浅谈对superpave沥青混合料设计认识(一)
- 格式:docx
- 大小:11.75 KB
- 文档页数:1
浅谈Superpave沥青混合料施工工艺随着沥青混凝土路面在国内的广泛应用,越来越多的施工工艺、施工方法以及级配设计也在不断的更新,在众多的设计方法中以美国研究出的高性能沥青路面(superpave)设计方法,在国内也不断得到推广,该设计方法采用了旋转压实成型试件,较好的模拟了野外路面受力情况,提出了一套全新的评价沥青胶结料技术性能方法、标准和混合料体积设计法,为更好地改善和提高沥青路面的高温稳定性等路用性能等提供了一条有效的途径。
现将superpave沥青混合料的施工工艺浅谈一下:Superpave技术是从设计到施工一整套体系,采用Superpave技术设计的混合料称为Superpave混合料,其设计方法、级配结构以及性能指标都与传统沥青混合料有着很大的区别,首先从矿料的级配谈起。
一、 SUPERPAVE混合料体积设计所谓superpave沥青混合料体积设计是根据沥青混合料的空隙率、矿质集料间隙率、沥青填隙率等体积特性进行热拌沥青混合料设计的。
superpave沥青混凝土配合比设计严格要求集料针片状含量,限定集料的级配区域,经过同一沥青与三种不同级配以旋转搓揉压实仪制作试件,经过单位重和体积分析后决定出采用的集料级配,再选择四种沥青含量与最佳集料级配通过旋转压实仪制作试件,确定最佳沥青用量。
1、集料的控制标准:矿质集料的特性对沥青混合料性能的影响较为显著,集料的要求除满足技术规范所要求的质量外,还提出了粗集料的棱角性、细集料的棱角性、扁平与细长颗粒、粘土含量等技术检测指标。
1)、粗集料棱角性:粗集料棱角是指留在4.75mm筛上有一个或两个破碎面集料的重量百分比,规定粗集料棱角主要是为确保集料有高的内摩擦力,从而保证沥青混合料有较高的抗车辙能力。
2)、细集料棱角性细集料棱角是指小于2.36mm的松压集料的空隙百分率,规定细集料棱角指标是为了确保细集料有高的内摩擦力和抗车辙能力,较高的空隙率含量意味着有较多的破碎面。
超级沥青混合料(Superpave)设计方法是由美国国家公路和交通安全
管理局(NHTSA)提出的一种新的沥青混合料设计方法,它能够更好
地反映沥青混合料在使用中的性能。
Superpave结合了受控实验和数理
优化的原理,不仅关注路面技术性能,还关注经济性、社会影响等因素,同时融合多个专业知识,极大提高了沥青路面设计的质量。
Superpave设计过程一般分为三个主要步骤:1. 使用受控实验建立标准
路面组合;2. 通过平行狭窄法来确定组合用量;3. 针对现有环境和性
能要求上的特定条件的控制实验,确定平行狭窄法的沥青配方。
首先,通过对自然混合料的均质性、填充性、抗滑移性等性质的测试,确定沥青混合料的终验控理模式,即Superpave标准路面组合(MPV),并确定各种物料的正确比例和用量,以确定一组满足性能要求的路面
组合方案。
其次,利用狭窄平行法(NIP)来设定组合用量,这是沥青混合料超级路面设计的核心部分,其目的是确定合理的组合用量,以确保沥青混
合料的最终封层性能是环境和动力要求下的最优解。
最后,是要经过控制实验,也就是根据当前环境和性能要求来确定平
行狭窄法确定的沥青配方,为此,我们可以对不同温度下的沥青混合
料进行抗压、抗冲击、冷性混合等性能测试,确定其良好的性能。
超级沥青混合料设计方法以其高效率、科学性和多功能替代了旧有的
路面设计方法,广泛应用于全球的沥青路面设计,它的使用能够保证
沥青路面的质量,实现疲劳抗裂抗环境和气候损伤的标准化,为建设
高质量高性能的沥青路面提供技术支持。
浅析Superpave高性能沥青混合料质量控制摘要:通过在工程实践中对Superpave高性能沥青混合料的运用,浅述Superpave高性能沥青混合料的质量控制要点,并结合实践经验提出了相关参考意见。
关键词:Superpave高性能沥青混合料;质量控制;浅析近年来Superpave高性能沥青混合料在江苏高速公路及干线公路沥青路面上得到了广泛的运用,并取得了良好的路面使用效果。
由本人了解Superpave 高性能沥青混合料的高速公路以及干线公路有:2001年连徐高速公路CDE-26标,中、下面层Sup20、Sup25沥青路面施工;2003年在锡宜高速公路X22标,上中下Sup13、Sup20 、Sup25沥青路面施工;2004年在沪宁高速扩建工程LM6标,中、下面层Sup20、Sup25沥青路面施工, 2005年在321国道常州段,上中下Sup13、Sup20 、Sup25沥青路面施工,2006年淮盐高速公路YC23标,中、下面层Sup20、Sup25沥青路面施工;2007年340省道上中下Sup13、Sup20 、Sup25沥青路面施工;泰州长江大桥北接线下面层Sup25沥青路面施工。
这几条高速公路及干线公路竣工通车后,行车效果良好。
Superpave高性能沥青混合料的特点是粗集料骨架结构强、均匀性好、水稳定性好。
它以消除传统AC-25沥青混合料容易产生离析以及骨架嵌挤不完整的弊端,进一步提高沥青路面的均匀性和沥青混凝土中粗集料之间的相互嵌挤能力,有效增强沥青路面抵抗车辙的能力,从而延长沥青混凝土路面的使用寿命。
一、Superpave配合比设计理念Superpave采用了全新的沥青混合料设计方法,采用旋转压实仪成型试件,依据沥青混合料初始(8次),设计(100次)和最大(160次)旋转压实次数时的毛体积相对密度以及设计(100次)压实次数的空隙率,矿料间隙率,沥青饱和度、粉胶比进行沥青混合料的配合比组成设计。
Superpave高性能沥青混合料研究摘要:Superpave沥青混合料设计方法作为一种新型的沥青混合料设计方法,相较传统的马歇尔设计方法而言,因良好的水稳定性和高温稳定性,使得Sup沥青混合料在全国各大高速公路中下面层施工中得到广泛应用。
本文以试验为基础,依据Superpave沥青混合料设计实例对其研究,以期指导路面设计与施工。
关键词:Superpave;体积指标;水稳定性;高温稳定性Superpave沥青混合料的设计参数主要包括体积指标和路用性能指标。
沥青混合料的体积指标包括空隙率、矿料间隙率、沥青饱和度、粉胶比等,混合料在初始、设计、最大三种旋转压实次数时试件的体积指标必须满足设计要求。
Sup 混合料的路用技术指标与马歇尔方法相同,使得Sup混合料与马歇尔设计方法的主要区别就在于其设计压实状态考虑了交通量的影响因素,压实方式能够更好的模拟现场压实状态,其设计关键在于矿料级配组成的设计。
一、Sup20改性沥青混合料设计实例Superpave沥青混合料设计包括四个部分:选定原材料,级配组成设计,选定最佳沥青用量,各项技术指标的验证。
本文以大围山至浏阳高速公路24标的Sup20沥青混合料设计为实例,对Superpave沥青混合料设计方法进行探讨。
1、选定原材料试验选用浏阳市东南建材厂生产的矿粉,浏阳市狮岩碎石厂生产的集料,江苏宝利集团生产的SBS改性沥青。
所用原材料技术指标符合《公路沥青路面施工技术规范》相关要求即可,无其他特殊要求。
2、级配组成设计1)初选级配Superpave沥青混合料的级配组成设计与马歇尔设计方法不同,其级配范围通过控制点和限制区进行控制,因其宽泛的控制点范围较易满足,使得级配设计的关键就在于控制限制区。
级配选定时,控制级配曲线尽量在控制点内且不通过限制区,在控制点内限制区下方选择3个试验级配[1]进行试验比选,确定最佳级配,该级配混合料的水稳定性和高温稳定性较好。
大量研究表明,通过限制区下部区域的级配常称作“驼峰级配”,驼峰级配会引起混合料变软,导致混合料抗永久变形能力下降。
Superpave沥青混合料设计方法探讨摘要: Superpave沥青混合料设计方法是一种新型的混合料设计方法,从目前国内的应用来看,它较传统的马歇尔设计方法沥青混合料性能有较大的改善,有效的防止了沥青路面早期损害的发生。
本文以试验为基础,依据Superpave沥青混合料设计实例对其探讨,以求指导路面设计与施工。
关键词: Superpave 青混合料设计期损害计实例前言 1987年美国公路战略研究计划(SHRP)进行一项为期五年耗资5000万美元的沥青课题研究,旨在制定一个新的沥青和沥青混合料规范、试验、设计方法和评价体系。
SHRP沥青课题的最终研究成果称为Superpave,即高性能沥青路面,包括胶结料规范、混合料设计体系和混合料性能分析方法。
美国联邦公路局(FHWA)负责推广Superpave,并得到了AASHTO 的全力支持。
至1998年,除加州和内华达州,在其余各州新的胶结料性能规范已全面取代了针入度规范和粘度规范,美国有近40个州采用Superpave混合料设计方法取代马歇尔混合料设计方法。
目前我国的Superpave技术的引进和应用较为普遍,国内许多单位都纷纷购买购买和采用Superpave体系的设备和仪器,Superpave沥青胶结料规范和混合料设计规范在许多项目中已被应用。
从实际路面运营的效果来看,其展现出比传统的AC类沥青混合料很多性能上的优势,有效的防止了沥青路面早期损害的发生。
本文基于已有的研究,以试验为基础,依据Sup20改性沥青混合料配合比设计实例对Superpave混合料设计方法进行探讨。
1Sup20改性沥青混合料设计实例 1.1 集料技术性质试验试验选用石料为石灰岩石料、沥青为科氏161SBS 改性沥青,依据Superpave 设计要求,进行了集料技术性质试验,结果如下表所示:表1-1 集料技术性质试验结果汇总表试验项目试验值设计标准 Superpave技术标准集料认同特性粗集料棱角性(%) 100 / ≥100%细集料棱角(%) 46.0 / 45%扁平颗粒(%) 5.6 ≤15 10%砂当量(%) 85.6 ≥70 60%集料料源特性坚固性(%) 17.5 ≤30 35~45%安定性(%) 3.3 ≤12 10~20% 注:对于集料的料源特性,Superpave技术标准无具体要求,表中列出的标准为推荐值。
浅谈Superpave混合料的设计方法及应用前景余涛<重庆交通大学重庆400067)摘要:由于沥青路面优点众多,沥青混凝土目前已成为公路主要结构类型,并得到了广泛的使用。
选择合适沥青混合料设计方法,是满足沥青的路面性能要求的关键。
本文分别介绍马歇尔设计方法和Superpave设计方法,通过对比分析两种设计方法,得出它们比有良好的相关性。
根据我国国情,指出Superpave混合料的设计方法中的不足,最后Superpave设计方法在我国有良好的应用前景。
关键词:沥青混合料设计;Superpave设计方法;应用前景0.引言随着国民经济的持续增长,我国道路交通事业也在迅速发展,公路建设日新月异,道路在综合运输中发挥着越来越重要的作用,尤其是高速公路发展更为迅猛。
人们对公路行驶质量的要求也越来越高。
沥青路面具有施工便利、施工期短、行车平稳舒适、噪音低且易于养护修补等优点,在国内外公路和城市道路中,作为高级路面的主要结构类型而广为应用[1]。
高等级路面中,大部分路面选用热拌沥青混合料作为沥青面层材料,并取得了良好的效果。
热拌沥青混合料是一种相当复杂的材料,它必须拥有耐久性、行车舒适,能够抵抗变形、开裂、水损坏,同时还要达到经济和施工和易性等方面的要求。
一般的沥青混合料配合比设计通过集料的选择、胶结料的选择和确定最佳用油量三个方面来达到这些要求的。
为了满足沥青的路面性能,选择合适沥青混合料的设计方法,变得越来越重要。
1.公路沥青混合料配合比设计方法自20世纪初以来,有关沥青混合料设计方法如哈费氏设计方法、维姆设计方法、马歇尔设计方法和高性能沥青路面(Superpave>设计方法等相继产生。
沥青混合料设计方法的不断发展、完善,不仅扩大了沥青的使用范围,同时对承受不断增加的交通量和荷载的混合料提出了更高的要求。
目前。
目前沥青混合料设计方法大致有三种:Marshall、Hveem以及Superpave,本文主要对介绍Marshall和Superpave设计方法。
Superpave 沥青混合料的材料特征与压实工艺研究Superpave 沥青混合料的材料特征与压实工艺研究摘要:Superpave 沥青混合料是一种新型路面材料,它可以较好地满足不同道路工程的要求,并具有较高的耐久性和耐磨性。
本文介绍了Superpave 沥青混合料的材料特征,包括胶结剂、骨料、填料和添加剂等,并着重分析了影响Superpave 沥青混合料压实工艺的因素,包括温度、夯实压力、夯实次数和夯实方式等。
最后,提出了优化Superpave 沥青混合料压实工艺的建议。
关键词:Superpave 沥青混合料;胶结剂;骨料;填料;添加剂;压实工艺1.简介Superpave(Superior Performing Asphalt Pavements)是指一种高性能沥青混合料,是一种由美国联邦公路管理局(FHWA)和全美沥青混合料制造商协会(NAPA)共同开发的路面材料。
Superpave 沥青混合料具有优异的性能,包括高的耐久性、强的抗高温和抗低温性能、较好的抗反复弯曲性能、低的油脂损失等。
在道路工程中被广泛用于高速公路、城市道路、机场跑道等领域。
本文主要介绍Superpave 沥青混合料材料特征与压实工艺方面的研究进展。
2.Superpave 沥青混合料的材料特征2.1胶结剂胶结剂是Superpave 沥青混合料的重要组成部分,主要作用是控制混合料的弹性模量、黏度和油脂损失等性能。
目前市场上多用聚合物改性沥青(PMA)作为胶结剂,它可以显著提高混合料的高温稳定性、低温性能和耐水抗老化性能。
2.2骨料骨料是Superpave 沥青混合料的骨架,它占据了混合料的70%~80%。
骨料质量是影响混合料性能的重要因素,主要通过骨料的优选和粒径分布的调整来改善混合料耐久性、稳定性和密实性。
一般来说,采用强度较高、无反应性、尺寸均匀的鹅卵石作为骨料材料。
在骨料筛分方面,应根据道路工程的要求,选择合适的标准。
浅谈对superpave沥青混合料设计认识(一)
摘要:本文对superpave沥青混合料设计谈谈粗略看法。
关键词:superpave沥青混合料设计
随着美国superpave沥青混合料设计问世以来,受到许多国家道路工作者的认可,人们对该项技术表现出浓厚的兴趣,本人对superpave沥青混合料设计谈谈粗略看法:
1superpave设计方法较传统的马歇尔设计方法的优点
1.1原材料上的要求:
1.1.1石料上注重了集料的棱角性,因为棱角性的好坏直接影响道路的质量,抗剪强度主要依赖于集料的抗滑移能力,棱角性越好,集料的内摩擦力就大,集料之间的相互嵌挤就强,从而混合料的抗剪能力就大;
1.1.2集料的针片状要求越高,一般控制在10%以内针片状便于混合料的嵌挤和现场施工,防止现场施工因碾压而将针片状压断,人为造成断开的集料无法粘接;
1.1.3沥青的选用考虑了温度的明感性,对温度的要求和基质沥青的要求比马氏要高,下面层为70号沥青PG70-22,中面层为改性SBS沥青PG70-22,有的地方用PG76-22,温度提高了两个等级,适应当地路面的高温和低温要求。
1.2试验成型的仪器采用旋转压实仪
1.2.1旋转压实仪模拟现场施工的碾压方式,它的原理实际上是一种搓揉运动,集料通过搓揉重新调整位置,从而获得密实,不会产生象马氏一样重锤击碎集料现象;
1.2.2旋转压实仪试模直径为150mm(马氏为101.6mm),比较客观地反映集料的嵌挤;
1.2.3压实次数与交通量的设计有关
交通量不同,试件成型的压实次数不同,它们是成相关关系,这种设计是科学合理的,而马氏只是击50次或75次;
1.3混合料压实或成型前要进行短期老化
该设计方法要求沥青混合料压实成型前要进行短期老化(约2小时),目的是模拟现场施工过程(因为沥青混合料从拌和楼放入运料车再运输到现场摊铺碾压前一段时间就是混合料的老化时间),这样做比较接近施工现场工作,得出的试验数据比较科学;
1.4设计中该沥青饱和度VFA与交通量有关,该设计方法根据交通量小,VFA为70~80%,交通量大,VFA为65~75%,交通量的大小对路面压实程度不同,交通量大,初始沥青饱和度小一些,以便预留较多的空隙,防止在车辆较多的反复碾压下空隙率减小而使混合料失去稳定。