基因克隆的酶学基础
- 格式:ppt
- 大小:6.78 MB
- 文档页数:138
目录第一章基因与基因工程第一节基因研究的发展第二节基因的现代概念第三节基因工程的诞生及其主要的研究内容第二章基因操作的主要技术原理第一节核酸的凝胶电泳第二节核酸分子杂交第三节细菌转化1.肺炎球菌的转化2.大肠杆菌的转化3.细菌转化频率第四节DNA核苷酸序列分析第五节基因的化学合成第六节基因定点突变第七节基因扩增第八节研究DNA与蛋白质相互作用的方法第三章基因克隆的酶学基础第一节核酸内切限制酶与DNA分子的体外切割1.寄主控制的限制与修饰现象2.核酸内切限制酶的类型3.I 型和III型核酸内切限制酶的基本特性4.II型核酸内切限制酶的基本特性[1].基本特性[2].同裂酶[3].同尾酶[4].限制片段末端的连接作用5.核酸内切限制酶的命名法6.影响核酸内切限制酶活性的因素[1].DNA的纯度[2].DNA的甲基化程度[3].酶切消化反应的温度[4].DNA分子的结构[5].核酸内切限制酶的缓冲液7.核酸内切限制酶对DNA的消化作用[1].核酸内切限制酶与靶DNA识别序列的结合模式[2].核酸内切限制酶对DNA分子的局部消化作用[3].核酸内切限制酶对真核基因组DNA的消化作用第二节DNA连接酶与DNA分子的体外连接1.DNA连接酶2.粘性末端DNA片段的连接3.平末端DNA片段的连接[1].同聚物加尾法[2].衔接物连接法[3].DNA接头连接法4.热稳定的DNA连接酶[1].寡核苷酸连接测定法[2].连接酶链式反应(LCR)第三节DNA聚合酶1.DNA聚合酶I与核酸杂交探针的制备[1].DNA聚合酶I[2].DNA缺口转移[3].DNA杂交探针的制备2.大肠杆菌DNA聚合酶I 的Klenow片段与DNA末端标记3.T4 DNA聚合酶和取代合成法标记DNA片段4.依赖于RNA的DNA聚合酶与互补DNA的合成5.T7 DNA聚合酶6.修饰的T7 DNA聚合酶第四节DNA及RNA的修饰酶1.末端脱氧核苷酸转移酶与同聚物加尾2.T4多核苷酸激酶与DNA分子5’-末端的标记3.碱性磷酸酶与DNA脱磷酸作用第五节核酸外切酶1.核酸外切酶VII (exo VII)2.核酸外切酶III (exo III)3.λ核酸外切酶(λ exo)和T7基因6核酸外切酶第六节单链核酸内切酶1.S1核酸酶与RNA分子定位2.Bal1 核酸酶与限制位点的确定第四章基因克隆的质粒载体第一节质粒的一般生物学特性1.质粒DNA2.质粒DNA编码的表型3.质粒DNA的转移[1].质粒的类型[2].F质粒[3].质粒DNA的接合作用4.质粒DNA的迁移作用5.质粒DNA的复制类型6.质粒DNA的不亲和性[1].质粒的不亲和性现象[2].质粒不亲和性的分子基础7.第二节质粒DNA的复制与拷贝数的控制1.质粒DNA复制的多样性2.ColE 1质粒DNA复制的启动3.质粒DNA拷贝数的控制[1].天然质粒拷贝数的控制[2].杂种质粒拷贝数的控制4.质粒复制控制的分子模型[1].抑制蛋白质稀释模型[2].自体阻遏蛋白质模型5.第三节质粒DNA的分离与纯化1.氯化铯密度梯度离心2.碱变性法3.微量碱变性法4.影响质粒DNA产量的因素[1].寄主菌株的遗传背景[2].质粒的拷贝数与分子大小5.第四节质粒载体的构建与类型1.天然质粒用作克隆载体的局限性2.质粒载体必须具备的基本条件3.质粒载体的选择记号[1].高拷贝数的质粒载体[2].低拷贝数的质粒载体[3].失控的质粒载体[4].插入失活型的质粒载体[5].正选择的质粒载体[6].表达型的质粒载体4.第五节重要的大肠杆菌质粒载体1.pSC101 质粒载体[1].应用pSC101 质粒作基因克隆载体的实例一---葡萄球菌质粒基因在大肠杆菌中的表达[2].应用pSC101 质粒作基因克隆载体的实例二---在大肠杆菌中克隆非洲爪蟾2.Col 1质粒载体3.pBR322质粒载体[1].pBR322质粒载体的构建[2].pBR322质粒载体的优点[3].pBR322质粒载体的改良[4].应用pBR322质粒作为基因克隆载体的实例---水稻夜绿体光诱导基因psbA的结构分析4.pUC 质粒载体[1].pUC 质粒载体的结构[2].pUC 质粒载体的优点5.其他重要的质粒载体[1].丧失迁移功能的的质粒载体[2].能在体外转录克隆基因的质粒载体[3].穿梭质粒载体第六节质粒载体的稳定性问题1.质粒载体不稳定性的类型[1].结构的不稳定性[2].分离的不稳定性2.影响质粒载体稳定性的主要因素[1].新陈代谢负荷对质粒载体稳定性的效应[2].拷贝数差度对质粒载体稳定性的影响[3].寄主重组体系对质粒载体稳定性的效应3.随机分配的分子机理[1].通过精巧的控制环路使质粒拷贝数的差度限制在最低的水平[2].通过位点特异的重组作用消除天然质粒的寡聚体[3].通过调节细胞的分裂活动阻止无质粒细胞的产生[4].大肠杆菌素的合成增进了质粒的稳定性4.主动分配的分子机理[1].分配区的结构与功能[2].预配对模型[3].二聚体的解离有助于质粒的主动分配[4].寄主致死功能对质粒稳定性的效应5.第五章噬菌体载体和柯斯载体第一节噬菌体的一般生物学特性第二节λ噬菌体载体第三节柯斯质粒载体第四节单链DNA噬菌体载体第五节噬菌体载体第六章基因的分离与鉴定第一节DNA克隆片段的产生与分离1.基因组DNA克隆片段的产生与分离2.DNA片段的大小分部3.编码目的基因的克隆片段的富集第二节重组体DNA分子的构建及导入受体细胞1.外源DNA片段同载体分子的重组[1].外源DNA片段定向插入载体分子[2].非互补粘性末端DNA分子间的连接[3].最佳连接反应2.重组体分子导入受体细胞的途径[1].重组体DNA分子的转化或转染[2].体外包装的λ噬菌体的转导第三节基因克隆的实验方案1.互补作用基因克隆2.cDNA基因克隆[1].cDNA文库的建立[2].不同丰度mRNA的cDNA克隆[3].全长cDNA的合成[4].cDNA克隆的优越性3.基因组DNA克隆[1].应用 噬菌体载体构建基因组文库[2].应用柯斯质粒载体构建基因组文库4.基因定位克隆[1].拟南芥菜简介[2].RFLP分子标记[3].RFLP作图的原理与步骤[4].染色体步移[5].大尺度基因组物理图谱的构建第四节克隆基因的分离1.应用核酸探针分离克隆的目的基因[1].核酸探针的来源[2].寡核酸探针的的人工合成[3].假阳性克隆的克服2.应用差别杂交或扣除杂交法分离克隆的目的基因[1].差别杂交[2].差别杂交的局限性[3].扣除杂交3.应用mRNA差别显示技术分离克隆的目的基因[1].mRNA差别显示的原理[2].mRNA差别显示的基本过程[3].mRNA差别显示的局限性4.引用表达文库分离克隆的目的基因5.酵母双杂交体系[1].酵母双杂交体系的基本原理[2].酵母双杂交体系的寄主菌株[3].酵母双杂交体系的实验程序第五节重组体分子的选择与鉴定1.遗传检测法[1].根据载体表型特征选择重组体分子的直接选择法[2].根据插入序列的表型特征选择重组体分子的直接选择法2.物理检测法[1].凝胶电泳检测法[2].R-检测环法3.菌落或噬菌斑杂交筛选法4.免疫化学检测法[1].放射性抗体检测法[2].免疫沉淀检测法[3].表达载体产物之免疫化学检测法5.DNA蛋白筛选法6.转译筛选法[1].杂交抑制的转译[2].杂交选择的转译第七章基因的表达与调节第八章真核基因在大肠杆菌中的表达第一节真核基因的大肠杆菌表达体系第二节大肠杆菌的表达载体第三节克隆的真核基因在大肠杆菌中的表达第四节影响克隆基因在大肠杆菌中表达效率的因素第九章植物基因工程第十章哺乳动物基因工程第一节哺乳动物基因转移的遗传选择标记第二节外源DNA导入哺乳动物细胞的方法第三节SV 40病毒载体第四节反转录病毒载体第五节其他的病毒载体第十一章重组DNA与现代生物技术第十二章重组DNA与医学研究第一章基因与基因工程第一节基因研究的发展第二节基因的现代概念第三节基因工程的诞生及其主要的研究内容1.质的新组合,并使之参与到原先没有这类分子的寄主细胞内,而能够持续稳定的繁殖。
植物基因克隆的策略及方法首先,PCR是植物基因克隆的重要策略之一、PCR(聚合酶链反应)是一种体外复制DNA片段的方法,可以在短时间内扩增大量的特定DNA序列。
通过PCR可以快速准确地克隆植物基因。
PCR的基本原理是利用DNA 聚合酶酶学合成原理,在DNA片段两侧设计引物,将其与DNA片段的两侧结合,在适当的条件下进行DNA的聚合酶链反应,从而扩增目标基因。
PCR方法主要包括加热解性、引物连接、扩增和酶切等步骤。
其次,限制性酶切也是植物基因克隆的重要方法。
限制性酶切是指利用特定的限制性酶将DNA分子切割成特定序列的片段。
通过限制性酶切,可以将目标基因从植物DNA中剪切出来,然后进行进一步处理。
限制性酶切的基本原理是将特定的限制性酶加入反应体系中,该酶能识别和切割DNA的特定序列,从而将目标基因从DNA中剪切出来。
限制性酶切方法主要包括选择合适的限制性酶、反应条件的优化、酶切产物的回收和检测等步骤。
连接是植物基因克隆的另一种重要方法。
连接是指将目标基因连接到特定的载体DNA上,以便在目标植物中稳定地表达。
连接方法主要包括两个步骤:首先,需要处理载体DNA和目标基因的末端,以便它们能够相互连接;其次,利用DNA连接酶将载体和目标基因连接起来。
连接步骤中的处理涉及到DNA末端的修饰和处理,可以通过多种方法如限制性内切酶切割、引物扩增、酶切等进行。
最后,转化是植物基因克隆的最后一步。
转化是指将连接好的目标基因插入到目标植物的基因组中,使其能够在植物体内稳定表达。
转化的方法有多种,包括农杆菌介导的转化、基因枪转化、电穿孔转化等。
其中,农杆菌介导的转化是最常用的方法之一、农杆菌介导的转化是利用农杆菌作为载体将外源DNA导入到目标植物细胞中,通过农杆菌的自然寄生习性以及在植物细胞中特定的植物基因的活性表达,实现目标基因的稳定表达。
总的来说,植物基因克隆的策略和方法包括PCR、限制性酶切、连接和转化。
通过这些方法,可以快速准确地克隆植物基因,实现对植物遗传特性的改变和优化,为农业生产和植物遗传研究提供有力的技术支持。
基因工程概要第一章:绪论让幸福的细胞不凋亡;让开心的基因多表达;让健康的质粒常转染;让快乐的双链不变异;让烦恼的片段永封闭。
一、基因工程的基本定义基因工程是指重组DNA技术的产业化设计与应用,包括上游技术和下游技术两大组成部分。
上游技术指的是基因重组、克隆和表达的设计与构建(即重组DNA技术);而下游技术则涉及到基因工程菌或细胞的大规模培养以及基因产物的分离纯化过程。
二、四大里程碑遗传物质的明确——DNA;DNA双螺旋结构理论(半保留复制及其中心法则);基因遗传密码子的破译;基因转移载体的发现。
三、三大技术发明工具酶的发明:内切酶、合成酶、连接酶;基因合成和测序(合成仪、测序仪);PCR技术(PCR扩增仪)。
四、基因的现代概念移动基因;断裂基因;假基因;重复基因;重叠基因;或嵌套基因五、工具酶种类核糖核酸酶;脱氧核糖核酸酶; DNA连接酶;DNA聚合酶;RNA聚合酶;反转录;限制性核酸内切酶。
第二章:重组DNA技术基础1、DNA组成与结构:核酸、一级结构、二级结构和高级结构;2、RNA的组成与功能:mRNA、tRNA、rRNA.3、核酸的理化性质:(1)一般性质:核酸的溶解度.;酸碱性;核酸的高分子性质粘度: DNA>RNA dsDNA > ssDNA;核酸的紫外吸收(OD260)单核苷酸 > ssDNA(或RNA) > dsDNA;核酸的化学性质:核酸中的嘌呤和嘧啶能进行脱氨、聚合、烷基化等反应等。
(2)DNA的变性:DNA变性的本质是双链间氢键的断裂;(3)DNA的复性与分子杂交 : DNA复性(renaturation)的定义:在适当条件下,变性DNA的两条互补链可恢复天然的双螺旋构象,这一现象称为复性。
热变性的DNA 经缓慢冷却后即可复性,这一过程称为退火(annealing) ;减色效应: DNA复性时,其溶液OD260降低的现象.(4)核酸酶:核酸酶是指所有可以水解核酸的酶.(5)核酶:催化性RNA 作为序列特异性的核酸内切酶降解mRNA; 催化性DNA人工合成的寡聚脱氧核苷酸片段,也能序列特异性降解RNA。
基因工程复习题题型:名词解释(10个)30分;填空(每空1分) 20分;选择题(每题1分)10分;简答题(4个)20分;论述题(2个)20分。
第一章绪论1.名词解释:基因工程:按照预先设计好的蓝图,利用现代分子生物学技术,特别是酶学技术,对遗传物质DNA直接进行体外重组操作与改造,将一种生物(供体)的基因转移到另外一种生物(受体)中去,从而实现受体生物的定向改造与改良。
遗传工程广义:指以改变生物有机体性状为目标,采用类似工程技术手段而进行的对遗传物质的操作,以改良品质或创造新品种。
包括细胞工程、染色体工程、细胞器工程和基因工程等不同的技术层次。
狭义:基因工程。
克隆:无性(繁殖)系或纯系。
指由同个祖先经过无性繁殖方式得到的一群由遗传上同一的DNA分子、细胞或个体组成的特殊生命群体。
2.什么是基因克隆及基本要点?3.举例说明基因工程发展过程中的三个重大事件。
A) 限制性内切酶和DNA连接酶的发现(标志着DNA重组时代的开始);B) 载体的使用;C) 1970年,逆转录酶及抗性标记的发现。
4.基因工程研究的主要内容是什么?基础研究:基因工程克隆载体的研究基因工程受体系统的研究目的基因的研究基因工程工具酶的研究基因工程新技术的研究应用研究:基因工程药物研究转基因动植物的研究在食品、化学、能源和环境保护等方面的应用研究第二章基因克隆的工具酶1.名词解释:限制性核酸内切酶:一类能识别双链DNA中特殊核苷酸序列,并使每条链的一个磷酸二酯键断开的内脱氧核糖核酸酶。
回文结构:双链DNA中的一段倒置重复序列,当该序列的双链被打开后,可形成发夹结构。
同尾酶:来源不同、识别序列不同,但产生相同粘性末端的酶。
同裂酶:不同来源的限制酶可切割同一靶序列和具有相同的识别序列黏性末端:DNA末端一条链突出的几个核苷酸能与另一个具有突出单链的DNA末端通过互补配对粘合,这样的DNA末端,称为粘性末端。
平末端:DNA片段的末端是平齐的。
《基因工程》课程教学大纲课程名称:基因工程课程类别:专业主干课适用专业:生物技术考核方式:考试总学时、学分:32 学时 2 学分其中实验学时:0 学时一、课程教学目的通过对本门课程的学习,使学生掌握基因工程技术的基本原理、常用技术和工作思路,了解基因工程技术的应用及发展趋势,为进一步学习有关专业课及参加相关领域的生产和科研工作奠定基础。
二、课程教学要求本门课是以遗传学、生物化学、微生物学、细胞生物学、分子生物学等学科为基础的学科,要求学生有扎实的上述课程基础。
本课程的主要内容包括: 基因工程载体、基因工程的酶学基础、目的基因的克隆、DNA连接和转化、转化子的筛选与重组子的鉴定、大肠杆菌基因工程、酵母菌基因工程、高等动物基因工程、高等植物基因工程等。
要求学生掌握基因工程的基本原理和常用方法与技术,了解该领域的研究动态与发展方向。
课程的基本内容随着本学科的发展而调整并限定其广度和深度,在保证达到一定培养规格的前提下,考虑学生的接受能力和学习负担,同时注意本课程和其它相关课程的相互联系与衔接,防止疏漏和不必要的重复。
三、先修课程生物化学、微生物学、遗传学、细胞生物学、分子生物学。
四、课程教学重、难点教学重点:基因工程载体、基因工程的酶学基础、目的基因的克隆、DNA连接和转化、转化子的筛选与重组子的鉴定。
教学难点:目的基因的克隆、DNA连接和转化、转化子的筛选与重组子的鉴定。
五、课程教学方法与教学手段以教师讲授为主,要求教师认真备课,熟悉本课程的基本内容以及该学科的最新发展趋势,以合适的形式进行教学,提倡采用多媒体作为辅助教学手段;学生可以通过阅读相关的英文资料了解本学科的研究状况与发展方向,也可以阅读一些感兴趣的参考资料,训练其针对所感兴趣的问题进行深入探讨的能力。
六、课程教学内容第一章概述(1学时)1.教学内容(1)基因工程的概念;(2)基因工程的发展和历史;(3)基因工程的研究意义。
2.重、难点提示(1)重点:基因工程的概念;(2)难点:基因工程的基因原理及在生物工程中的地位。
附表1 知识、能力、素质结构表
附表2:
生物工程专业课程结构比例一览表
说明:实践课学分总计55.5学分,占总学分比例为31.7%。
附表3:
生物工程专业教学计划进程表
注:1.形势与政策课按平均每学期16周,每周1学时,计2学分。
2.军事理论及训练:军事理论课程36学时,计2学分,以理论课、讲座、答疑的形式进行;军事训练2周,计1学分。
注:3.大学生职业发展与就业指导课程分两段上课:大学生职业发展部分20学时,在第二学期完成;就业指导部分18学时,在第七学期完成,计1学分,以理论课、讲座、答疑的形式进行。
注:4.社会实践4个学分,其中1个学分安排劳动实践,时间为一周,在第三学期进行;其余3学分在三学年内组织开展三下乡社会实践、社会公益、志愿服务等活动。
5.创业教育课程安排在第三学期至第七学期,以理论课、讲座、答疑的形式进行。
6.学科专业基础课程选修课和专业课程选修课须修满16学分;职业课程需修满23学分。
7. 中学阶段学习俄语的同学,可不修大学英语,学习大学俄语(TS1314)。