能源与动力装置基础__第4章-涡轮机(3)
- 格式:ppt
- 大小:2.00 MB
- 文档页数:53
涡轮的名词解释涡轮,作为机械的一种重要部件,广泛应用于航空、航海、能源等领域,其作用既重要又复杂。
本文将从涡轮的定义、结构、工作原理及其应用等方面进行讲解,带领读者一同探索这个引人注目的机械装置。
一、定义涡轮,可简单理解为通过液体或气体的流动来驱动的旋转机械。
它通常由旋转轮叶和定子外壳组成,其中轮叶的设计和安排决定了涡轮的性能。
根据应用领域和工作原理的不同,涡轮可以分为压气机、轴流涡轮机和反作用涡轮机等多种类型。
二、结构1. 压气机压气机是一种用于提供压缩空气的涡轮。
它由多个轴对称的转子和固定导叶构成。
当空气经过转子时,受到转子叶片的力,产生往前的冲击力,使得气体得到压缩。
通过轴向叠加多级转子的压缩,压气机能够将空气压缩到所需的压力,为后续的燃烧提供条件。
2. 轴流涡轮机轴流涡轮机是一种以流体冲击动力为驱动力的涡轮。
其结构由转子和定子构成,转子上安装有多个弯曲的叶片,定子通常呈圆筒形。
当流体通过轴流涡轮机时,流体动能被转子叶片转化为转轮动力。
轴流涡轮机的特点是具有高效率和较高的流量处理能力。
3. 反作用涡轮机反作用涡轮机以流体的反作用力来驱动旋转。
它由多个叶片固定在一个环形壳体上,当流体通过叶片时,同时对叶片施加压力和反作用力,从而使涡轮旋转。
这种结构和工作原理常见于水力涡轮机、船舶推进器等应用中。
三、工作原理涡轮的工作原理是基于牛顿第三定律:作用力与反作用力相等且方向相反。
涡轮通过叶片与流体的相互作用,将流体动能转化为机械能。
在压气机中,空气经过转子时受到叶片的推动而压缩;在轴流涡轮机中,流体经过转子叶片时施加反作用力使涡轮旋转;在反作用涡轮机中,流体通过叶片时对叶片施加压力和反作用力,也使涡轮旋转。
四、应用涡轮广泛应用于航空、航海、能源等领域,其主要应用包括以下几个方面:1. 航空航天领域:涡轮引擎是飞机、火箭等交通工具的重要动力装置。
它通过涡轮转动带动压气机或轴流涡轮机,提供高温高速气体流,并将化学能转化为机械能,推动飞机或火箭飞行。
论燃气轮机一、燃气轮机概述燃气轮机是以连续流动的燃气作为工质带动叶轮高速旋转,将燃料的能量转变为有用功的内燃式动力机械。
它是以燃气而不是以水蒸气作为工质,因此可省去锅炉、冷凝器、给水处理等大型设备。
不仅如此,燃气轮机与以煤为燃料的蒸汽轮机相比,它具有重量轻、体积小、装置效率高、污染少、开停灵活等优点。
二、燃气轮机的类型及其工作原理(一)燃气轮机的类型燃气轮机从负荷情况上划分可分为重型和轻型两类。
一般工业上用于拖动发电机组发电,或用于机械驱动的燃气轮机都是重型燃气轮机;而用于飞机发动机的燃气轮机为轻型燃气轮机。
燃气轮机从结构上划分,燃气轮机可分为单轴、双轴和多轴燃气轮机。
单轴燃气轮机因其压气机、透平与负载共轴,负载的转速变化规律直接影响压气机转速,使吸入压气机的空气量发生变化,甚至使压气机喘振而发生事故。
为了使负载变化规律对压气机转速的影响降低到最小程度,即负载变化规律不直接影响压气机的转速,负载转速的变化规律只能通过内部气体工质的工作过程来间接影响压气机的工况,人们设法使压气机与负载不共轴,因而产生了双轴和多轴燃气轮机。
由上可见,在实际选型时,选用单轴、双轴还是多轴燃气轮机,取决于系统中负载的变化情况,当系统负载变化不大时,一般选用单轴燃气轮机,如大型火力发电厂用于拖动发电机的燃气轮机;当系统负荷变化较大时,可视其具体情况选用双轴或多轴燃气轮机。
(二)燃气轮机的工作原理燃气轮机的工作过程是压气机(即压缩机)连续地从大气中吸入空气并将其压缩;压缩后的空气进入燃烧室,与喷入的燃料混合后燃烧,成为高温燃气,随即流入燃气涡轮中膨胀作功,推动涡轮叶轮带着压气机叶轮一起旋转;加热后的高温燃气的作功能力显著提高,因而燃气涡轮在带动压气机的同时,尚有余功作为燃气轮机的输出机械功。
燃气轮机由静止起动时,需用起动机带着旋转,待加速到能独立运行后,起动机才脱开。
燃气轮机的工作过程是最简单的,称为简单循环。
燃气初温和压气机的压缩比,是影响燃气轮机效率的两个主要因素。
·实验技术·基于实验室朗肯循环装置的实验研究李维腾,李 季(华北电力大学 能源动力与机械工程学院,北京 102206)摘要: 朗肯循环是工程热力学课程最基本且最重要的动力循环。
该文通过实验室朗肯循环装置对朗肯循环进行了实验研究,测定不同排汽压力下的循环热效率、涡轮相对内效率、循环摩擦损失等参数。
实验结果表明,实验室朗肯循环装置能够模拟朗肯循环的基本热力过程,但是热效率较低、摩擦损失较大。
论文对实验结果进行了分析,循环热效率低的主要原因是涡轮摩擦损失大、主蒸汽参数低,同时提出了改进实验室朗肯循环装置的措施。
实验室朗肯循环将热力学理论与实验结合,有助于学生理解和分析热力学基本理论,提高实验动手操作能力,提高分析和解决实际问题的能力。
同时将自主实验和创新实验融入到实验教学中,激发了学生的学习热情和基础科研能力,为创新性实验教学提供了借鉴。
关 键 词:工程热力学;朗肯循环;循环热效率;相对内效率中图分类号:TK123 文献标志码:A DOI: 10.12179/1672-4550.20190414Experimental Research Based on Rankine Cycle Lab-EquipmentLI Weiteng, LI Ji(School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China )Abstract: Rankine Cycle is the most fundamental and important power cycle in Engineering Thermodynamics. This paper conducted Rankine Cycle experiments with Rankine Cycle Lab-Equipment, and measured thermal efficiency, turbine relative internal efficiency, cycle friction loss and other parameters. Results showed that Rankine Cycle Lab-Equipment can simulate the basic thermal processes of Rankine Cycle, but with relatively low thermal efficiency and huge cycle friction loss. The main reasons for low thermal efficiency were huge friction loss of steam turbine and low main-steam parameters. Measures to improve Rankine Cycle Lab-Equipment were proposed according to experimental results and analysis. Laboratory Rankine Cycle combined Thermodynamic theory with experiment to help students understand and analyze the fundamental theory of Thermodynamics, improve their hands-on ability to conduct experiments and problem-solving capability. At the same time, independent and innovative experiments were integrated into experimental teaching, which stimulated students’ learning enthusiasm and basic scientific research ability, and provided reference for innovative experimental teaching.Key words: engineering thermodynamics; Rankine Cycle; thermal efficiency; relative internal efficiency理想朗肯循环是蒸汽动力装置最基本的循环,热力发电厂各种复杂蒸汽动力循环包括再热循环和回热循环都是在朗肯循环的基础上发展而来的。