广东工业大学现代控制理论实验报告
- 格式:doc
- 大小:173.00 KB
- 文档页数:14
实验报告( 2016-2017年度第二学期)名称:《现代控制理论基础》题目:状态空间模型分析院系:控制科学与工程学院班级: ___学号: __学生姓名: ______指导教师: _______成绩:日期: 2017年 4月 15日线控实验报告一、实验目的:l.加强对现代控制理论相关知识的理解;2.掌握用 matlab 进行系统李雅普诺夫稳定性分析、能控能观性分析;二、实验内容1第一题:已知某系统的传递函数为G (s)S23S2求解下列问题:(1)用 matlab 表示系统传递函数num=[1];den=[1 3 2];sys=tf(num,den);sys1=zpk([],[-1 -2],1);结果:sys =1-------------s^2 + 3 s + 2sys1 =1-----------(s+1) (s+2)(2)求该系统状态空间表达式:[A1,B1,C1,D1]=tf2ss(num,den);A =-3-210B =1C =0 1第二题:已知某系统的状态空间表达式为:321A,B,C 01:10求解下列问题:(1)求该系统的传递函数矩阵:(2)该系统的能观性和能空性:(3)求该系统的对角标准型:(4)求该系统能控标准型:(5)求该系统能观标准型:(6)求该系统的单位阶跃状态响应以及零输入响应:解题过程:程序: A=[-3 -2;1 0];B=[1 0]';C=[0 1];D=0;[num,den]=ss2tf(A,B,C,D); co=ctrb(A,B);t1=rank(co);ob=obsv(A,C);t2=rank(ob);[At,Bt,Ct,Dt,T]=canon(A,B,C,D, 'modal' );[Ac,Bc,Cc,Dc,Tc]=canon(A,B,C,D, 'companion' );Ao=Ac';Bo=Cc';Co=Bc';结果:(1) num =0 01den =1 32(2)能控判别矩阵为:co =1-30 1能控判别矩阵的秩为:t1 =2故系统能控。
一、前言随着科技的飞速发展,自动化、智能化已成为现代工业生产的重要特征。
为了更好地掌握现代控制理论,提高自己的实践能力,我参加了现代控制理论实训课程。
本次实训以状态空间法为基础,研究多输入-多输出、时变、非线性一类控制系统的分析与设计问题。
通过本次实训,我对现代控制理论有了更深入的了解,以下是对本次实训的总结。
二、实训目的1. 巩固现代控制理论基础知识,提高对控制系统的分析、设计和调试能力。
2. 熟悉现代控制理论在工程中的应用,培养解决实际问题的能力。
3. 提高团队合作意识,锻炼动手能力和沟通能力。
三、实训内容1. 状态空间法的基本概念:状态空间法是现代控制理论的核心内容,通过建立状态方程和输出方程,描述系统的动态特性。
2. 状态空间法的基本方法:包括状态空间方程的建立、状态转移矩阵的求解、可控性和可观测性分析、状态反馈和观测器设计等。
3. 控制系统的仿真与实现:利用MATLAB等仿真软件,对所设计的控制系统进行仿真,验证其性能。
4. 实际控制系统的分析:分析实际控制系统中的控制对象、控制器和被控量,设计合适的控制策略。
四、实训过程1. 理论学习:首先,我对现代控制理论的相关知识进行了复习,包括状态空间法、线性系统、非线性系统等。
2. 实验准备:根据实训要求,我选择了合适的实验设备和软件,包括MATLAB、控制系统实验箱等。
3. 实验操作:在实验过程中,我按照以下步骤进行操作:(1)根据实验要求,建立控制系统的状态空间方程。
(2)求解状态转移矩阵,并进行可控性和可观测性分析。
(3)设计状态反馈和观测器,优化控制系统性能。
(4)利用MATLAB进行仿真,观察控制系统动态特性。
(5)根据仿真结果,调整控制器参数,提高控制系统性能。
4. 结果分析:通过对仿真结果的分析,我对所设计的控制系统进行了评估,并总结经验教训。
五、实训成果1. 掌握了现代控制理论的基本概念和方法。
2. 提高了控制系统分析与设计能力,能够独立完成实际控制系统的设计。
现代控制理论实验指导书实验一:线性系统状态空间分析1、模型转换图1、模型转换示意图及所用命令传递函数一般形式:)()(11101110n m a s a s a s a b s b s b s b s G n n n n m m m m ≤++++++++=----K KMATLAB 表示为:G=tf(num,den),其中num,den 分别是上式中分子,分母系数矩阵。
零极点形式:∏∏==--=n i j mi i ps z s K s G 11)()()( MATLAB 表示为:G=zpk(Z,P ,K),其中 Z ,P ,K 分别表示上式中的零点矩阵,极点矩阵和增益。
传递函数向状态空间转换:[A,B,C,D] = TF2SS(NUM,DEN);状态空间转换向传递函数:[NUM,DEN] = SS2TF(A,B,C,D,iu)---iu表示对系统的第iu个输入量求传递函数;对单输入iu为1;验证教材P438页的例9-6。
求P512的9-6题的状态空间描述。
>> A=[0 1;0 -2];>> B=[1 0;0 1];>> C=[1 0;0 1];>> D=[0 0;0 0];>> [NUM,DEN] = ss2tf(A,B,C,D,1)NUM =0 1 20 0 0DEN =1 2 0>> [NUM,DEN] = ss2tf(A,B,C,D,2)NUM =0 0 10 1 0DEN =1 2 0给出的结果是正确的,是没有约分过的形式P512 9-6>> [A,B,C,D]=tf2ss([1 6 8],[1 4 3])A =-4 -31 0B =1C =2 5D =12、状态方程求解单位阶跃输入作用下的状态响应:G=ss(A,B,C,D);[y,t,x]=step(G);plot(t,x). 零输入响应[y,t,x]=initial(G,x0)其中,x0为状态初值。
现代控制理论实验报告系统的状态空间分析与全维状态观测器的设计一、实验目的1 •掌握状态反馈系统的极点配置;2 •研究不同配置对系统动态特性的影响。
二、实验仪器1 •计算机2. MATLAB 软件三、实验原理一个受控系统只要其状态是完全能控的,则闭环系统的极点可以任意配置。
极点配置有两种方法:①采用变换矩阵T,将状态方程转换成可控标准型,然后将期相等,从而决定状态反馈增益矩阵K;②基于Carlay-Hamilton理论,它指出矩阵㈡满足自身的特征方程,改变矩阵特征多项式:的值,可以推出增益矩阵K。
这种方法推出增益矩阵K的方程式叫Ackermann公式。
四、实验内容1 •试判别下列系统的可控性和可观性:(1) A=[1,2,3;1,4,6;2,1,7]B=[1,9;0,0;2,0];C=[1,0,0;2,1,0]实验程序:a=[1,2,3;1,4,6;2,1,7]b=[1,9;0,0;2,0]c=[1,0,0;2,1,0]n=size(a)uc=ctrb(a,b)uo=obsv(a,c)if ran k(uc)==ndisp('系统可控')elsedisp('系统不可控')end if ran k(uo )==ndisp('系统可观')elsedisp('系统不可观')End实验结果:a =1 2 31 4 62 1 7b =1 90 02 02 1 0n =3uc =1 9 7 9 81 810 0 13 9 155 1532 0 16 18 139 153 uo =1 0 02 1 01 2 39 13 3635 50 141系统可控系统可观(2) A=[-2,2,-1;0,-2,0;1,-4,0]B=[[0;0;1]C=[1,-1,1]程序:A=[-2,2,-1;0,-2,0;1,-4,0];B=[0;0;1];C=[1,-1,1];Qc=ctrb(A,B);n=ran k(Qc);if(n==3),disp('系统可控'); else,disp('系统不可控');end系统不可控Qo=obsv(A,C);m=ra nk(Qo);if(m==3),disp('系统可观');else,disp('系统不可观');end系统不可观2.全状态反馈极点配置设计:设系统的状态方程为:x=Ax+Bu其中,A=[0,1,0;0,0,1;-1,-5,-6]B=[0;0;1]p1=-2+j4、要求:利用状态反馈控制u=-Kx,将此系统的闭环极点配置成p2=-2-j4、p3=-10。
紫金学院计算机系实验报告现代控制理论基础实验报告专业:年级:姓名:学号:提交日期:实验一 系统能控性与能观性分析1、实验目的:1.通过本实验加深对系统状态的能控性和能观性的理解;2.验证实验结果所得系统能控能观的条件与由它们的判据求得的结果完全一致。
2、实验内容:1.线性系统能控性实验;2. 线性系统能观性实验。
3、实验原理:系统的能控性是指输入信号u 对各状态变量x 的控制能力。
如果对于系统任意的初始状态,可以找到一个容许的输入量,在有限的时间内把系统所有的状态变量转移到状态空间的坐标原点。
则称系统是能控的。
系统的能观性是指由系统的输出量确定系统所有初始状态的能力。
如果在有限的时间内,根据系统的输出能唯一地确定系统的初始状态,则称系统能观。
对于图10-1所示的电路系统,设i L 和u c 分别为系统的两个状态变量,如果电桥中4321R R R R ≠,则输入电压u 能控制i L 和u c 状态变量的变化,此时,状态是能控的;状态变量i L 与u c 有耦合关系,输出u c 中含有i L 的信息,因此对u c 的检测能确定i L 。
即系统能观的。
反之,当4321R R =R R 时,电桥中的c 点和d 点的电位始终相等, u c 不受输入u 的控制,u 只能改变i L 的大小,故系统不能控;由于输出u c 和状态变量i L 没有耦合关系,故u c 的检测不能确定i L ,即系统不能观。
1.1 当4321R RR R ≠时u L u i R R R R C R R R R R R R R L R R R R R R C R R R R R R R R L u i C L C L ⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⨯⎪⎪⎪⎪⎪⎭⎫+++-+-+-⎝⎛+-+-+++-=⎪⎪⎭⎫ ⎝⎛01)11(1)(1)(1)(143214343212143421243432121 (10-1)y=u c =[01]⎪⎪⎪⎭⎫⎝⎛c L u i (10-2)由上式可简写为bu Ax x+= cx y =式中⎪⎪⎭⎫ ⎝⎛=C L u i x ⎪⎪⎪⎪⎪⎭⎫+++-+-+-⎝⎛+-+-+++-=)11(1)(1)(1)(143214343212143421243432121R R R R C R R R R R R R R L R R R R R R C R R R R R R R R L A⎪⎪⎪⎭⎫⎝⎛=01L b 1] [0=c由系统能控能观性判据得][Ab brank =2 2=⎥⎦⎤⎢⎣⎡cA c rank故系统既能控又能观。
现代控制理论实验指导书实验一:线性系统状态空间分析1、模型转换图1、模型转换示意图及所用命令传递函数一般形式:)()(11101110n m a s a s a s a b s b s b s b s G n n n n m m m m ≤++++++++=----MATLAB 表示为:G=tf(num,den),其中num,den 分别是上式中分子,分母系数矩阵。
零极点形式:∏∏==--=n i j mi i ps z s K s G 11)()()( MATLAB 表示为:G=zpk(Z,P,K),其中 Z ,P ,K 分别表示上式中的零点矩阵,极点矩阵和增益。
传递函数向状态空间转换:[A,B,C,D] = TF2SS(NUM,DEN);状态空间转换向传递函数:[NUM,DEN] = SS2TF(A,B,C,D,iu)---iu 表示对系统的第iu 个输入量求传递函数;对单输入iu 为1;验证教材P438页的例9-6。
求P512的9-6题的状态空间描述。
>> A=[0 1;0 -2];>> B=[1 0;0 1];>> C=[1 0;0 1];>> D=[0 0;0 0];>> [NUM,DEN] = ss2tf(A,B,C,D,1)NUM =0 1 20 0 0DEN =1 2 0>> [NUM,DEN] = ss2tf(A,B,C,D,2)NUM =0 0 10 1 0DEN =1 2 0给出的结果是正确的,是没有约分过的形式P512 9-6>> [A,B,C,D]=tf2ss([1 6 8],[1 4 3])A =-4 -31 0B =1C =2 5D =12、状态方程求解单位阶跃输入作用下的状态响应:G=ss(A,B,C,D);[y,t,x]=step(G);plot(t,x). 零输入响应[y,t,x]=initial(G,x0)其中,x0为状态初值。
现代控制理论基础实验报告专业:年级:姓名:学号:提交日期:实验一系统能控性与能观性分析1、实验目的:1. 通过本实验加深对系统状态的能控性和能观性的理解;2. 验证实验结果所得系统能控能观的条件与由它们的判据求得的结果完全一致。
2、实验内容:1•线性系统能控性实验 2.线性系统能观性实验。
3、实验原理:系统的能控性是指输入信号u 对各状态变量x 的控制能力。
如果对于系统任意的初始状态,可以找到一个容许的输入量,在有限的时间内把系统所有的状态变量转移到状态空间的坐标原 点。
则称系统是能控的。
系统的能观性是指由系统的输出量确定系统所有初始状态的能力。
如果在有限的时间内,根据 系统的输出能唯一地确定系统的初始状态,则称系统能观。
(10-1)i Ly=U c =[01]U c由上式可简写为x Ax bU y cxR 3对于图10-1所示的电路系统,设i L 和u c 分别为系统的两个状态变量,如果电桥中旦R 2 &则输入电压U 能控制i L 和U c 状态变量的变化,此时,状态是能控的;状态变量i L 与U c 有耦合关系, 输出U c 中含有i L 的信息,因此对U c 的检测能确定i L 。
即系统能观的。
R 1 R 3反之,当」时, R 2 R 4变i L 的大小,故系统不能控; 即系统不能观。
Ri R 31.1当13时R 2 R 4电桥中的由于输出R 31( R 1R 2 L (R , R 2R 3 R 4R3R4R 2c 点和d 点的电位始终相等,U c 不受输入U 的控制,u 只能改U c 和状态变量i L 没有耦合关系,故 U c 的检测不能确定i L ,丄(亠亠)C R R 2R 3 R 41 ( R 1R2 L (R R 2R 3 R 4R3R4I L U C(10-2)I LR 2R 1 R 2 i L式中X U C1 (L R 1 R 21 R2 ( —— C R 1 R 2 R3 R 4)R3 R 4R 3 R 4R 1 R 2 1 (L R 1 R 21 1 -( CR 1R 2R3 R 4) R 4 1 )R 3 R 4[0 1]由系统能控能观性判据得 ran k[b Ab] =2c rank cA 故系统既能控又能观。
.现代控制理论实验报告组员:院系:信息工程学院专业:指导老师:年月日实验1 系统的传递函数阵和状态空间表达式的转换[实验要求]应用MATLAB 对系统仿照[例1.2]编程,求系统的A 、B 、C 、阵;然后再仿照[例1.3]进行验证。
并写出实验报告。
[实验目的]1、学习多变量系统状态空间表达式的建立方法、了解系统状态空间表达式与传递函数相互转换的方法;2、通过编程、上机调试,掌握多变量系统状态空间表达式与传递函数相互转换方法。
[实验内容]1 设系统的模型如式(1.1)示。
p m n R y R u R x DCx y Bu Ax x ∈∈∈⎩⎨⎧+=+= (1.1)其中A 为n ×n 维系数矩阵、B 为n ×m 维输入矩阵 C 为p ×n 维输出矩阵,D 为传递阵,一般情况下为0,只有n 和m 维数相同时,D=1。
系统的传递函数阵和状态空间表达式之间的关系如式(1.2)示。
D B A SI C s den s num s G +-==-1)()()(()( (1.2)式(1.2)中,)(s num 表示传递函数阵的分子阵,其维数是p ×m ;)(s den 表示传递函数阵的按s 降幂排列的分母。
2 实验步骤① 根据所给系统的传递函数或(A 、B 、C 阵),依据系统的传递函数阵和状态空间表达式之间的关系如式(1.2),采用MATLA 的file.m 编程。
注意:ss2tf 和tf2ss 是互为逆转换的指令;② 在MATLA 界面下调试程序,并检查是否运行正确。
③ [1.1] 已知SISO 系统的状态空间表达式为(1.3),求系统的传递函数。
,2010050010000100001043214321u x x x x x x x x ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡ []⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=43210001x x x x y (1.3)程序:A=[0 1 0 0;0 0 -1 0;0 0 0 1;0 0 5 0]; B=[0;1;0;-2]; C=[1 0 0 0]; D=0;[num,den]=ss2tf(A,B,C,D,1)程序运行结果:num =0 -0.0000 1.0000 -0.0000 -3.0000 den =1.0000 0 -5.0000 0 0从程序运行结果得到:系统的传递函数为:24253)(ss s S G --= ④ [1.2] 从系统的传递函数式求状态空间表达式。
现代控制理论实验报告现代控制理论实验报告学院:姓名:学号:日期:2013年6月21日实验一线性定常系统模型一实验目的1. 掌握线性定常系统的状态空间表达式。
学会在MATLAB 中建立状态空间模型的方法。
2. 掌握传递函数与状态空间表达式之间相互转换的方法。
学会用MATLAB 实现不同模型之间的相互转换。
3. 熟悉系统的连接。
学会用MA TLAB 确定整个系统的状态空间表达式和传递函数。
4. 掌握状态空间表达式的相似变换。
掌握将状态空间表达式转换为对角标准型、约当标准型、能控标准型和能观测标准型的方法。
学会用MATLAB 进行线性变换。
二实验内容1. 已知系统的传递函数 (a) )3()1(4)(2++=s s s s G (b) 3486)(22++++=s s s s s G(1)建立系统的TF 或ZPK 模型。
(a )>> z=[];p=[0 -1 -1 -3];k=4;G=zpk(z,p,k)Zero/pole/gain:4--------------->>(b )>> z=[];p=[0 -1 -1 -3];k=4;G=zpk(z,p,k)Zero/pole/gain:4---------------s (s+1)^2 (s+3)>> z=[-4 -2];p=[-1 -3];k=1;G=zpk(z,p,k)Zero/pole/gain:(s+4) (s+2)-----------(s+1) (s+3)>> num=[1 6 8];den=[1 4 3];G=tf(num,den)Transfer function:s^2 + 6 s + 8-------------s^2 + 4 s + 3(2)将给定传递函数用函数ss( )转换为状态空间表达式。
再将得到的状态空间表达式用函数tf( )转换为传递函数,并与原传递函数进行比较。
(a)>> %ex14num=4;den=[1 5 7 3 0];Gtf=tf(num,den);Gzpk=zpk(Gtf)Gss=ss(Gtf)Gtf1=tf(Gss)Zero/pole/gain:4-------------a =x1 x2 x3x1 -5 -0.875 -0.09375x2 8 0 0x3 0 4 0b =u1x1 0.25x2 0x3 0c =x1 x2 x3y1 0 0 0.5d =u1y1 0Continuous-time model.Transfer function:4---------------------s^3 + 5 s^2 + 7 s + 3>>比较可得:原传递函数与将状态空间表达式用函数tf( )转换为的传递函数完全一致。
实验一系统的传递函数阵和状态空间表达式的转换
一.实验目的
学习多变量系统传递空间表达式的建立方法、了解系统状态空间表达式和传递函数相互转换的方法;
通过编程、伤及调试,掌握多变量系统状态空间表达式与传递函数相互转换方法。
二.实验容
例1.1:
A=[0 1 0;0 0 1;-4 -3 -2];
B=[1;3;-6];
C=[1 0 0];
D=0;
%状态空间表达式转换成传递函数阵的格式为
%[num,den]=ss2tf(a,b,c,d,u)
[num,den]=ss2tf(A,B,C,D,1)
例1.2
num=[0 1 5 3];
den=[1 2 3 4];
[A,B,C,D]=tf2ss(num,den)
练习题
求A、B、C、D阵的程序和运行结果
程序如下:
%传递函数阵的格式转换成为状态空间表达式num=[0 0 1 2;0 1 5 3];
den=[1 2 3 4];
[A,B,C,D]=tf2ss(num,den)
验证:
程序如下: A=[-2 -3 -4;1 0 0;0 1 0];
B=[1;0;0];
C=[0 1 2;1 5 3];
D=[0;0];
%状态空间表达式转换成传递函数阵的格式为%[num,den]=ss2tf(a,b,c,d,u)
[num,den]=ss2tf(A,B,C,D,1)
实验二状态空间控制模型系统仿真及状态方程求解
一.实验目的
1.熟悉线性连续系统的状态空间控制模型的各种表示方法;
2.熟悉系统模型的转换功能;
3.利用MATLAB对线性定常系统进行动态分析。
例2.1
num=[1 2 1 3];
den=[1 0.5 2 1];
[z,p,k]=tf2zp(num,den)
[a,b,c,d]=tf2ss(num,den)
例2-2
A=[0 1;-10 -5];
B=[0;0];D=B;
C=[1 0;0 1];
x0=[2;1];
[y,x,t]=initial(A,B,C,D,x0);
plot(t,x(:,1),t,x(:,2))
grid
title('Response to Initial Condition') xlable('Time (sec)')
ylable('x1,x2')
text(0.55,1.15,'x1')
text(0.4,-2.9,'x2')
例2-3
A=[-1 -1;6.5 0];
B=[1 1;1 0];
C=[1 0;0 1];
D=[0 0;0 0];
step(A,B,C,D)
练习题
A=[0 -2;1 -3];
B=[2;0];
C=[1 0];
D=0;
x0=[1;1];
[y,x,t]=initial(A,B,C,D,x0);
plot(t,x(:,1),t,x(:,2))
grid
title('Response to Initial Condition')
xlable('Time (sec)')
ylable('x1,x2')
text(0.55,1.15,'x1')
text(0.4,-2.9,'x2')
初始状态x0=[1;2]时的阶跃输入响应:
A=[0 -2;1 -3];B=[2;0];C=[1,0;0 1];D=zeros(1,1);
x0=[1;2];t=[0:.04:15]; u=heaviside(t);
G=ss(A,B,C,D);
G1=tf(G);
[y1,t,x1]=initial(G,x0,t);
[y2,t,x2]=lsim(G,u,t);
y=y1+y2;
x=x1+x2;
plot(t,x);
grid on
实验三系统能控性、能观性的判别
一.实验目的
1.系统的能控性和能观测性的判别方法、系统的能观性和能观测性分解;
2.了解MATLAB中相应的函数。
二.实验容
例3-(1)判别系统能控性:
%判断系统状态的能控性
A=[0 1;-2 -3];
B=[0;1];
Qc=ctrb(A,B);
n=rank(Qc);
L=length(A);
if n==L
disp('系统状态完全能控')
else
disp('系统状态不完全能控')
end
例3-(2)能控性分解后的模型:A=[0 1;-2 -3];
B=[0;1];
C=[3 4];
[Ax,Bx,Cx,T,K]=ctrbf(A,B,C) sum(K)
练习题(1)
A=[0 0 -1;1 0 -3;0 1 -3];
C=[0 1 -2];
Qo=obsv(A,C);
n=rank(Qo);
L=length(A);
if n==L
disp('系统状态完全能观') else
disp('系统状态不完全能观') end
A=[0 0 -1;1 0 -3;0 1 -3];
B=[1;1;0];
C=[0 1 -2];
D=0;
[Ax,Bx,Cx,T,K]=ctrbf(A,B,C) sum(K)
3-(2)能观性分解:
A=[0 0 -1;1 0 -3;0 1 -3];
B=[1;1;0];
C=[0 1 -2];
D=0;
[Ax,Bx,Cx,T,K]=obsvf(A,B,C)
sum(K)
实验四系统稳定性仿真实验
一.实验目的
1.掌握线性系统稳定性的判别方法;
2.了解MATLAB中相应的函数
例题4-1:
A=[0 1;-1 -1];
%Q=eye(size(A,1));
Q=eye(2,2);
P=lyap(A,Q);
flag=0;
n=length(A);
for i=1:n
det(P(1:i,1:i))
if(det(P(1:i,1:i))<=0)
flag=1;
end
end
if flag==1
disp('System is Lypunov stable');
else
disp('System is not Lypunov stable'); end
练习题
A=[-3 -8 -2 -4;1 0 0 0; 0 1 0 0;0 0 1 0]; %Q=eye(size(A,1));
Q=eye(4,4);
P=lyap(A,Q);
flag=0;
n=length(A);
for i=1:n
det(P(1:i,1:i))
if(det(P(1:i,1:i))<=0)
flag=1;
end
end
if flag==1
disp('System is Lypunov stable');
else
disp('System is not Lypunov stable'); end
实验五状态反馈及状态观测器的设计
一.实验目的
1.熟悉状态反馈矩阵的方法;
2.熟悉状态观测器设计方法。
习题:
1. 程序如下A=[-10 -35 -50 -24;1 0 0 0;0 1 0 0;0 0 1 0];B=[1;0;0;0];C=[1,7,24,24];
P=[-30,-1.2,-2.4+4i,-2.4-4i];
K=acker(A,B,P)
A-B*K
响应曲线:
A=[-36 -207.52 -851.712 -783.36;1 0 0 0;0 1 0 0;0 0 1 0];
B=[1;0;0;0];
C=[1 7 24 24];
D=0
step(A,B,C,D)
2.程序如下:A=[0,1,0;980,0,-2.8;0,0,-100];B=[0;0;100];C=[1,0,0]; P=[-100,-102,-103];
A1=A';B1=C';C1=B';
K=acker(A1,B1,P);
E=(K)'
aEc=A-E*C。