在线性方程组求解、线性相关性判断、矩阵逆的求解等问题中发挥重要作用。