矩阵秩性质5的证明
- 格式:ppt
- 大小:141.00 KB
- 文档页数:1
第五讲 矩阵的秩矩阵的秩是线性代数中又一重要概念,它描述了矩阵的一个重要的数值特征:在判定线性方程组是否有解,向量组的线性相关性,求矩阵的特征向量以及在多项式、空间几何等多个方面都有广泛的应用。
本讲我们主要了解矩阵秩的概念及其与方程组各类型解的关系。
5.1.1 矩阵秩的定义在第二讲中,我们通过矩阵的初等行(列)变换定义了矩阵的行(列)阶梯形、矩阵的行(列)最简形以及矩阵的标准形。
其中矩阵行(列)阶梯形与矩阵行(列)最简形可以不唯一,但矩阵的标准形唯一。
因此,下面就利用矩阵标准形的唯一性来给出矩阵秩的概念。
定义5.1 对于给定的m n ⨯矩阵A ,它的标准形(-)(-)(-)(-)rr n r m r r m r n r m nE OF O O ⨯⨯⨯⨯⎛⎫=⎪⎝⎭由数r 完全确定,我们称数r 为矩阵m n A ⨯的秩(rank ),记作()R A 。
其中, r E 是r 阶单位矩阵;其余都是零矩阵。
注:(1) 零矩阵的秩为零:()0R O =;(2) 矩阵的秩就是矩阵标准形中左上角单位矩阵的阶数。
(3)对于n 阶方阵A ,当()R A n =时,称A 为满秩矩阵。
当()R A n <时,称A 为降秩矩阵.例5.1 求矩阵111610121210A ⎛⎫⎪=-- ⎪ ⎪-⎝⎭的秩。
解 先将A 通过初等变换化为标准形111610121210A ⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭2131111601280306r r r r --⎛⎫⎪−−−→ ⎪ ⎪⎝⎭323111601280026r r -⎛⎫ ⎪−−−→ ⎪ ⎪⎝⎭111601280013⎛⎫ ⎪→ ⎪ ⎪⎝⎭12312101201280013r r r ---⎛⎫ ⎪−−−→ ⎪ ⎪⎝⎭13232100101020013r r r r +-⎛⎫⎪−−−→ ⎪ ⎪⎝⎭()4142433312,3100001000010c c c c c c E O -⨯--⎛⎫ ⎪−−−−−→= ⎪ ⎪⎝⎭可看出,矩阵A 的标准形中左上角是3阶单位矩阵,所以()3R A =. 矩阵秩有如下性质 性质5.1 ()()TR A R A =; 性质5.2 }{0()min ,R A m n ≤≤;性质5.3 如果n 阶方阵A 可逆,则()R A n =;(可逆矩阵也称为满秩矩阵)性质5.4 {}()min (),()R PA R P R A ≤; 当P 可逆时,()()R PA R A =;若 P Q 、都可逆,且有PAQ B =,则()()R A R B =.性质5.5 max {}(),()(|)()+()R A R B R A B R A R B ≤≤;特别地,当B 为列矩阵时,有max {}(),()(|)()+1R A R B R A B R A ≤≤;性质5.6 ()()();()()().r A B r A r B r A B r A r B +≤+-≥-性质5.7 设A 为m n ⨯矩阵且()R A r =,则A 的任意S 行组成的矩阵B ,有().r B r s n ≥+-下面只证明性质5.3和性质5.4,其余的性质请学生自证。
第五节:矩阵的秩及其求法一、矩阵秩的概念 1. k 阶子式定义1 设 在A 中任取k 行k 列交叉处元素按原相对位置组成的阶行列式,称为A 的一个k 阶子式。
例如 共有 个二阶子式,有 个三阶子式矩阵A 的第一、三行,第二、四列相交处的元素所构成的二阶子式为 而为 A 的一个三阶子式。
显然, 矩阵 A 共有 个 k 阶子式。
2. 矩阵的秩定义2 设 有r 阶子式不为0,任何r +1阶子式(如果存在的话)全为0 ,称r 为矩阵A 的秩,记作R (A )或秩(A )。
规定: 零矩阵的秩为 0 .注意:(1) 如 R ( A ) = r ,则 A 中至少有一个 r 阶子式 所有 r + 1 阶子式为 0,且更高阶子式均为 0,r 是 A 中不为零的子式的最高阶数,是唯一的 .(2) 有行列式的性质, (3) R(A ) ≤m , R (A ) ≤n , 0 ≤R (A ) ≤min { m , n } . (4) 如果 An ×n , 且 则 R ( A ) = n .反之,如 R ( A ) = n ,则 因此,方阵 A 可逆的充分必要条件是 R ( A ) = n . 二、矩阵秩的求法1、子式判别法(定义)。
例1 设 为阶梯形矩阵,求R (B )。
解由于 存在一个二阶子式不为0,而任何三阶子式全为0,则 R (B ) = 2.结论:阶梯形矩阵的秩=台阶数。
例如一般地,行阶梯形矩阵的秩等于其“台阶数”——非零行的行数。
()n m ij a A ⨯={}),min 1(n m k k ≤≤⎪⎪⎪⎭⎫ ⎝⎛----=110145641321A 182423=C C 43334=C C 10122--=D 1015643213-=D n m ⨯kn k m cc ()nm ij a A ⨯=0,r D ≠()().T R A R A =0,A ≠0.A ≠⎪⎪⎪⎭⎫ ⎝⎛=000007204321B 02021≠⎪⎪⎪⎭⎫ ⎝⎛=010*********A ⎪⎪⎪⎭⎫ ⎝⎛=001021B ⎪⎪⎪⎭⎫ ⎝⎛=100010011C 125034000D ⎛⎫ ⎪= ⎪ ⎪⎝⎭21235081530007200000E ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭()3=A R ()2=B R ()3=C R ()2R D =()3R E =例2 设 如果 求 a .解或 例3则2、用初等变换法求矩阵的秩定理2 矩阵初等变换不改变矩阵的秩。
第五讲 矩阵的秩矩阵的秩是线性代数中又一重要概念,它描述了矩阵的一个重要的数值特征:在判定向量组的线性相关性,线性方程组是否有解,求矩阵的特征值以及在多项式、空间几何中等多个方面都有广泛的应用。
本讲我们主要了解矩阵秩的求方法以及其与方程组各类型解的关系。
5.1.1 矩阵秩的定义在第二讲中,我们通过矩阵的初等变换定义了矩阵的行阶梯形、矩阵的行最简形以及矩阵的标准形。
其中矩阵行阶梯形与矩阵行最简形不唯一,但矩阵的标准形唯一。
因此,下面就利用矩阵标准形的唯一性来给出矩阵秩的概念。
定义5.1 对于给定的m n ⨯矩阵A ,它的标准形(-)(-)(-)(-)rr n r m r r m r n r m nE OF O O ⨯⨯⨯⨯⎛⎫=⎪⎝⎭由数r 完全确定,我们称数r 为矩阵m n A ⨯的秩(rank ),记作()R A 。
其中, r E 是r 阶单位矩阵;其余都是零矩阵。
注:(1) 零矩阵的秩为零:()0R O =;(2) 矩阵的秩就是矩阵标准形中左上角单位矩阵的阶数。
(3)对于n 阶方阵A ,当()R A n =时,称A 为满秩矩阵。
当()R A n <时,称A 为降秩矩阵.例5.1 求矩阵111610121210A ⎛⎫⎪=-- ⎪ ⎪-⎝⎭的秩。
解 先将A 通过初等变换化为标准形111610121210A ⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭2131111601280306r r r r --⎛⎫⎪−−−→ ⎪ ⎪⎝⎭323111601280026r r -⎛⎫ ⎪−−−→ ⎪ ⎪⎝⎭111601280013⎛⎫ ⎪→ ⎪ ⎪⎝⎭12312101201280013r r r ---⎛⎫ ⎪−−−→ ⎪ ⎪⎝⎭13232100101020013r r r r +-⎛⎫ ⎪−−−→ ⎪ ⎪⎝⎭ ()4142433312,3100001000010c c c c c c E O -⨯--⎛⎫⎪−−−−−→= ⎪ ⎪⎝⎭可看出,矩阵A 的标准形中左上角是3阶单位矩阵,所以()3R A =. 矩阵秩有如下性质 性质5.1 ()()T R A R A =; 性质5.2 }{0()min ,R A m n ≤≤;性质5.3 如果n 阶方阵A 可逆,则()R A n =;(可逆矩阵也称为满秩矩阵) 性质5.4 {}()min (),()R PA R P R A ≤; 当P 可逆时,()()R PA R A =;若 P Q 、都可逆,且有PAQ B =,则()()R A R B =.性质5.5 max {}(),()()()+()R A R B R A B R A R B ≤≤ ;特别地,当B 为列矩阵时,有max {}(),()()()+1R A R B R A B R A ≤≤ ;性质5.6 ()()();()()().r A B r A r B r A B r A r B +≤+-≥-性质5.7 设A 为m n ⨯矩阵,(),r A r =则A 的任意S 行组成的矩阵B ,有().r B r s n ≥+-下面只证明性质5.3和性质5.4,其余的性质请学生自证。
第五讲 矩阵的秩矩阵的秩是线性代数中又一重要概念,它描述了矩阵的一个重要的数值特征:在判定线性方程组是否有解,向量组的线性相关性,求矩阵的特征向量以及在多项式、空间几何等多个方面都有广泛的应用。
本讲我们主要了解矩阵秩的概念及其与方程组各类型解的关系。
5.1.1 矩阵秩的定义在第二讲中,我们通过矩阵的初等行(列)变换定义了矩阵的行(列)阶梯形、矩阵的行(列)最简形以及矩阵的标准形。
其中矩阵行(列)阶梯形与矩阵行(列)最简形可以不唯一,但矩阵的标准形唯一。
因此,下面就利用矩阵标准形的唯一性来给出矩阵秩的概念。
定义5.1 对于给定的m n ⨯矩阵A ,它的标准形(-)(-)(-)(-)rr n r m r r m r n r m nE OF O O ⨯⨯⨯⨯⎛⎫=⎪⎝⎭由数r 完全确定,我们称数r 为矩阵m n A ⨯的秩(rank ),记作()R A 。
其中, r E 是r 阶单位矩阵;其余都是零矩阵。
注:(1) 零矩阵的秩为零:()0R O =;(2) 矩阵的秩就是矩阵标准形中左上角单位矩阵的阶数。
(3)对于n 阶方阵A ,当()R A n =时,称A 为满秩矩阵。
当()R A n <时,称A 为降秩矩阵.例5.1 求矩阵111610121210A ⎛⎫⎪=-- ⎪ ⎪-⎝⎭的秩。
解 先将A 通过初等变换化为标准形111610121210A ⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭2131111601280306r r r r --⎛⎫⎪−−−→ ⎪ ⎪⎝⎭323111601280026r r -⎛⎫ ⎪−−−→ ⎪ ⎪⎝⎭111601280013⎛⎫ ⎪→ ⎪ ⎪⎝⎭12312101201280013r r r ---⎛⎫ ⎪−−−→ ⎪ ⎪⎝⎭13232100101020013r r r r +-⎛⎫⎪−−−→ ⎪ ⎪⎝⎭()4142433312,3100001000010c c c c c c E O -⨯--⎛⎫ ⎪−−−−−→= ⎪ ⎪⎝⎭可看出,矩阵A 的标准形中左上角是3阶单位矩阵,所以()3R A =. 矩阵秩有如下性质 性质5.1 ()()TR A R A =; 性质5.2 }{0()min ,R A m n ≤≤;性质5.3 如果n 阶方阵A 可逆,则()R A n =;(可逆矩阵也称为满秩矩阵)性质5.4 {}()min (),()R PA R P R A ≤; 当P 可逆时,()()R PA R A =;若 P Q 、都可逆,且有PAQ B =,则()()R A R B =.性质5.5 max {}(),()(|)()+()R A R B R A B R A R B ≤≤;特别地,当B 为列矩阵时,有max {}(),()(|)()+1R A R B R A B R A ≤≤;性质5.6 ()()();()()().r A B r A r B r A B r A r B +≤+-≥-性质5.7 设A 为m n ⨯矩阵且()R A r =,则A 的任意S 行组成的矩阵B ,有().r B r s n ≥+-下面只证明性质5.3和性质5.4,其余的性质请学生自证。
华北水利水电大学矩阵秩的相关结论证明及举例课程名称:线性代数专业班级:能源与动力工程(热动)101班成员组成:王威威联系方式:2014年12月30日一:摘要矩阵的秩是数学中一个极其重要并广泛应用的概念,是线性代数的一个重要研究对象,因此,矩阵的秩的结论作为线性代数的一个重要结论已经渗透到各章节之中,他把线性代数的内容紧紧联系在一起,矩阵的秩作为矩阵的一个重要本质属性则贯穿矩阵理论的始终,所以对矩阵秩的研究不仅能帮助我们更好地学习矩阵,而且也是我们学习好线性代数各章节的有力保证。
关键词:矩阵秩结论证明英文题目Abstract:Matrix rank is an extremely important and widely us ed in the mathematical concept, is an important res earch object of linear algebra, as a result, the c onclusion of the rank of matrix as an important co nclusion of linear algebra has penetrated into chapt er, associate the content of the positive linear al gebra and matrix of rank as an important essential attribute of the matrix, however, throughout the c ourse of the theory of matrix so that the study o f matrix rank can not only help us better learning matrix and chapter we learn good linear algebra Key words:matrix rank conclusion proof二:正文1:定义定义 1.11 在矩阵A=()m n ij a ⨯中任意取k 行k 列(1≤k ≤min(m,n)),位于这k 行k 列交点上的k*2个元素,按照他们在矩阵A 中的相应位置所组成k 阶行列式称为矩阵A 的一个k 阶子式。
矩阵秩的8大性质:②R(A T)-1?(A);③若A〜叭则R(A) = R(B);④若八Q可逆,则R(PAQ) = R(A). 下面再介绍几个常用的矩阵秩的性质:⑤nwc{R(A),R(E)IWR(A』)WR(A) + 特别地,当B = b为非零列向量时,有R(AX/?(A,fr)<J?(A) + L⑦R(AB)<min|K(A)t Z?(B)L(见下节定理7)⑧若釘4产O,则R(A) + R(B)£”.(见下章例13)设AB = O f若A为列满秩矩阵,则B-0.线性方程组的解:定理3 H元线性方程组A x=&(i)无解的充分必要条件是K(A)CR(A』);(ii)有惟一解的充分必要条件是R(A) = R(A,b)=n;(iii)有无限多解的充分必要条件是R(A) = R(A』)Cr?・定理4 n元齐次线性方程组Ax=OW零解的充分必要条件是R(A)Cm £35翹方聽AE鬧械酬髓件默⑷=R(A"定理6矩阵方程AX=B有繃充分必要条件是R(A) = R(A,B)・定理7 «AB = C,则R(C)Wmin|R(A),R(B)h向量组的线性相关性:定鰹1向跖能由向量组严心线憐示的充分必要桑件是3£阵A 珂的曲严心)的秩等于矩阵B =(爲卫2广』册』)的税.定理2向虽组B ;bJ“7 能由向蚩组A0叫…心 线性表示的充分必要条件是矩阵A = («i 严心)的秩等于矩阵(A,B)=(釦,…上捕,27啲秩,即 R(A} = R(A,B)・推论向輦组A :叭与向H 组B ;枷』ejE 等价的充分必要 条件是J?(A) = R(B)-J?(A,B)t其中A 和月是向僮组A 和B 所构成的矩阵”定理3设向悽组B :D ]』2「讪能由向證组A"1厲厂心线性表示. JMR(h 』w 讪KR 仏曲厂叫)阵A = g 曲严心)的秩小于向懂个数奶向咼组线性无关曲充分必要条件 是R ⑷二皿血“也线性相关成盲之,若向储组BA 也线性无关.(2) 7«个"维向虽组成的向量组,当维数«小于向虽个数加时一定銭牲相 关•特别地d+1个”维向量一定线性相关,(3) 设向量组人:叭』2,线性无关,而向量组线性 相关侧向虽b 必定理4,%线性相关的充分必要条件是它所构成的矩 定理5 (1)若向员组A :餌严心线性相关』IJ 向量组g 宀dJM *能由向鈕组A钱性表示,且表示式是惟一的.对比:矩阵A =(叭』加小,%)的秧等于矩阵B = 的税, 定理5线性方程组曲M 有解的充分必要憑件是R⑷= R(A ;b)?l定理2向虽组时血严血能由向量组A :釘』线性表示的 充分必要条件是矩阵4二(尙,伽「・,心)的秩等于矩阵= 儿7)的秩,即R(A) = R(A 』}.条件是定理1JSA 仙疋“5—线性表示的充分必要条件是推论 向量组A :%与向 组…出等价的充分必要R(A) = R(B) = R(A t B),其中A 和B 是向世组A 和B 所构成的矩阵・定理6矩阵方程AX=B 有解的充分必要条件是R(A) = R(A t B).组…心线性表示, 则ROM?严由)WR(a赳严叫)・nI AB = cl^ R(C)^min{R{A)~R(B) \ .定理4向卿小如严心黠相关的充分必要条件是它所构成的矩阵A = 「心)的秩小于向齢数用洞鞠黠无关的充分必璃件是R(A)n||能4 "元制ait方翻X0有鶴繃充分必要条瞬丽石~|觀5如騎次難方翻(13)的餓行贱D判侧粽黠方物(13)蹣粹龜定翡如果撅黠方翩(13)辭霸』陀的貓的式必腮.I。
矩阵求秩法的一个证明
矩阵求秩的证明,首先要从矩阵的定义出发,矩阵定义为多行多列的数字表,用来描述线性变换,描述系统的变化。
矩阵是精确计算线性变换基金组合比时及其他线性模型中应用最广泛的数学概念,它在计算科学技术中也被广泛使用。
而秩在代数几何中,是指一个矩阵或者多元多项式向量的最大非零的子空间的维数或者极大非零列子空间的维数,简单地说,秩就是表示矩阵的非零列向量的数量。
那么就可以证明,一个元素均不为零的m×n阶(m>n)矩阵的秩为n.首先,根据定义,假如A为m×n阶矩阵,而r(A)为A的秩,则r(A)∈{0,1,2,3,...,n},且n 为A的列数;其次,假如A的每一元素都不为零,则A有m行n列的线性无关列向量;第三,把A的列向量视为m维空间中的线性无关的n个基,由此可以构成m维的子空间RmA,最后,因为n个基可以构成m维的子空间,所以r(A)=n。
以上就是矩阵求秩的证明过程,本证明从矩阵的定义及秩的定义出发,结合高斯消元法,从而证明了当m×n阶矩阵的每一元素都为非零时,它的秩等于n,从而通过矩阵来计算线性变换的最优解。
一道矩阵秩证明题的分析与解决
矩阵秩是矩阵理论中重要的基本概念,它代表矩阵的最大非零行数,也是用来
度量矩阵某种特殊性质的指标。
下面将说明如何证明矩阵A的秩等于矩阵A的列数:
首先,需要明确的是,要证明矩阵A的秩等于矩阵A的列数,就必须证明矩阵
A的列数(m等于n)满足秩m的条件,即矩阵A的列数是矩阵A的最大线性无关
组的数量。
接下来,要证明矩阵A的秩等于矩阵A的列数,我们可以首先将矩阵A进行行
列式化简(行列式简化),即矩阵A的行阶梯矩阵,这将产生一个矩阵A的行阶梯行列式,它与原矩阵A的行列式相同。
接着,我们可以对矩阵A的行阶梯简行列式进行操作,以及使用Gauss-
Jordan变换将矩阵A转换为一个单位矩阵(一个最简单的矩阵)。
且可见矩阵A
的行阶梯简行列式的列数(m等于n)也是矩阵A的最大线性无关组的数量,即矩
阵A的秩等于矩阵A的列数。
最后,上述方法便可以用以证明矩阵A的秩等于矩阵A的列数,由此可见矩阵
秩的证明的基本过程是通过行列式的操作将矩阵A转换为一个单位矩阵,这将实现单位矩阵的最大线性无关组的数量,并验证矩阵A的秩等于矩阵A的列数。
总之,矩阵秩是一个基本概念,可以用来证明矩阵A的秩等于矩阵A的列数,
这种证明的过程是通过使用行列式的操作将矩阵A转换为一个单位矩阵,这将实现单位矩阵的最大线性无关组的数量,从而证明矩阵A的秩等于矩阵A的列数。